Atmospheric Neutrino Oscillations at Hyper-Kamiokande

Roger Wendell, ICRR 2012.08.22 Hyper-K Open Meeting, Kashiwa

Introduction

- Atmospheric neutrinos are a good tool for studying L/E-style oscillations in a broad sense
 - With larger statistics though, they can also provide information on subleading effects
- **D** Now that θ_{13} is known to be quite large the goals of atmospheric neutrino measurements become more focused:
 - **D** Can we determine **Mass Hierarchy**
 - \square Can we determine the θ_{23} octant
 - \square Can we constrain the allowed values of δ_{cp}
 - **D** N.B. $\sin^2 2\theta_{13} = 0.10$ is assumed below unless otherwise stated

Can they provide extra information to the beam data?

Not covered today

Tau physics – appearance, cross-section measurements
 Atmospheric neutrinos as a probe of the Earth's interior
 Etc.

Atmospheric Neutrino Generation

Cosmic rays strike air nuclei and the decay of the outgoing hadrons gives neutrinos

 $P + A \rightarrow N + \pi^+ + x$

Isotropic about the Earth
 Path length to the detector spans 10 – 10,000 km

 $\mathbf{L} \mu^{+} + \mathbf{v}_{\mu} \rightarrow \mathbf{e}^{+} + \mathbf{v}_{e} + \mathbf{v}_{\mu}$

Both neutrinos and antineutrinos
 about 30% of the final samples are antineutrinos

□ Spans many decades in energy ~100 MeV – 100TeV⁺

Excellent tool for broad studies of neutrino oscillations
 Access to sub-leading effects with high statistics

Pure oscillation probabilities

□ In the presences of the now large θ_{13} resonant enhancement of the $P(v_{\mu} \rightarrow v_{e})$ oscillation probability occurs via matter interactions

Resonance occurs only for (anti-)neutrinos under the Normal (Inverted) Hierarchy

Effects are roughly halved going to the IH

Oscillation probability difference between the $\theta_{\rm 23}$ octants

□ Matter effect gives improved sensitivity

- □ Mass hierarchy → □ size of θ_{13} and δ_{cp} → □ Octant of θ_{23} →
- \rightarrow Asymmetry between neutrinos and antineutrinos
 - \rightarrow Magnitude of resonance effect
 - \rightarrow Appearance and disappearance interplay

(Trends are Independent of Hierarchy)

About the Atmospheric Neutrino Fit

This study is an extrapolation of the standard three-flavor oscillation fit done at Super-K
 Approximately ~8 Fully Contained events per day
 Assumes no future enhancements, just project

the SK exposure onto Hyper-K scales

Atmospheric neutrino sample

18 Event categories, binned by momenta and zenith angle, classified by

- □ Number of rings
- □ Sub-Gev / Multi-GeV

Whether or not all particles are contained in the inner volume

No event-by-event discrimination between neutrinos and anti-neutrinos...do this statistically

Primary three-flavor signal occurs in Multi-GeV electron-like samples

Zenith Angle Analysis – 480 Bins

Sample Composition

Composition	Composition (%)		CC anti- v_{e}	CC v_{μ} +anti- v_{μ}	NC
	1R	60.2	10.6	13.5	14.8
v _e like	MR	57.5	17.4	10.7	13.7
Anti-v _e like	1R	55.7	36.6	1.1	6.4
	MR	51.9	20.7	8.2	19.7

Compositio	า (%)	CC v_e	CC anti- v _e	CC v_{μ} +anti- v_{μ}	NC
	1R	0.2	0.08	98.8	0.2
v_{μ} like	MR	2.5	0.3	91.7	4.4

□ Generally the background component of the e-like signal samples is ~20-30%

Muon-like samples on the other hand tend have high-purity and reasonable sensitivity to small effects

Expected Effects : electron-like samples

- \blacksquare Effect of the $\theta_{\rm 23}$ octant can be larger than that from $\,\delta_{\rm cp}^{}\,$ on electron appearance
- Effect of the latter is smaller than the expected statistical uncertainty in each bin

Equivalent MC

Octant: Residual at Maximal Mixing ($x - MC^{\theta = 0.5}$)/ sqrt($MC^{\theta = 0.5}$)

Clear differences between the two octants in both the electron and muon samples

oth $\theta_{23} = 0.4 \text{ vs. } \theta_{23} = 0.5$ $\theta_{23} = 0.6 \text{ vs. } \theta_{23} = 0.5$

Overall slightly better sensitivity to the first octant

About Systematics

Super-K analysis considers 151 sources of systematic uncertainty from the usual cadre of errors

□ Flux, cross-section, detector performance

□ This is a partial listing of things relevant to three-flavor issues

Error Source	Uncertainty
v_e vs. anti- v_e sample selection	7%
Charged-Neutral Pion Production	40%
Tau Production Cross section	25%
DIS Cross Section	5-10%
NC / CC Ratio	20%
Single-Pion Production	20%
Flux Normalization above 1 GeV	7%
Flux Ratio ν to ν bar above 1 GeV	5-8%

