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The classification of superconformal groups is a result by Nahm
(77) building on the classification of super Lie algebras by himself,
Rittenberg and Scheunert (77) and Kac (77).

The existence of
superconformal groups relies on exceptional isomorphisms in
between Lie groups of low rank. Essentially for this reason,
superconformal algebras exist only in lower spacetime dimensions,

D ≤ 6

A natural question is whether there exist corresponding QFTs with
the desired superconformal symmetry.
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For D ≤ 4 it is possible to construct such models directly.

For
D = 5, 6 the construction is indirect. From a pure QFT viewpoint
there are interesting conjectures by Seiberg (95-96) see also
Seiberg-Witten (96), which give necessary conditions for the
existence of superconformal points in D = 5, 6. On the other hand,
String/M/F theory predicts their existence (Witten 95). The logic
for both constructions is very similar. One starts from a phase with
broken conformal symmetry, and argues for the existence of a
superconformal point.
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This has the advantage that one can use 6D (1,0) susy multiplets,
namely, as SO(4)spin × USp(2)R

• 1
2 hypers: (1, 1 ; 2)⊕ (2, 1 ; 1)

• vectors: (2, 2 ; 1)⊕ (1, 2 ; 2)

• tensors: (3, 1 ; 1)⊕ (1, 1 ; 1)⊕ (2, 1 ; 2)

Notice that vectors in 6D do not have scalars, therefore there is
not a Coulomb branch. However, whenever a 6D model contain
full hypers, Higgs branches arises, and whenever it contains tensor
multiplets, giving vevs to the real scalars give rise to Coulomb like
phase, the tensor branch.

Along tensor branches, these models
have BPS strings, which are non-critical, their tension is governed
by the tensor branch vevs and by tuning them these can become
massless. This is the hallmark for having a 6D superconformal
point.
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Some well known examples are:

• (2, 0) theory of type AN−1, engineered in M-theory as the
theory on the worldvolume of a stack of N M5 branes

• (1, 0) theory of heterotic E8 instantons, engineered in
M-theory as the theory on the worldvolume of a stack of N
M5 branes in presence of an end-of-the-world M9 brane

• (1, 0) superconformal matter, engineered in M-theory as the
theory on the worldvolume of a stack of N M5 branes probing
a singularity C2/ΓG

• (1, 0) heterotic E8 instantons probing a singularity C2/ΓG

From these examples it is evident that the study of such systems is
deeply interconnected with the dynamics of extended objects in
String and M theory, which is one motivation to study them.
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Another motivation to understand these systems is to shed some
light on the dynamics of lower dimensional systems obtained by
compactifications to D < 6.

From compactification of the (2, 0)
theories on T 2, we have a beautiful geometrical explanation of the
Montonen-Olive SL(2,Z) duality for 4D N = 4 SYM theories,
Witten (95). More generally, we have the class S construction
(Gaiotto 08, and Gaiotto-Moore-Neitzke 09): compactification of
(2, 0) theory on Riemann surfaces Σ leads to 4D N = 2 theories
whose S-duality group gets identified with the mapping class group
of Σ. Starting from (1, 0) and proceeding analogously one can
obtain 4D N = 2 or N = 1 theories and try to explain aspects of
their dynamics from this higher dimensional perspective.



Another motivation to understand these systems is to shed some
light on the dynamics of lower dimensional systems obtained by
compactifications to D < 6. From compactification of the (2, 0)
theories on T 2, we have a beautiful geometrical explanation of the
Montonen-Olive SL(2,Z) duality for 4D N = 4 SYM theories,
Witten (95).

More generally, we have the class S construction
(Gaiotto 08, and Gaiotto-Moore-Neitzke 09): compactification of
(2, 0) theory on Riemann surfaces Σ leads to 4D N = 2 theories
whose S-duality group gets identified with the mapping class group
of Σ. Starting from (1, 0) and proceeding analogously one can
obtain 4D N = 2 or N = 1 theories and try to explain aspects of
their dynamics from this higher dimensional perspective.



Another motivation to understand these systems is to shed some
light on the dynamics of lower dimensional systems obtained by
compactifications to D < 6. From compactification of the (2, 0)
theories on T 2, we have a beautiful geometrical explanation of the
Montonen-Olive SL(2,Z) duality for 4D N = 4 SYM theories,
Witten (95). More generally, we have the class S construction
(Gaiotto 08, and Gaiotto-Moore-Neitzke 09):

compactification of
(2, 0) theory on Riemann surfaces Σ leads to 4D N = 2 theories
whose S-duality group gets identified with the mapping class group
of Σ. Starting from (1, 0) and proceeding analogously one can
obtain 4D N = 2 or N = 1 theories and try to explain aspects of
their dynamics from this higher dimensional perspective.



