Comments on entanglement entropy in the dS/CFT correspondence

Yoshiki Sato(Kyoto U.)

based on PRD 91 (2015) 8, 086009 [arXiv:1501.04903]

Plan of my talk

1. Introduction
2. Proposal for holographic entanglement entropy in Einstein gravity on dS
3. Comparison with a toy model
4. Conclusion \& Discussion
5. Introduction

Motivation

- AdS/CFT relates gravitational theories on AdS with non-gravitational theories.

We can analyze quantum gravitational theories using non-gravitational theories.

- Toward a quantum description of our Universe, AdS/CFT might be useful.

We need dS/CFT instead of AdS/CFT since our Universe is approximately dS .

- The holographic entanglement entropy (HEE) is a useful quantity to analyze gravitational theories.

In fact, Einstein's equation and a radial component of AdS metric are reproduced from HEE, for instance.

Entanglement entropy

- Definition
(i) divide the total system into A and B

$$
\mathcal{H}_{\mathrm{tot}}=\mathcal{H}_{A} \times \mathcal{H}_{B}
$$

(ii) introduce a reduced density matrix

$$
\rho_{A}=\operatorname{tr}_{B} \rho_{\mathrm{tot}} \quad \text { where } \quad \rho_{\mathrm{tot}}=|\Psi\rangle\langle\Psi|
$$

(iii) entanglement entropy (EE) is defined as

$$
S_{A}=-\operatorname{tr}_{A} \rho_{A} \log \rho_{A}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{tr}_{A} \rho_{A}^{n}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \log \operatorname{tr}_{A} \rho_{A}^{n}
$$

- Entanglement entropy measures how subsystems A \& B correlate each other.

Ryu-Takayanagi formula

- Holographic dual of EE is given by Ryu-Takayanagi formula [Ryu-Takayanagi, PRL 96 (2006) 181602]

$$
S_{A}=\frac{\text { Area of } \gamma_{A}}{4 G_{\mathrm{N}}} \nwarrow \text { extremal surfaces }
$$

- HEE is a generalised quantity of the black hole entropy.
[Lewkowycz-Maldacena, JHEP 1308 (2013) 090]

Black hole entropy formula holds even in dS and flat spacetime.
\square HEE formula should hold in dS!!

I investigate HEE in dS/CFT.

2. Proposal for HEE in Einstein gravity on dS

Proposal

- We need to find extremal surfaces whose boundaries sit in \mathcal{I}^{+}since dual CFTs live there.

- We propose that "extremal surfaces" in dS are given by analytic continuations of that in Euclidean AdS.
- Comments on other possibilities
(1) time-like surface

In general, time-like surfaces are not closed.

HEE becomes a sum of a pure real part and a pure imaginary part.

This result largely disagrees with our results in $\mathrm{Sp}(\mathrm{N})$ model.

Example: half plane

- Take the region A as a half plane.

Metric: $\mathrm{d} s^{2}=\ell_{\text {AdS }}^{2} \frac{\mathrm{~d} z^{2}+\sum_{i=1}^{d} \mathrm{~d} x_{i}^{2}}{z^{2}}$
Extremal surface: $0 \leq z<\infty$

$\Rightarrow S_{A}=\frac{V_{d-2}}{4 G_{\mathrm{N}}} \int_{\varepsilon}^{\infty} \mathrm{d} z\left(\frac{\ell_{\text {AdS }}}{z}\right)^{d-1}=\frac{V_{d-2} \ell_{\mathrm{AdS}}^{d-1}}{4 G_{\mathrm{N}}(d-2)} \cdot \frac{1}{\varepsilon^{d-2}}$

- Double analytic continuation: $z \rightarrow-i \eta, \quad \ell_{\mathrm{AdS}} \rightarrow-i \ell_{\mathrm{dS}}$

Metric: $\quad \mathrm{d} s^{2}=\ell_{\mathrm{dS}}^{2} \frac{-\mathrm{d} \eta^{2}+\sum_{i=1}^{d} \mathrm{~d} x_{i}^{2}}{\eta^{2}}$
Extremal surface: $0 \leq \eta<i \infty$

$$
\text { Entanglement entropy: } S_{A}=(-i)^{d-1} \frac{V_{d-2} \ell_{\mathrm{dS}}^{d-1}}{4 G_{\mathrm{N}}(d-2)} \cdot \frac{1}{\varepsilon^{d-2}}
$$

In general, extremal surfaces extend in complex-valued coordinates.

