Long baseline experiment and proton decay searches with Hyper-Kamiokande

Masashi Yokoyama (Department of Physics, The University of Tokyo^{*})

東京大学 THE UNIVERSITY OF TOKYO

*also affiliate member, Kavli IPMU

Cavity (Lining)

First open meeting for Hyper-Kamiokande project August 22-23, 2012 Kavli IPMU, Kashiwa

K Hyper-K is a multi-purpose detector

"Physics Potential" session

- Overview of accelerator v + proton decay (MY)
- Systematics for CPV measurements (S.Nakayama/ M.Hartz/K.McFarland)
- Atmospheric v (R.Wendell)
- Cosmic ray BG estimation (K.Okumura)

— Break—

- Solar + SN v detection (Y.Koshio)
- SN astronomy (S.Horiuchi)
- DM sensitivity (C.Root)

2

Particle physicists' view

From Murayama-san's presentation

Can probe energy scale far beyond LHC!

Long baseline experiment

$\theta_{13} \neq 0$ established...

Now is the time to move forward to the next step!

5

V oscillation measurements with HK

- 'Large' value of θ_{13} has opened access to
- v mass hierarchy
- Octant of θ_{23}
- Leptonic CP violation

Hyper-Kamiokande can address ALL of these with synergy of accelerator and atm V

Explore full picture of neutrino oscillation!

1st open meeting for Hyper-K project, Aug. 22-23 2012

6

K CP violation in neutrino mixing

$$P(v_{\alpha} \rightarrow v_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*})\sin^{2}\frac{(m_{i}^{2} - m_{j}^{2})L}{4E_{v}}$$
$$+2\sum_{i>j} \operatorname{Im}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*})\sin\frac{(m_{i}^{2} - m_{j}^{2})L}{2E_{v}}$$

Rephasing invariant CPV parameter

Asing invariant CPV parameter

$$J_{CP} = \operatorname{Im}(U_{e3}^*U_{\mu3}U_{e2}U_{\mu2}^*) = \frac{1}{8}\cos\theta_{13}\sin2\theta_{12}\sin2\theta_{23}\sin2\theta_{13}\sin\delta$$

$$f$$
CP violating Dirac phase

Nature kindly prepared

 $\sin\theta_{23} \sim 1/\sqrt{2}$ sinθ12~0.55 sin013~0.16

for us to be able to test CP symmetry in v oscillation!

7

$v_{\mu} \rightarrow v_{e}$ probability

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \sin^{2}\Delta_{31} \text{ Leading } \begin{array}{c} \mathsf{CP \ violating \ (flips \ sign \ for \ V)} \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta \sin\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ &+ 4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta) \cdot \sin^{2}\Delta_{21} \\ &- 8C_{13}^{2}S_{12}^{2}S_{23}^{2} \cdot \frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \\ &+ 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \frac{a}{\Delta m_{13}^{2}}(1 - 2S_{13}^{2}) \sin^{2}\Delta_{31} \end{split} \\ \end{split}$$

Rich physics (with precise θ_{13} expected from reactor)

Leading term $\propto sin^2 2\theta_{13}$ CPV term $\propto sin 2\theta_{13}$ Matter effect $\propto sin^2 2\theta_{13}$

For larger sin²2θ₁₃ signal 1, CP asymmetry ↓ matter/CP 1

CP measurement strategy with Hyper-K

- Strength of water Cherenkov detector
 - Huge mass statistics is always critical
 - Excellent reconstruction/PID performance especially in sub-GeV region (quasielastic→single ring)
- Best matched with low energy, narrow band beam
 - Off-axis beam with relatively short baseline
 - Less matter effect
 - Complementary to >1000km baseline experiments planned in EU/US

J-PARC v beam + Hyper-K will be an excellent option in Japan

(natural extension of technique proved by T2K)

$V_{\mu} \rightarrow V_{e} \underset{u}{\text{Probability with L}} = 295 \text{ km}$

Normal mass hierarchy

- CPV search by comparison of $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$
- Sensitive to exotic (non-MNS) CPV

The v beam

Expected neutrino flux at Hyper-K (unoscillated)

2.5° off-axis beam from J-APRC Peaked at oscillation maximum Suppress BG from high energy component (ν_τ negligible)