Notes about Parameter Values

In the studies below, unless specified otherwise the following inputs have been used to compute sensitivities

Parameter	Value	sin²(2x)	Comment	0.003	-		_
Δm^2_{32}	$2.4 imes 10^{-3} eV^2$		Global Fit	(eV ²	· · · ·	*****	
$sin^2 \theta_{23}$	0.4-0.6	0.96 - 1.0	**	32			X
$sin^2 \theta_{13}$	0.025	0.10	Reactor Data	E ⊲ 0.002	-		and the second se
δ_{cp}	40 degrees		$Min.P(v_{\mu} \rightarrow v_{e})$	-	90% C. T2	L. K 2∨	
$sin^2 \theta_{21}$	0.31	0.85	Global Solar		MI	NOS 2v (1+2+3+4 L/E 2v (1+2+3+4 Zonith 2)	
Δm_{21}^2	$7.6 imes 10^{-5} eV^2$		Global Solar	0.001		(1+2+3+4 Zenith 3)	, ,
Hierarchy	Normal		Assumption	0.	8 0.85	5 0.9	0.95
						SIN~ 2 0 ₂₃	

** MINOS central value from Neutrino 2012: $sin^2(2\theta_{23}) = 0.96$

Neutrino 2012

0.004

Atmospheric Neutrino Sensitivity

+ Simultaneous fitting performed on Δm_{32}^2 , θ_{23} , δ_{cp} + Both hierarchies considered

Example Fit : Normal Hierarchy Sensitivity - 10 Years

Hierarchy Sensitivity : Normal Hierarchy

- $\hfill\square$ Intensity of the matter effect and hence electron appearance scales with the size of θ_{13}
- **D** By the time Hyper-K is running, the value of θ_{13} should be very well known
- \blacksquare However this sensitivity is a function of both the $\theta_{\rm 23}$ octant and true value of $\delta_{\rm cp}$

Hierarchy sensitivity, 10 years of Atmospheric neutrino data

□ Thickness of the band corresponds to range of δ_{cp}
 □ Weakest sensitivity overall in the tail of the first octant

 θ_{23} Octant sensitivity , 10 year Exposure

□ Thickness of the band corresponds to the uncertainty from δ_{cp} □ Best value of δ_{cp} = 40 degrees □ Worst value of δ_{cp} = 140 (260) degrees, for 1st (2nd) octant

CP-Violation Sensitivity - Exclusion of sin δ_{cp} = 0

Sensitivity to CP-violation is limited under both hierarchy assumptions
 The addition of this information to the beam data does not make much of an impact

Fraction of δ_{cp} excluded at 3σ for a fixed value of δ_{cp}

For this particular input, the constraint atmospheric neutrinos can place on dcp is about 50% of

Complementarity of Beam and Atmospheric Samples

Allowed Regions of δ_{cp}

With beam only data degenerate solutions exist when the mass hierarchy is unknown

 $\hfill\square$ Study the case with fixed $\theta_{\rm 13}$

Combination of Beam and Atmospheric Neutrinos : Allowed δ_{cp}

In the real world, something more sophisticated is in order

Hierarchy sensitivity : Combination of Beam and Atm. Neutrinos

□ Even under a conservative assumption its possible to achiev ~3σ discrimination or all values of δ_{cp} if the true hierarchy is normal

Summary

□ Atmospheric Neutrinos have a lot to offer

- Sensitivity to Mass Hierarchy
- \square Sensitivity to θ_{23} octant
- \square Limited sensitivity to $\delta_{\rm cp}$ by themselves but coupled with long-baseline measurements can help resolve parameter degeneracies

Objective		Normal	Inverted	Comment
Hiorarchy	2σ	$\sin^2 2\theta_{23} > 0.96$	sin ² 2θ ₂₃ > 0.96	5 years
Hierarchy	3σ	sin ² θ ₂₃ > 0.4	$\sin^2 \theta_{23} > 0.4$	10 years
Octont	2σ	sin² 2 $ heta_{23}$ > 0.997	sin ² 2θ ₂₃ > 0.99	5 years
Octant	3σ	sin² 2 $\theta_{_{23}}$ > 0.99	sin ² 2θ ₂₃ > 0.97	5 years

Please look forward to further contributions from atmospheric neutrinos

Supplements

Hierarchy Sensitivity - NH True

 θ_{13} is fixed : $\sin^2 2\theta_{13} = 0.10$

- \blacksquare Whether or not the sign of the mass hierarchy can be determined with atmospheric neutrinos is a function of the true value of δ_{cp} and the θ_{23} octant
- □ Focus on the far side of these plots...

