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Scope of work in U.S.

Evaluation of Hamamatsu 10 and 12 inch High Quantum
Efficiency (HQE) PMTs and ETL 8" 9354KB

Measurement of magnetic field effects and
compensation concepts

Development and evaluation of three concepts for
external light collectors

Work with ADIT/ETL to develop an 11 inch HQE PMT
Mechanical testing of PMTs
Future plans

Institutions: Brookhaven, Caltech, Colorado State, UC Davis, Duke,
Drexel, Fermilab, Penn, Wisconsin



PMT's evaluated thus far
10" HQE (16+ total)

In this talk:

10" HQE evaluated
against 20" SK
PMT

Performance of
Both standard
And HQE 12" PMT

Results from HQE version now
8" ETL (5 total) completed



Penn PMT testing lab
Rob Knapik (post-doc),
Tony Latorre, Kevin Shapiro (undergrads)

Source is 995r
embedded in SNO
acrylic, triggered on
fast (250ps FWHM)
PMT

“small box"

Two dark boxes:
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UC Davis Test Lab

Tests on Magnetic Effects and relative
Quantum Efficiency
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Figure 2 Quantum efficiency curves used in WCSim. Shown are the curves for
the 20" SKR3600 (blue), 10" Double Chooz and ICECUBE R7081 (red), and 10"




Single p.e. tests of Hamamatsu 12" Standard

and HQE PMT (gain =1 x 10/)
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Average | Standard Deviation | Minimum | Maximum
Charge FWHM (pC) 1.42 0.4 1.18 2.32
Peak/Valley 2.8 0.28 2.3 3.0
High Charge tail (%) | 2.86% 0.84% 2.5% 4.94%
Operating Voltage (V) 1848 75 1920 1740
Average | Standard Deviation | Minimum | Maximum
Charge FWHM (pC) 1.64 0.62 1.19 3.36
Peak/Valley 2.24 0.27 1.78 2.76
High Charge tail (%) | 3.75% 0.66% 2.73% 5.2%
Operating Voltage (V) | 1950 221 1750 2500

7 normal QE PMT's

10 high QE PMT's

Conclusions: Performance is comparable, with perhaps a systematically low
Peak/Valley ratio



Timing Response (gain =1 x 107)

ZN0108 v1.28
Hits above noise 36878
Prompt Sigma 1.39ns
FWHM* 3.26 ns
Dark Rate 4632 hits/s
Late Ratio 4.06 %
Prompt Coincidence Rate 1.84 %
Total Coincidence Rate 1.92 %

Late Pulsing

Dark Noise
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Look at time distributions using
triggered Cherenkov source at

the single p.e. level (~¥94% 1 pe
expected) .

Conclusions: The performance of the
Standard and HQE PMTs is very similar

50 0 750 100 150
At(ns)
Average | Standard Deviation | Minimum | Maximum
Transit Time Spread (0prompt) 1.37 0.15 1.20 1.6
Late Pulses (fraction) 4.48% 0.32% 3.93% 4.92%
Noise Rate 3669 Hz 5110 1962 16807
Operating Voltage (V) 1848 75 1920 1740
Average | Standard Deviation | Minimum | Maximum
Transit Time Spread (0prompt) 1.29 0.14 1.16 1.52
Late Pulses (fraction) 4.3% 0.35% 3.6% 4.8%
Noise Rate 4428 Hz 1897 2398 8217
Operating Voltage 1950 221 1750 2500

7 normal QE

10 high QE




HQE gain verified
by lab tests

Comparison of ONE 10" HQE with ONE 20" SK

PMT (with face masked to same area)

| Masked Tube Comparison | muons10
Entries 7507
3 Mean 1.929
10° - — 10 inch RMS 1.393
F muons20
- e Entries 5481
F — 20 inch Mean  1.519
- RMS 1.167
107
2 £
.g —
= L
10— i
1 AAAAAAAAAAAAAAA AL LA L L LAl 1
-1 0 1 2 3 - 5 6 7 8 9 10 M
# pe
< {10 > 1.93 H10 1.50 - )
= = =[1.67 £0.1
< oy > 1.52 fog  0.90
(1'/1 Where G is the gain of the PMT which we measure
<q>= before the test. And <q> is measured in number of
| —eH photoelectrons.