Masashi Yokoyama (U.Tokyo) 🔧

1st open meeting for Hyper-K project, Aug. 22-23 2012

Simulation of HK events

- Based on FULL simulation and reconstruction utilizing SK/T2K tools
 - Number of PMT reduced for 20% coverage
 - Also for proton decay, atm v
 - (Simulation session tomorrow)
- v_e event selection the same as T2K
 - Well established and understood

Signal efficiency	64%
ν _μ CC BG rejection	>99.9%
NC π ⁰ BG rejection	95%

(for $E_v^{rec} < 1.25 GeV$)

Reliable prediction of event observables

Ve candidates after selection

 $sin^2 2\theta_{13}=0.1, \delta=0$, normal MH

	Signal (vµ→v _e CC)	Wrong sign appearance	ν _μ /ν _μ CC	v_e/v_e contamination	NC
V (2.25MW · 10 ⁷ s)	3,560	46	35	880	649
∇ (5.25MW · 10 ⁷ s)	1,959	380	23	878	678

2000-3000 signal events expected for each of ν and $\overline{\nu}$

Masashi Yokoyama (U.Tokyo) 🔧

Ist open meeting for Hyper-K project, Aug. 22-23 2012

Ve candidates

Difference from $\delta=0$

Effect of δ

lyear=10⁷sec

Wednesday, August 22, 12

Masashi Yokoyama (U.Tokyo) 🔧

Ist open meeting for Hyper-K project, Aug. 22-23 2012

Background sources

 v_{μ} originate background (mostly neutral current π^0) and intrinsic beam v_e are dominant background.

For anti-neutrino running, 'wrong sign' (v) BG ~ anti-v because of cross section difference.
In addition, 'wrong sign' appearance significant (~20%)

Reconstructed energy spectrum of BG is rather flat.

Masashi Yokoyama (U.Tokyo) 🔧

Ist open meeting for Hyper-K project, Aug. 22-23 2012

Expected allowed region: example

Wednesday, August 22, 12

Masashi Yokoyama (U.Tokyo) 🔧

Ist open meeting for Hyper-K project, Aug. 22-23 2012

Measurement of δ (I σ)

Hyper-K CPV sensitivity

(Exclusion of $\delta = 0, \pi$) 5% systematics on signal, v_{μ} BG, v_{e} BG, v/\overline{v}

18

Wednesday, August 22, 12

K

Mass hierarchy

Wednesday, August 22, 12

19

Ongoing study: effect of systematics

- \bullet Check effect of systematics with updated χ^2 definition
- Assuming that normalization will be given by ND
 - \bullet For ν_{μ} in ν run, $\overline{\nu}_{\mu}$ and ν_{μ} in $\overline{\nu}$ run
- Systematic parameters (total 11)
 - Normalization
 - CCnon-QE/CCQE
 - v_µ (~NC)
 - Intrinsic Ve
- No energy dependence (yet)

 $f_{\rm norm}^{\rm v}, f_{\rm norm}^{\rm v}, f_{\rm WS}^{\rm v}$

 f_{nOE}^{v}, f_{nOE}^{v}

 $f_{\nu\mu}^{\nu}, f_{\nu\mu}^{\bar{\nu}}, f_{\bar{\nu}_{\mu}}^{\bar{\nu}}$

 $f_{ve}^{v}, f_{ve}^{\overline{v}}, f_{\overline{v}}^{\overline{v}}$

X² used for systematics study

Effect of systematics

22

Effect of normalization

23

Effect of normalization

23

Effect of normalization

23

Summary of first part (LBL)

- J-PARC + Hyper-K LBL experiment has potential to reveal full picture of neutrino oscillation.
 - CPV >3σ(5σ) for 74(55)% of δ.
 - Synergy with atmospheric $\nu \rightarrow \text{Roger's talk}$
- Systematic uncertainties are important for study of sub-leading CPV effect.
 - Ongoing work: quantifying near detector requirements and make conceptual design
 - Improve (upgrade) ND280 ?
 - Other detector at J-PARC?
 - Intermediate detector @~2km ?
 - Will be discussed in following talks and tomorrow

Search for nucleon decays

Nucleon decays

• Only direct probe of Grand Unified Theory

Many GUT models predict decays of protons and bound neutrons with $T=O(10^{34-35})$ years

Model

Minimal S

Minimal Se

Minimal S

• Two modes favored by many models:

Other modes are also important (Werdon't know to react infodel!)