Another motivation to understand these systems is to shed some
light on the dynamics of lower dimensional systems obtained by
compactifications to D < 6. From compactification of the (2, 0)
theories on T 2, we have a beautiful geometrical explanation of the
Montonen-Olive SL(2,Z) duality for 4D N = 4 SYM theories,
Witten (95). More generally, we have the class S construction
(Gaiotto 08, and Gaiotto-Moore-Neitzke 09): compactification of
(2, 0) theory on Riemann surfaces Σ leads to 4D N = 2 theories
whose S-duality group gets identified with the mapping class group
of Σ.

Starting from (1, 0) and proceeding analogously one can
obtain 4D N = 2 or N = 1 theories and try to explain aspects of
their dynamics from this higher dimensional perspective.



Another motivation to understand these systems is to shed some
light on the dynamics of lower dimensional systems obtained by
compactifications to D < 6. From compactification of the (2, 0)
theories on T 2, we have a beautiful geometrical explanation of the
Montonen-Olive SL(2,Z) duality for 4D N = 4 SYM theories,
Witten (95). More generally, we have the class S construction
(Gaiotto 08, and Gaiotto-Moore-Neitzke 09): compactification of
(2, 0) theory on Riemann surfaces Σ leads to 4D N = 2 theories
whose S-duality group gets identified with the mapping class group
of Σ. Starting from (1, 0) and proceeding analogously one can
obtain 4D N = 2 or N = 1 theories and try to explain aspects of
their dynamics from this higher dimensional perspective.



The purpose of this lecture is to illustrate how to engineer (1,0)
theories within F-theory, learn about some of their properties, and
then exploit string dualities to study their compactification down
to 4D.

Much probably I am going to be able to explain just the
necessary material to be able to start reading my papers on the
subject, which I am going to review very briefly towards the end of
the talk. The main results are the following:
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1

Studying 6D (1,0) theories in an F-theory framework, in joint work
with Heckman, Tomasiello and Vafa, we have understood
fractionalization of M-theory M5 and M9 branes probing C2/Γ
singularities.



2

6D (1,0) theories are relative field theories: as their (2,0) cousins
there are obstructions to define their partition functions on curved
spaces; such an obstruction is measured by the defect group Λ∗/Λ
where Λ is the charge lattice of BPS strings of the model while Λ∗

is their lattice of codimension 4 defects.

This is joint with
Heckman, Park, and Rudelius.
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3

Compactification of 6D (1,0) theories on T 2 explains the
appearance of the moduli spaces of flat G connections on T 2 as
conformal manifolds of affine Ĝ quiver 4D N = 2 SCFTs observed
by Klemm, Mayr and Vafa (97), and predicts the existence of four
infinite novel families of systems which enjoy an exact SL(2,Z)
duality and typically have strongly interacting superconformal
subsystems.

We also extend the findings of Ganor, Morrison, and
Seiberg (96) about the toroidal compactification of the theory of
one E8 heterotic instanton to a wide variety of 6D (1,0) SCFTs.
This is joint with Vafa and Xie (also Ohomori, Shimizu,
Tachikawa, and Yonekura (15)).
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A lightening review of 6D F-theory backgrounds

This is based on Vafa (96) and Morrison-Vafa (96). Let X be an
elliptically fibered 3-CY.

Consider a compactification of M-theory
on X . As X is elliptically fibered we can use one S1 in the elliptic
fiber to reduce to IIA, the other S1 to T-dualize to IIB. In the limit
in which the elliptic fiber collapses to zero size, the winding modes
of IIA becomes light and a new direction opens up in IIB. We end
up with a compactification of IIB on R1,5 × B, where B is the base
of the elliptically fibered 3-fold. The IIB axio-dilaton field
τ = C0 + ie−φ is traded for the complex structure modulus of the
shrunk elliptic fiber. If the fibration is trivial X = B × T 2, τ is
constant, the base itself is a 2-CY, and the background preserves
16 supercharges. If the fibration is non trivial, τ undergoes
SL(2,Z) monodromies, the base is a Kähler surface, and the
background preserves 8 supercharges.
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The only possible source for the SL(2,Z) monodromies of τ must
be objects of real codimension 2.