3. Comparison with a toy model

Sp(N) model

- The CFT holographic dual to Einstein gravity on dS is not known yet.
\square analyze the free $\mathrm{Sp}(\mathrm{N})$ model, which is the holographic dual of Vasiliev's higher spin theory
- Action (d-dim)

$$
I=\int \mathrm{d}^{d} x \Omega_{a b} \partial \chi^{a} \cdot \partial \chi^{b} \quad \text { where } \Omega_{a b}=\left(\begin{array}{cc}
0 & 1_{N / 2 \times N / 2} \\
-1_{N / 2 \times N / 2} & 0
\end{array}\right)
$$

Introducing $\quad \eta^{a}=\chi^{a}+i \chi^{a+\frac{N}{2}}, \quad \bar{\eta}^{a}=-i \chi^{a}-\chi^{a+\frac{N}{2}} \quad(a=1, \cdots, N / 2)$

$$
\Rightarrow \quad I=\int \mathrm{d}^{d} x \partial \bar{\eta}^{a} \cdot \partial \eta^{a}
$$

- χ^{a}, η^{a} and $\bar{\eta}^{a}$ are anti-commuting scalar fields.
\Rightarrow violates the spin-statics theorem \quad non-unitary

Replica trick

- Entanglement entropy

$$
S_{A}=-\operatorname{tr}_{A} \rho_{A} \log \rho_{A}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{tr}_{A} \rho_{A}^{n}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \log \operatorname{tr}_{A} \rho_{A}^{n}
$$

This calculation is difficult. Instead, we calculate $\operatorname{tr}_{A} \rho_{A}^{n}$.

- Wave function for a ground state

$$
\begin{aligned}
& \Psi\left[\phi\left(\boldsymbol{x}, x_{0}=0\right)\right]=\frac{1}{\sqrt{Z}} \int \prod_{-\infty<x_{0}<0} \prod_{\boldsymbol{x}} \mathrm{d} \phi \mathrm{e}^{-S[\phi]} \delta[\phi(0, \boldsymbol{x})-\phi(\boldsymbol{x})] \\
& \Psi^{*}\left[\phi\left(\boldsymbol{x}, x_{0}=0\right)\right]=\frac{1}{\sqrt{Z}} \int_{0<x_{0}<\infty} \prod_{\boldsymbol{x}} \mathrm{d} \phi \mathrm{e}^{-S[\phi]} \delta[\phi(0, \boldsymbol{x})-\phi(\boldsymbol{x})]
\end{aligned}
$$

- Path integral representation of ρ_{A}

$$
\begin{array}{r}
{\left[\rho_{A}\right]_{\phi_{-} \phi_{+}}=\frac{1}{Z} \int \prod_{x} \mathrm{~d} \phi \mathrm{e}^{-S[\phi]} \prod_{\boldsymbol{x} \in A}} \\
\times\left[\phi(-0, \boldsymbol{x})-\phi_{-}(\boldsymbol{x})\right] \\
\times \delta\left[\phi(+0, \boldsymbol{x})-\phi_{+}(\boldsymbol{x})\right]
\end{array}
$$

Replica trick

- $\operatorname{tr} \rho_{A}^{n}$ is given by a partition function on Riemann surface Σ_{n}

$$
\operatorname{tr} \rho_{A}^{n}=\frac{1}{Z^{n}} \int \prod_{x \in \Sigma_{n}} \mathrm{~d} \phi \mathrm{e}^{-S[\phi]}
$$

- EE for a free scalar field theory (the subsystem is a half plane)

We take $n \rightarrow 1 / \bar{n}$ where \bar{n} is integer.
We need to evaluate the partition function on $\mathbb{R}^{2} / Z_{\bar{n}} \times \mathbb{R}^{d-2}$.

$$
\begin{aligned}
S_{A} & =-\lim _{n \rightarrow 1} \frac{\partial}{\partial(1 / n)}\left(\log Z_{\mathbb{R}^{2} / Z_{n} \times \mathbb{R}^{d-2}}-\frac{1}{n} \log Z_{\mathbb{R}^{d}}\right) \\
& =\frac{V_{d-2}}{6(d-2)(4 \pi)^{(d-2) / 2}} \cdot \frac{1}{\varepsilon^{d-2}}+\mathcal{O}\left(\varepsilon^{-(d-4)}\right)
\end{aligned}
$$

Entanglement entropy in Sp(N) model

- Differences from the scalar field theory
(i) anti-commuting scalars
$E E$ in $\operatorname{Sp}(N)$ model is minus that of the usual scalar field theory.
(ii) N complex fields

EE is proportional to N .

$$
S_{A}=-\frac{N V_{d-2}}{6(d-2)(4 \pi)^{\frac{d-2}{2}}} \cdot \frac{1}{\varepsilon^{d-2}}
$$

- Comment
$E E$ is a positive definite quantity in usual.
However, EE in $\mathrm{Sp}(\mathrm{N})$ model is negative.
\Rightarrow Hilbert space of $\mathrm{Sp}(\mathrm{N})$ model is not positive definite.

4. Conclusion \& Discussion

Conclusion \& Discussion

- We have obtained HEE \& EE.

HEE behaves as $S_{A} \propto(-i)^{d-1}$ in dS_d+1.
EE behaves as $S_{A} \propto-S_{A}^{\text {standard field theories } .}$

- dS_d+1/CFT_d correspondence makes senses only when $d+1 \in 4 \mathbb{Z}$

The most interesting case, dS_4/CFT_3, is included.
The most simple case, dS_3/CFT_2, is excluded.

This is consistent with the result in subsection 5.2 in [Maldacena, JHEP 0305 (2003) 013].

- Our proposal has been checked only in the simple case, half plane.

However, our proposal holds in any entanglement surfaces.

Thank you for your attention!!