Best limits have been set by Water Cherenkov detectors After >15 years of Super-K (220kt \cdot yrs), $T(p \rightarrow e^{+}\pi^{0}) > 1.3 \times 10^{34}$ years $T(p \rightarrow vK^{+}) > 4.0 \times 10^{33}$ years

Order of magnitude improvement necessary to be significant!

$p \rightarrow e^{+}\pi^{0}$ search

$p \rightarrow \nu K^+$ search

- K⁺ invisible (below Cherenkov threshold)
- K⁺→µ∨ (Br: 63.5%)
 - Method I: Tag with nuclear de-excitation γ
 - Measurement of de-excitation γ : nucl-ex/0604006
 - \bullet Method 2: Search excess in P_{μ} distribution
- $K^+ \rightarrow \pi^+ \pi^0$ (Br: 20.7%)
 - 205 MeV/c π^0 + activity in opposite direction (π^+ just above threshold)

	Efficiency (%)	BG (/Mtyr)
K→µν+nucl.γ	7. I	I.6
Κ→νμ	43	1940
Κ→ππ	6.7	6.7

ΝK Hyper-K $p \rightarrow \nu K^+$ sensitivity

(cf. 2×10³⁴ @90% w/ 20kt LAr 10yr)

Nucleon decay searches with HK

~10 times better sensitivity than current Super-K limits

- •p→e⁺π⁰:
 - •1.3×10³⁵yrs (90%CL)
 - •5.7×10³⁴yrs (3σ)
- •p→vK+:
 - •2.5×10³⁴yrs (90%CL)
 - •1.0×10³⁴yrs (3 σ)
- Many other modes:
 - (p,n)→(e,μ)+(π, ρ, ω, η)
 - K⁰ modes
 - νπ⁰, νπ⁺
 - n-nbar oscillation
 - dinucleon decays

 $>3\sigma$ possible for lifetime above current SK limits

Conclusions

Hyper-K has excellent potential for fundamental physics.

- Long baseline neutrino experiment
 - Test of CP symmetry in lepton sector
 - CPV >3σ(5σ) for 74(55)% of δ
 - Full picture of neutrino oscillation (together with atm V)
 - Systematics important to exploit full capability (see following talks)
- Search for proton (nucleon) decays
 - Direct probe of GUT
 - HK sensitivity ~×10 of current limits by SK
 - Good chance to observe signals
 - >3 σ : 5.7×10³⁴ for e⁺ π^{0} , 1.0×10³⁴ for vK⁺ with 10 yrs

Backup

Japan's Strategy for Future Projects

The Final Report of the Subcommittee on Future Projects of High Energy Physics (Chair: T. Mori)

- Should the neutrino mixing angle θ₁₃ be confirmed as large Japan should aim to realize a large-scale neutrino detector through international cooperation, accompanied by the necessary reinforcement of accelerator intensity, so allowing studies on CP symmetry through neutrino oscillations. This new large-scale neutrino detector should have sufficient sensitivity to allow the search for proton decays, which would be direct evidence of Grand Unified Theories.
 - Large θ₁₃ confirmed!
 - Large scale v detector for
 - Studies on CP symmetry (with accelerator reinforcement)
 - Search for proton decays
 - With international cooperation

Recognized as Japanese HEP community Strategy (as well as international neutrino community)

Masashi Yokoyama (U.Tokyo) 😽

χ^2 definition used in Lol

signal eff., vµBG, veBG, v/anti-v ratio

38

Oscillation probability

Ist open meeting for Hyper-K project, Aug. 22-23 2012

Normal mass hierarchy (unknown)

multiple solutions, wider allowed region due to wrong MH assumption.
 Input (mass hierarchy) from other experiments may become important.
 from Nova? or v-less DB? or...

▶ One possibility is to determine MH by atm. v study (discuss later)

Mass hierarchy unknown case

Wednesday, August 22, 12

Ist open meeting for Hyper-K project, Aug. 22-23 2012

5

Integrated beam power (MW• 10⁷s)

4

6

3

2

 $sin^{2}2\theta_{13}=0.1$

• With known mass hierarchy (atm V, other expt's), CP violation can be observed (3 σ) for ~70% of δ

560kt FV

9

8

Wednesday, August 22, 12

0

lring μ like events

BG in nu run

/50MeV/Mton/MW/10⁷sec

BG in anti-nu run

/50MeV/Mton/MW/10⁷sec

Wednesday, August 22, 12

47

Sensitivity to CP violation