Indeed, the monodromy in
question is given by a representation of

π1

(
spacetime \ sources

)
→ SL(2,Z)

Examples of such sources are IIB D7-branes, but there are more
general types of sources whose (rather unsatisfactory) definition we
now turn.
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X , being elliptic, has a canonical presentation in Weierstrass form:

X : y2 = z3 + f · z + g

where f ∈ H0(B,−4K ) and g ∈ H0(B,−6K ), K = det T ∗B.

The
locus where the elliptic fiber degenerates is a complex curve in the
base B, the discriminant of the elliptic fibration

∆ ≡ 4f 3 + 27g2 = 0

By definition ∆ ∈ H0(B,−12K ). The discriminant has typically
several irreducible components ∆i . These are the loci around
which τ undergoes nontrivial monodromies, which are dictated by
Kodaira classification. The real codimension 2 sources of
τ -monodromy are interpreted as (exotic) 7-branes wrapping ∆i .
The structure of the Kodaira elliptic singularity over ∆i dictates
the supersymmetric gauge theory living on the worldvolume of the
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The relation in between the singularities of the elliptic fibration and
the order of vanishing of (f , g ,∆) is summarized in the following
table:

ord (f) ord (g) ord (∆) singularity nonabelian symmetry algebra

≥ 0 ≥ 0 0 none none

0 0 n ≥ 2 An−1 su(n) or sp("n/2#)
≥ 1 1 2 none none

1 ≥ 2 3 A1 su(2)

≥ 2 2 4 A2 su(3) or su(2)

≥ 2 ≥ 3 6 D4 so(8) or so(7) or g2

2 3 n ≥ 7 Dn−2 so(2n − 4) or so(2n − 5)

≥ 3 4 8 e6 e6 or f4
3 ≥ 5 9 e7 e7

≥ 4 5 10 e8 e8

≥ 4 ≥ 6 ≥ 12 does not occur in F-theory

Table 1: Table of singularity types for elliptic surfaces and associated nonabelian symmetry algebras.

the precise gauge algebra; monodromies can give rise to non-simply-laced algebras in some

situations [32, 9]. The possible singularity types at codimension two are not completely

classified. In most simple cases, a local rank one enhancement of the gauge algebra gives

matter that can be simply interpreted [32, 34, 1], but in other cases the singularities can

be more complicated. Recent progress in understanding codimension two singularities and

associated matter content appears in [8, 35, 9, 36].

The components C of the discriminant locus carrying nonabelian gauge algebra sum-

mands in an F-theory model are irreducible effective divisors in B. The discriminant locus

itself, ∆ = −12K, is effective but need not be irreducible. The key feature of the algebraic

geometry of surfaces that will be useful to us here relates to irreducible effective divisors

of B. If C is an irreducible effective divisor of B satisfying C · C < 0, and A is an effective

divisor satisfying A · C < 0, then C is an irreducible component of A, meaning that

C · C < 0, A · C < 0 ⇒ A = C + X (2.5)

with X effective. We will use this fact repeatedly in our analysis, generally using it to

show that certain divisors must be contained in −4K,−6K, and −12K and thus carry a

minimal gauge algebra. For example, consider an irreducible effective divisor C satisfying

C · C = −8. The genus of C is fixed by the relation

(K + C) · C = 2g − 2. (2.6)

If C is a rational curve (topologically P1, with g = 0) having C · C = −8, then K · C = 6.

It follows that −4K · C = −24, so that −4K = 3C + X4 with X4 effective and X4 · C ≥ 0.

Similarly, −6K = 5C + X6 and −12K = 9C + X12. Thus, f, g, and ∆ have degrees of

vanishing at least 3, 5, 9 on C, so C carries an e7 gauge algebra. A similar argument shows

that any irreducible effective divisor C with C · C < −2 must carry a nonabelian gauge

algebra summand. This fact is mentioned in a related physics context in [37].

– 4 –

Points with order of vanishing (4, 6, 12) signal the presence of
tensionless strings, curves with order of vanishing (4, 6, 12) spoil
the CY condition and hence are forbidden.



Useful fact about intersection theory on complex surfaces

Let D be an irreducible divisor of the base B such that D · D < 0.
Consider another divisor D ′ of B such that D ′ · D < 0. Then D is
an irreducible component of D ′, meaning that there is another
divisor X of B such that

D ′ = D + X

This fact becomes very powerful when combined with the
adjunction formula, which states that

(K + D) · D = 2g − 2

where g is the genus of D. In particular, if D · D < 0 and g > 0
this entails that along D we have ord(f , g ,∆) ≥ (4, 6, 12).
Proof: Adjunction ⇒ K ·D ≥ −D ·D ⇒ −nK = dD + X for some
d > 0 ⇒ X · D = −n K · D − d D · D < 0 unless d ≥ n. Plug in
n = (4, 6, 12).