J.Felde, UC Davis



New!: comparison of Normal and
High QE 12" PMT's

Relative Efficiency

Tested Phir 1
Tested Pair 2
Tested Pair 3
Tested Pair 4
Tested Pair 5
Tested Pair 6
Average
Standard Dewviation

1.56
1.49
1.66
1.64
1.32
1.32
1.50
0.15

Test performed using
triggered Cherenkov source

Conclusion: There is some significant tube-to-tube variation, but average is
50% improvement over standard photocathode




Variation in charge collection and
timing

Automated scanning system using triggered
Cherenkov source with pinhole



Relative Detection Efficiency
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Figure 13: The position-dependent photon detection efficiency is shown on the left, while position dependent
shifts in the median transit time is shown on the right for a Hamamatsu 12-inch R11780 PMT with standard
quantum efficiency. The color indexes are relative to measurements made at the center of the PMT.
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Figure 14: The position-dependent photon detection efficiency is shown on the left, while position dependent
shifts in the median transit time is shown on the right for the high quantum efficiency configuration of the
Hamamatsu 12-inch R11780 PMT. The scanned high quantum efficiency PMT has an alternative dynode
structure designed by Hamamatsu to mitigate the large shifts in the mean transit time observed in the
standard configuration shown in Figure 13. The color indexes are relative to measurements made at the

center of the PMT.

Example of 12" PMT
with standard QE

Example of 12" PMT
with high QE



Light collector options studied

* Three different light concentrator option are subject to
R&D

— Wavelength shifting film: coat thin layer of wavelength
shifting material on the PMT glass surface - ~10-15% light
collection improvement

— Wavelength shifting plates: flat panels put around PMT
above the equator doped with WLS: large light collection
improvement, will discuss in simulation talk

— Winston cones: elliptically shaped, reflective, non imaging
cones — interface with PMT close to equator: large light
collection improvement, will discuss in simulation talk



Wavelength shifting

Quantum Efficiency of PMT is low @ shorter wavelength
— Properties of glass, dominated by photo-electric effect

Ten Inch PMT

Cerenkov dN/(dA dx)

L |
600

Cerenkov Spectrum v 0.3
roughly follows 1/A? 0.25F
Use WLS to shift
light at shorter WL to 0.21-
longer WL to 0.15F
increase light
collection. 0.1

0.05
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Wavelength Shifting Film [ | e

Anticipate 10-15% increase with

optimal material (the same level

achieved in similar studies performed for Ice
Cube)

WLS material and coating thickness can be varied.

Modest cost, but also modest light increase

Easy to implement: no mechanical changes in the PA
design needed

May be added to the baseline at the later time



WLS Plates

Stand alone simulations showed light collection increase of 50% or more

depending on the size of the plate, interface with PMT, fluor, decay time.

The effect of timing degradation on vertex resolution is under study in WCSim. More to
come in separate talk on WLS plates and simulation.




* Non imaging light collectors —
ellipsoidal in shape that

WI N StO N cones ( LCS) operate as reflective mirrors(Al

and Ag investigated so far).

Light concentrator for 10 inch PMT |
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Light Collectors in WCSim

e All three LCs are implemented in WCSim

e Analysis Team: X. Qian (Caltech), W. Johnston (CSU), S. Perasso and
R. Wasson (Drexel)




Very Preliminary Results

* Light Collectors can improve the performance of WC when the
PMT coverage is small.

e 2 m fiducial volume cut @ LBNE is conservative.

* More PMT coverage would lead to a high electron PID
efficiency and high muon PID rejection factor.

e wis s

NPE Gain ~50% ~10% ~30%
Reconstruction Large Spread Small Spread Small Spread
Intrinsic resolution Large loss N/A Small loss
Fiducial volume ~10% reduction No loss No loss

Vertex Resolution Small effect 5% increment 15% increment
Electron/Muon Small loss No clear effect No clear effect
Neutral Pion N/A N/A Small effect

N/A means no dedicated studies were performed.



ADIT elecC ron":
é‘”’ 4 Electron Tubes ——

Design of 11” PMT Envelope for LBNE

Specifications:

* External water pressure of 11 bar

* Long life in pure water

* Glass with low content of radioactive isotopes
* Shape for good photoelectron collection

* Shape for good timing (TT))




11 inch diameter envelope Mk4

11 ¥ | ‘ [
6 5S S 45 - 3.5 3 2.5 2 15 1 0.5 0
Type: 1st Princpal Stress

Unit: MPa

05/10/2011, 11:46:26

3.58 MPa Design of a super-strong envelope
would allow much deeper detectors

0.9 MPa

0.81 MPa



Future Plans

e Will continue work on WLSP characterization
over the next year

* Will complete and publish results for 12" PMT
characterization

* We have asked NSF to spend some existing
R&D funds to complete production of at least
10 11" ETL PMT's. This would take ~15
months. We will evaluate these for

performance in similar fashion to 12"
Hamamatsu



Backup
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Figure 3: The R11780 12 inch Hamamatsu PMT and the two-cable voltage divider used.
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Figure 4: Schematic of the voltage divider circuit for the Hamamatsu 12 inch R11780 PMT. Provided by
Hamamatsu Photonics.



