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Requirement

% Measurable for number of photo-electrons and arrival
timing on each PM'T as precise as possible.

* Understanding the water quality in detail.

* Possible to estimate the uncertainty of reconstruction,
such as energy, position, direction etc.

* Monitoring a long term stability for PM'T gain, Water
condition, Energy scale, etc.
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Flow ot the calibration

Pre-Calibration

- For gain determination

- Measured 400 PMTs in stand alone

before SK start #

Initial Cal

ibration

after / during SK §

- For gain, timing adjustment.

- Measured QE in each PMT

- Absorption/Scattering in water

Long term monitoring

- Check a long term stability

for gain, timing, water condition,
energy scale, etc.

Calibration for estimate systematic errors

- Energy/Vertex/Direction in each analysis

- MC tuning




Pre-Calibration

* Prepare 400 PMTs with

precise gain measurement
before the SK starts.

* Set them in geometrically
uniform to SK.

* Adjust HV for other PMTs
to these PMTs.

UV filter

Setup

——— | APD1
Fiber bundle APD?2
20 inch PMT

V m LED
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Initial calibration in SK

Number of photo-electrons

Electronics calibration

~N_~

- Relation between channel vs pC

HYV adjustment

- Used -30 p.e. light for each PMT

N~ - Adjustment of ‘QE x gain’

Gain measurement Q.E. measurement
- Absolute/Relative PMT gain - Hit ratio in each PMT
N ° N~ by1p.e. level light

Charge with p.e. for data <}::> Charge with p.e. for MC

- Fine tuning for PMT correction efficiency




HV adjustment

* Set light source (Xenon lamp + Scintillator ball) at the exact
center position by Arm.

* Adjust number of photo-electrons in all PMTs to reference PMT
* The ‘QE x gain’ for each PMT is adjusted in this calibration.
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(Gain measurement

Black Box

- Dye/Nitrogen Laser |

* Relative gain of each PM'T was e e
measured by the ratio of low/high "0 " iy 1 Tri90Er PATT “
intensity of laser light. It is applied E——

as a correction table of observed |
photo-electrons for each PMT.

Difiuser Ball

* Absolute gain (averaged) was N
‘Nickel calibration’. o bt

5000 |-

* It was hard to get absolute gain for JREEEEEAS
i . 0 F Red:SK4Ni 1p.e. |
each PMTs, since the electronics wo /- ultinlied 0.844 to
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QFE measurement

* Relative QE factor of each « [
PMT was measured by the . i
hit ratio from 1 p.e. level . i Hiaes
light (“Ni source”)

* This measurement can be R
done only when the water —
quality is uniform all over  * -,
the detector. :

Barrel

% It is applied to each PMT :
for MC as a correction table.™ & “G#EE2

Top Bottom




Initial calibration in SK

Arrival Timing
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MC tuning

Water quality (scattering/absorption)

Outputs of the light source are set on A precise water model is available.
several positions on the detector wall
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Energy calibration

* Track range of high energy stopping muon (10-1 Gev/c)

% Cherenkov angle of low energy stopping muon

(s00-200MeV/c)

* Invariant mass of n°’s produced by atmospheric
neutrino interactions (-130 MeV/c)

HE
solarnu atm.-nu, pd, acc.-nu

* Momentum of decay electron (-50 MeV/c)
% LINAC and DT (4-20MeV)
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reconst. momemtum (MeV/c)

Energy calibration

“natural sources” for higher energy region

(1) Track range of high

energy stopping muon
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Energy calibration

“natural sources” for higher energy region

(3) Invariant mass of s°
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(4) Decay electron momentum
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Energy calibration

“natural sources” for higher energy region

Data and MC is consistent with 1%
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Energy calibration
LINAC/DT for lower energy region

(I) LIN AC Cahbr ation pipe insert from calibration hole
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Energy calibration
LINAC/DT for lower energy region

(1) LINAC calibration

* Monochromatic energy
(4-20MeV)

* Very precise energy
determination (-keV)

¥ “The LINAC festival”

is held once per year,
takes ~-2weeks.
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Energy calibration

LINAC/DT for lower energy region [
(2) DT calibration

AN
s 27ﬁ§2

DT generator /
D+T—He+n

take data every 3 month

@ \@% - ® \@% L © \@%
" " z "

DTégenerator with Bob

T1/2=7.13S€C
B 4.3+v6.1(66%)
B 10.4MeV (28%)

uniformly generated | a8




Energy calibration

LINAC/DT for lower energy region

(2) DT calibration
Zenith angle dependence Long term stability
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Long term stability

Water transparency measured by penetrating muons
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Loong term stability

PMT gain measured by charge peak of dark noise
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Long term stability

‘Auto calibration’
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take a data automatically every 1 second during
normal data taking. ‘Water’ ‘gain’ and ‘timing’
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OD calibration

(%ltef Detecto&gnﬁguration

* Essentially same N
calibration as 1D, segmentaton
precise measurement

for number of photo-
\w

electrons and arrival —
timing to PMTs. "e'T  optical fiber setting in OD
* Done using cosmic ray,
dark rate data, and o
laser light data. o
-60980;0‘ ‘ ‘-40‘00‘ ‘ ‘-20‘00‘ — (‘) — ‘2000‘ ‘ ‘40‘00‘ ‘ ;6[9100
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Other calibrations

Cone generator

from laser

optical
fiber

delrin
vessel

Super-Kamlokande IV

Single cone
data at SK

(@5cm acrylic
ball with MgO)

0.75cm

Check charge profile between data and MC

diffuser
ball

—+}— CG real data (R67154)

u
I
N
(=3
o

: CG MC (photon flux May 10-12)

=
A OO 0O O
o O O 9O
o O O O

N
o
o
k

—-—
| i SO "
40 60 80 100 120 140 160 180
Angle from CG direction (°)

MC normalized by number of events and total corr. charge

per event/sin(angle) (a.u.)

Integrated corr. charge

it
N
o

PN
® o

MC/Data
N o

i
+

T

g s ol il

g I -+v l

oo
)

I
IS

o o =
N w0 o
CHI H\lH\ H.L*J.JJ.LJH TITTITTITTT

o
o

20 0 80 80 100 120 140 160 180
Angle from CG direction (°)

] ALI.




Other calibrations

Nickel calibration

T (prompt)
Ideal one photon level source
- Uniformly generated _
- Stable Y (Ni captured)

~9MeV

- easy to handle

Used for many purposes:
- 1 p.e. distribution — o
- QE measurement
- water quality (top-bottom asym.)

\m
- trigger efficiency

- reconstructed vertex calibration “~__Baske 7 NS

- angular dependence of energy scale
CEC .
Monthly data taking
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Summary

*  Many calibration in SK can lead precise physics results, we understand the detector
from every points of view within 1% level.

* The method for water Cherenkov detector is established, therefore, we can do
similar things for Hyper-K in general, but there’re several things to be considered.

- Appropriate for larger detector? What calibrations are really needed? What's
demand from each physics analysis group? Anything new idea?

-  The advantage of geometrical symmetry is used at most in SK, but the
situation in Hyper-K will become different.

- Should be reduce dead time as much as possible not to miss a SuperNova.

- Should be automatic as much as possible, we cannot rely on hard workers...

- Any others?
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