This last remark entails that g(∆i ) = 0 for all i . All irreducible
components of the discriminant are topologically P1’s. D3 branes
wrapping the 1-cycles ∆i gives rise to strings in R1,5 with tension
∼ vol(∆i ) which is the only (real) scalar mode arising quantizing
the P1. Schematically:

0 1 2 3 4 5 6 7 8 9

R1,5 X X X X X X

B X X X X

∆ X X

D7e X X X X X X X X

D3 X X X X

Notice that the price for τ -monodromies is a superselection rule on
the Hilbert space of IIB projecting onto monodromy-invariant
states. In particular, this has the effect of projecting out all
configurations with F1s, D1s, D5s, and NS5s.
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6D SCFTs in F-theory
To engineer a 6D SCFTs one consider X local which entails that
gravity is decoupled.

The hallmark of 6D SCFTs are tensionless
strings, therefore one requires that it is possible to shrink ∆ to
zero size at finite distance in moduli space. By Grauert criterion, a
necessary condition is that the intersection matrix

∆i ·∆j

is negative definite. If B is 2-CY, singularities must be crepant,
and hence Du Val: these are in 1-to-1 correspondence with discrete
subgroups of SU(2), which are ADE classified (McKay). In this
case −∆i ·∆j = (CG )ij , the G type Cartan matrix. These are the
(2,0) SCFTs of Shimizu’s talk of this morning (Witten 95). If B is
Kähler, one obtains singularities which are in correspondence with
discrete subgroups Γ ⊂ U(2) giving rise to (1,0) SCFTs. In this
case, however, several Γ’s are such that the singularity C2/Γ is not
at finite distance in CY moduli space, e.g. resolving it one obtains
curves with ord(f , g ,∆) ≥ (4, 6, 12).
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The list of allowed Γ ⊂ U(2) has been worked out by Heckman,
Morrison, and Vafa (13) building on Morrison and Taylor (12).

The key ingredient in this story are non-Higgasable clusters, to
which we now turn. A crucial difference in between 2-Kähler
singularities and 2-CY ones is that, while in the latter case the
self-intersection of the blow-up exceptional divisors can have only
one value, ∆2

i = −2, in the resolution of the former ∆2
i can have

several values. This fact has a clear physical interpretation. In 6D
the Dirac pairing among non-critical strings is symmetric. In
F-theory engineering, the intersection matrix equals minus the
Dirac pairing in between the elementary non-critical strings of a
given system. For (2,0) SCFTs there is only one type of
non-critical string with self-Dirac pairing 2. For (1,0) theories there
are several different types of non-critical strings, each distinct from
another by its self-Dirac pairing.
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are several different types of non-critical strings, each distinct from
another by its self-Dirac pairing.



The sizes of the blow-up exceptional divisors are naturally
interpreted as vevs of the scalars in the tensor multiplets of the
model.

Blowing-up the singularity we flow along the tensor branch
of the 6D theory. While for (2,0) theories, the tensor branch is an
abelian theory of (2,0) tensor multiplets, for (1,0) theories there
are non abelian gauge fields as well. Geometry teaches us that for
∆2

i < −2, the tensor branches must be characterized by
tensor-vector systems. Let me discuss an example. Consider a
component of ∆ with ∆2

i = −3. Recall that g = 0, therefore the
adjunction formula gives K ·∆i = −∆2

i − 2 = 1 ⇒ −nK ·∆i < 0
⇒ −nK = d∆i + X ⇒ X ·∆i = −nK ·∆i − d∆2

i = 3d − n ≥ 0
⇔ d ≥ n/3. Now let’s plug in n = (4, 6, 12) and we obtain that

d ≥ (2, 2, 4)

.
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Lookin at the table we find that d ≥ (2, 2, 4) are precisely the
order of vanishing corresponding to the 5th line below

ord (f) ord (g) ord (∆) singularity nonabelian symmetry algebra

≥ 0 ≥ 0 0 none none

0 0 n ≥ 2 An−1 su(n) or sp("n/2#)
≥ 1 1 2 none none

1 ≥ 2 3 A1 su(2)

≥ 2 2 4 A2 su(3) or su(2)

≥ 2 ≥ 3 6 D4 so(8) or so(7) or g2

2 3 n ≥ 7 Dn−2 so(2n − 4) or so(2n − 5)

≥ 3 4 8 e6 e6 or f4
3 ≥ 5 9 e7 e7

≥ 4 5 10 e8 e8

≥ 4 ≥ 6 ≥ 12 does not occur in F-theory

Table 1: Table of singularity types for elliptic surfaces and associated nonabelian symmetry algebras.

the precise gauge algebra; monodromies can give rise to non-simply-laced algebras in some

situations [32, 9]. The possible singularity types at codimension two are not completely

classified. In most simple cases, a local rank one enhancement of the gauge algebra gives

matter that can be simply interpreted [32, 34, 1], but in other cases the singularities can

be more complicated. Recent progress in understanding codimension two singularities and

associated matter content appears in [8, 35, 9, 36].

The components C of the discriminant locus carrying nonabelian gauge algebra sum-

mands in an F-theory model are irreducible effective divisors in B. The discriminant locus

itself, ∆ = −12K, is effective but need not be irreducible. The key feature of the algebraic

geometry of surfaces that will be useful to us here relates to irreducible effective divisors

of B. If C is an irreducible effective divisor of B satisfying C · C < 0, and A is an effective

divisor satisfying A · C < 0, then C is an irreducible component of A, meaning that

C · C < 0, A · C < 0 ⇒ A = C + X (2.5)

with X effective. We will use this fact repeatedly in our analysis, generally using it to

show that certain divisors must be contained in −4K,−6K, and −12K and thus carry a

minimal gauge algebra. For example, consider an irreducible effective divisor C satisfying

C · C = −8. The genus of C is fixed by the relation

(K + C) · C = 2g − 2. (2.6)

If C is a rational curve (topologically P1, with g = 0) having C · C = −8, then K · C = 6.

It follows that −4K · C = −24, so that −4K = 3C + X4 with X4 effective and X4 · C ≥ 0.

Similarly, −6K = 5C + X6 and −12K = 9C + X12. Thus, f, g, and ∆ have degrees of

vanishing at least 3, 5, 9 on C, so C carries an e7 gauge algebra. A similar argument shows

that any irreducible effective divisor C with C · C < −2 must carry a nonabelian gauge

algebra summand. This fact is mentioned in a related physics context in [37].

– 4 –

Hence there is a nonabelian gauge symmetry which is forced on us.

This is an example of non-Higgsable cluster: for generic values of
the complex structure, the gauge group is SU(3).
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The same reasoning for ∆2
i = −k gives K ·∆i = k − 2 hence we

obtain d ≥ n(k − 2)/k .

It is easy to see that k > 12 leads to
d ≥ (4, 6, 12), and hence it is forbidden. Analogous techniques
allows one to classify all possible such configurations, the result is:
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Figure 1: All possible clusters of intersecting curves with self-intersection of each curve −2 or below. For

each cluster the corresponding gauge algebra is noted and the gauge algebra and matter content are listed

in Table 2

Diagram Algebra matter (f, g,∆) ∆Tmax

−3 su(3) 0 (2, 2, 4) 1/3

−4 so(8) 0 (2, 3, 6) 1

−5 f4 0 (3, 4, 8) 16/9

−6 e6 0 (3, 4, 8) 8/3

−7 e7
1
256 (3, 5, 9) 57/16

−8 e7 0 (3, 5, 9) 9/2

−12 e8 0 (4, 5, 10) 25/3

−3,−2 g2 ⊕ su(2) (7 + 1, 1
22) (2, 3, 6), (1, 2, 3) 3/8

−3,−2,−2 g2 ⊕ su(2) (7 + 1, 1
22) (2, 3, 6), (2, 2, 4), 5/12

(1, 1, 2 )

−2,−3,−2 su(2) ⊕ so(7) ⊕ su(2) (1,8, 1
22) (1, 2, 3), (2, 4, 6), 1/2

+(1
22,8,1) (1, 2, 3)

Table 2: Irreducible geometric components (non-Higgsable clusters, or “NHC’s”) consisting of one or

more intersecting curves associated with irreducible effective divisors each with negative self-intersection.

Each cluster gives rise to a minimal gauge algebra and matter configuration.

NHC’s in Table 2 can be removed by moving in the moduli space of the theory (without

changing the number of tensor multiplets and moving to a different base through an ex-

tremal transition). In particular, this means that the matter in these configurations cannot

be Higgsed. Indeed, analysis of the matter fields that can be Higgsed for different gauge

algebras shows that Higgsing is impossible in these three situations. To use fundamentals

to Higgs an su(N) gauge theory, two fundamental matter fields must be simultaneously

given expectation values to implement the Higgsing. A fundamental + antifundamental is

needed to combine with the broken generators of the su(N) in reduction to su(N − 1) to

give the appropriate massive gauge fields. This can also be seen from the need to give a

second fundamental a VEV to cancel the D-term constraints in the equations of motion.

Similarly, for a gauge algebra su(N) ⊕ g, one bifundamental field cannot be Higgsed, two

are necessary. In each of the 3 NHC’s described above, there is a single (half-hyper) trans-

– 10 –
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each cluster the corresponding gauge algebra is noted and the gauge algebra and matter content are listed

in Table 2

Diagram Algebra matter (f, g,∆) ∆Tmax

−3 su(3) 0 (2, 2, 4) 1/3

−4 so(8) 0 (2, 3, 6) 1

−5 f4 0 (3, 4, 8) 16/9

−6 e6 0 (3, 4, 8) 8/3

−7 e7
1
256 (3, 5, 9) 57/16

−8 e7 0 (3, 5, 9) 9/2

−12 e8 0 (4, 5, 10) 25/3

−3,−2 g2 ⊕ su(2) (7 + 1, 1
22) (2, 3, 6), (1, 2, 3) 3/8

−3,−2,−2 g2 ⊕ su(2) (7 + 1, 1
22) (2, 3, 6), (2, 2, 4), 5/12

(1, 1, 2 )

−2,−3,−2 su(2) ⊕ so(7) ⊕ su(2) (1,8, 1
22) (1, 2, 3), (2, 4, 6), 1/2

+(1
22,8,1) (1, 2, 3)

Table 2: Irreducible geometric components (non-Higgsable clusters, or “NHC’s”) consisting of one or

more intersecting curves associated with irreducible effective divisors each with negative self-intersection.

Each cluster gives rise to a minimal gauge algebra and matter configuration.

NHC’s in Table 2 can be removed by moving in the moduli space of the theory (without

changing the number of tensor multiplets and moving to a different base through an ex-

tremal transition). In particular, this means that the matter in these configurations cannot

be Higgsed. Indeed, analysis of the matter fields that can be Higgsed for different gauge

algebras shows that Higgsing is impossible in these three situations. To use fundamentals

to Higgs an su(N) gauge theory, two fundamental matter fields must be simultaneously

given expectation values to implement the Higgsing. A fundamental + antifundamental is

needed to combine with the broken generators of the su(N) in reduction to su(N − 1) to

give the appropriate massive gauge fields. This can also be seen from the need to give a

second fundamental a VEV to cancel the D-term constraints in the equations of motion.

Similarly, for a gauge algebra su(N) ⊕ g, one bifundamental field cannot be Higgsed, two

are necessary. In each of the 3 NHC’s described above, there is a single (half-hyper) trans-

– 10 –



More general non-Higgsable basis are obtained from the
non-Higgsable clusters using the following glueing rule:

. . . ,
g1
n1, 1,

g2
n2, . . .

⇐⇒
g1 ⊕ g2 ⊂ e8 maximal subalgebra

Blowing down such configurations one obtains Γ ⊂ U(2)
singularities which are at finite distance.

Let me discuss one
example of blow down.
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This is an example of Hirzebruch-Jung singularity of type Ap,q

where p/q = 8− 1/3 = 23/3 meaning that it corresponds to an
orbifold action

(z1, z2)→ (ωz1, ω
qz2) ω ∈ Zp
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Many infinite families of singularities of type Ap,q are realized in
this way, as well as singularities of type Dp,q and several
exceptional configurations.

For the complete list I refer you to the
paper by Heckman, Morrison and Vafa (13). It is easy to see that
the glueing rule is very constraining. For example there are
essentially 5 sequences of generalized A–type, namely

SU : · · · , 2, 2, 2, 2, 2, · · ·

SO : · · · , 4, 1, 4, 1, 4, 1, · · ·
E6 : · · · , 6, 1, 3, 1, 6, 1, 3, 1, 6, 1, 3, 1, · · ·
E7 : · · · , 8, 1, 2, 3, 2, 1, 8, 1, 2, 3, 2, 1, · · ·

E8 : · · · , 12, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 1, 12, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 1, · · ·
which can be truncated on the left and on the right at arbitrary
postions.
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It is remarkable that the same patterns arise when colliding
non-compact singular fibers — see Bershadsky and Johansen (96)
and Aspinwall and Morrison (97), for example:

SO(8)× SO(8)→ [SO(8)], 1, [SO(8)]

E6 × E6 → [E6], 1, 3, 1, [E6]

E7 × E7 → [E7], 1, 2, 3, 2, 1, [E7]

E8 × E8 → [E8], 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 1, [E8]



The interpretation of this fact was found in a joint collaboration
with Heckman, Tomasiello and Vafa (14).

Since 1/(gi )
2 ∼ vol(∆i )

we have that

gi → 0 ⇐⇒ vol(∆i )→∞

In other words, opening up a cycle gives rise to a flavor symmetry:
non-compact components of ∆ can be interpreted as flavor
divisors. In the limit in which all compact irreducible components
shrunk to zero size, flavor divisors remains non-compact and do
not introduce additional scales in the F-theory geometry. The
particular 6D SCFTs which arise at a collision of two flavor divisors
are the so called ‘superconformal matter’. These are labeled by the
flavor symmetries on the superconformal divisors and by the order
of the singularity where they meet. Together with Heckman,
Morrison and Park we have recently examined the problem of
re-coupling such systems to gravity — it is a very interesting story:
I refer you to the paper for details.
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To obtain more general gauge groups, one has to consider non
generic complex structures that allow for fiber singularities of
higher rank, which are still highly constrained by the
self-intersection numbers of the corresponding divisors.

The
glueing rule for such enhanced fibers is obtained by requiring 6D
gauge anomaly cancellation. Again superconformal matter arises at
the collision of non-compact flavor divisors with enhanced gauge
symmetries. It is also interesting to consider T -brane flavor
divisors. The rules for glueing together superconformal matter
building blocks are again determined using 6D gauge anomaly
cancellation. This analysis has been carried over systematically by
Heckman, Morrison, Rudelius and Vafa (15), from which a
classification of all allowed possibilities follows.
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Let me discuss the example of (E6,E6) conformal matter meeting
at a C2/Z2 singularity.

Schematically the collision of the two
noncompact divisors look like:

[E6]A1 [E6]

[E6]
e6
2 [E6]

[E6] 1,
e6
4, 1 [E6]

[E6] 1, 2,
e6
4, 2, 1 [E6]

[E6] 1,
su3
3 , 1,

e6
6, 1,

su3
3 , 1[E6]
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Several examples of conformal matter are realized explicitly in
M-theory.

Either as M5s or as E8 heterotic instantons probing
C2/ΓADE singularities. In both cases we predict, using F-theory,
the structure of fractional M5 and M9 branes.
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M-theory. Either as M5s or as E8 heterotic instantons probing
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Figure 2: Example of two M5-branes probing an E8 singularity. Moving onto the tensor
branch gives rise to (E8, E8) conformal matter that are SCFTs themselves with their own
tensor branches, as described by the generalized quiver of line (3.5). This suggests that each
M5-brane on E8 has fractionated to 12 pieces.
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The defect group

From the F-theory engineering of these systems it follows that the
lattice of BPS string charges is identified with the mid-dimensional
homology group of the base B

Λ ≡ H2(B,Z)

The 6D symmetric Dirac pairing in between charged BPS strings is
captured by the intersection pairing on B. Such pairing being
non-degenerate by construction, its dual lattice is uniquely defined
as the set

Λ∗ ≡ {` ∈ QnT : ` · λ ∈ Z ∀λ ∈ Λ}
The dual lattice is naturally associated with the lattice of allowed
charges for BPS defects. A necessary condition for a given 6D
SCFT to have a well defined partition function on curved spaces is
that its lattice of string charges is self–dual or unimodular, Λ∗ = Λ,
which was argued by Seiberg and Taylor (11). A measure of the
discrepancy from modularity is given by the defect group Λ∗/Λ.
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It is interesting to observe that

Λ∗/Λ ≡ Ab Γ

where Γ is the discrete subgroup of U(2) which characterizes the
singular point,

from this fact it follows that the defect group is a
property which, though computed using tensor branch data, is
intrinsic of the SCFT. Moreover, the class of models which have
trivial defect group coincides by construction with the class of
very-Higgsable 6D models introduced recently by Ohomori,
Shimizu, Tachikawa and Yonekura (15). Indeed, it is easy to show
that the defect group is conserved along blow ups and downs of
the exceptional divisors in the F-theory base, hence blowing down
to nothing (which is very Higgsability) becomes equivalent to the
requirement that Ab Γ = 1.
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Toroidal Compactifications to 4D

The strategy that we have employed to study toroidal
compactifications to 4D is to exploit string theory dualities.

The
idea is very simple, and is based on the following fact:

F/X × S1 = M/X

M/X × S1 = IIA/X

The SW curves of the corresponding 4D N = 2 theories are
obtained by considering IIB on the Hori-Vafa mirror of X .
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The models which are easily amenable to such an analysis are
those which are elliptically fibered 3-CY which are simple enough.

We have identified a large class of such models, corresponding to
simple orbifolds of T 2 × C2. T 2 admits the following orbifold
actions: Z2,3,4,6. Therefore it is natural to consider actions of
cyclic discrete groups generated by an element

g = diag(α2, α−1, α−1) α2 ∈ Z2,3,4,6

The corresponding F-theory models are precisely the nHc’s with
basis 4, 6, 8, 12 (Witten 96). Of course, we can also take
ΓADE ⊂ SU(2) orbifolds of the C2 base without spoiling the CY
condition. The corresponding F-theory models are orbifolds of
T 2 ×C2 with respect to the group generated by Z2,3,4,6 and ΓADE .
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Let k = 2, 3, 4, 6, notice that for ΓADE = Z2Nk we have an action

h = diag(1, ω, ω−1) ω ∈ Z2Nk

In particular ωN = α. Therefore ghN = diag(α2, 1, α−2) and
g−1hN = diag(α−2, α2, 1) leave fixed respectively the loci z2 = 0
and z1 = 0. These are non-compact divisors over which the elliptic
fiber has e singularity of type SO(8),E6,E7,E8 respectively for
k = 2, 3, 4, 6. They meet at z1 = z2 = 0 at an AN−1 singularity.
These are precisely conformal matter systems!
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The LG mirrors of these systems are very elegant and universal:
they have the form

WT 2/Zk
(x1, x2, x3)+WG (y1, y2)+ 2D exactly marginal deformations

These have ĉ = 3.

To find N = 2 4D SCFTs, by tuning the 2D
exactly marginal deformations of the 2D LG mirrors we need to
find special points where, by decoupling a Liouville subsector with
ĉ > 1, we find a residual LG model with ĉ < 2 that has a scaling
symmetry, which we identify with the U(1)R symmetry of the 4D

SCFT. Doing so we find the SW curves of the models (E
(1,1)
r ,G ),

r = 4, 6, 7, 8, which I have constructed in 2012 with Cecotti and
Giacomelli. At such points, the marginal parameter which
corresponds to the mirror T 2 is a 4D exactly marginal deformation,
and therefore we predict that all these models enjoy an exact
SL(2,Z) action.
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ĉ > 1, we find a residual LG model with ĉ < 2 that has a scaling
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In particular, for the case of superconformal matter we obtain

(E
(1,1)
4,6,7,8,SU(kN)) for k = 2, 3, 4, 6, which are just the lagrangian

SCFTs corresponding to affine quivers of D̂4(N), Ê6,7,8(N) type
respectively.

This explains the reason why such systems have
conformal manifolds which are given by moduli spaces of T 2 flat
connections: we started with a flavor symmetry E8 × E8 and we
broke it completely by means of a diagonal Wilson line on T 2. The
moduli space of such Wilson line, is identified with the moduli
space of the 4D theory.
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Moreover, by tuning parameters in a different way we find other
points in LG moduli space which admit similar decoupling limits.

In particular, we find points where the ĉ < 2 scale invariant theory
has the structure

fADE (w1(xi , y),w2(xi , y),w3(xi , y))

where wi = 0 is a punctured Riemann surface. This is the IIB
version of the class S construction! Using this method it is
extremely easy to read off the structure of the punctures. One
interesting remark is that a single (1,0) SCFT can give rise to
several class S[G ] theories with different G and Σ. For example,
T (E8,N) superconformal matter gives rise to both S[E8] theory
with Σ a sphere with N + 2 punctures of which two are full and N
are simple. But also to class S[D4] theory with Σ a hyperelliptic
curve of genus g = N − 1 with 4N + 4 punctures.
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The story continues...

For the nearest future several applications of all this machinery:
N = 1 theories by compactification on Σ (Gaiotto, Razamat (15),
Aharony, Franco (15)), applications to study non-perturbative
effects in String theory, applications to the classification of 5D
SCFTs, ... and more! Stay tuned!

Thanks!
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