Normal Hierarchy Sensitivity - 10 Years Example Fit

Hierarchy sensitivity, Beam only

Combination of Beam and Atmospheric Neutrinos : Allowed δ_{cp}

Allowed Regions of δ_{cp}

With beam only data degenerate solutions exist when the mass hierarchy is unknown

 $\hfill\square$ Study the case with fixed $\theta_{\rm 13}$

Residual to MC at $\sin^2 \theta_{23} = 0.5$ (x – MC^{θ = 0.5})/ sqrt(MC^{θ = 0.5})

Zenith Angle Analysis Binning

For maximal mixing...

At maximal mixing, atmospheric neutrinos can do the work by themselves

Octant Discrimination as a function of HK running years

 $\hfill\square$ Defined as the difference in χ^2 between the lowest χ^2 values from each octant

Octant Discrimination as a function of HK running years

 \square Defined as the difference in χ^2 between the lowest χ^2 values from each octant

Hierarchy Sensitivity – IH True

 θ_{23} Octant sensitivity , 10 year Exposure – Total Ignorance

■ Thickness of the band corresponds to range of δ_{cp} ■ Best value of δ_{cp} = 40 degrees ■ Worst value of δ_{cp} = 140 (260) degrees, for 1st (2nd) octant

 θ_{23} Octant sensitivity , 5 year Exposure

■ Thickness of the band corresponds to range of δ_{cp} ■ Best value of δ_{cp} = 40 degrees ■ Worst value of δ_{cp} = 140 (260) degrees, for 1st (2nd) octant

Hierarchy sensitivity, 5 yrs Atm.

Thickness of the band corresponds to range of δ_{cp} Weakest sensitivity overall in the tail of the first octant

2012.8.22

Hierarchy sensitivity, 5 yrs Atm.

Residual to MC at sin²
$$\theta_{23} = 0.5$$
 (x – MC ^{$\theta = 0.5$})/ sqrt(MC ^{$\theta = 0.5$})

- This plot shows the difference in the muon survival probability between the first and second octant
- The survival probability is larger at E > 1 GeV for the first octant, meaning there is less muon disappearance

Residual to MC at $\sin^2 \theta_{23} = 0.5$ (x – MC^{$\theta = 0.5$})/ sqrt(MC^{$\theta = 0.5$})

Systematic Error			fit value	σ
Flux normalization	$E_{\nu} < 1 \text{ GeV}$		34.7	25^a
	$E_{\nu} > 1 \text{ GeV}$		8.8	7^{b}
ν_{μ}/ν_{e}				
	$E_{\nu} < 1 \text{ GeV}$		-1.9	2
	$1 < E_{\nu} < 10 {\rm GeV}$		-2.5	3
	$E_{\nu} > 10 \text{ GeV}$		-3.7	5^{c}
$\bar{\nu}_e/\nu_e$				
	$E_{\nu} < 1 \text{ GeV}$		5.54	5
	$1 < E_{\nu} < 10 \text{ GeV}$		1.13	5
	$E_{\nu} > 10 \text{ GeV}$		-0.10	8^d
$\bar{\nu}_{\mu}/\nu_{\mu}$				
	$E_{\nu} < 1 \text{ GeV}$		-0.48	2
	$1 < E_{\nu} < 10 \text{ GeV}$		-1.35	6
	$E_{\nu} > 10 \text{ GeV}$		-1.75	6^e
Up/down ratio	< 400 MeV	e-like	-0.07	0.1
		μ -like	-0.23	0.3
		0-decay μ -like	-0.84	1.1
	> 400 MeV	e-like	-0.61	0.8
		μ -like	-0.38	0.5
		0-decay μ -like	-1.29	1.7
	Multi-GeV	e-like	-0.53	0.7
		μ -like	-0.15	0.2
	Multi-ring Sub-GeV	μ -like	-0.15	0.2
	Multi-ring Multi-GeV	e-like	-0.23	0.3
		μ -like	-0.15	0.2
	PC		-0.15	0.2

Horizontal/Vertical ratio	0 < 400 MeV	e-like	-0.01	0.1
,		μ -like	-0.01	0.1
		0-decay μ -like	-0.03	0.3
	> 400 MeV	e-like	-0.14	1.4
		μ -like	-0.19	1.9
		0-decay μ -like	-0.14	1.4
	Multi-GeV	e-like	-0.33	3.2
		μ -like	-0.23	2.3
	Multi-ring Sub-GeV	μ -like	-0.13	1.3
	Multi-ring Multi-GeV	e-like	-0.29	2.8
		μ -like	-0.15	1.5
	PC		-0.17	1.7
K/π ratio in flux calcula	tion		-12.9	10^{f}
Neutrino path length			-8.8	10
Sample-by-sample	FC Multi-GeV		-4.5	5
	$\mathrm{PC} + \mathrm{Up}\text{-stop}\ \mu$		-7.1	5

Systematic Error	fit value	σ
MA in QE and single π	-2.4	10
CCQE cross section	0.66	1.0^a
Single meson production cross section	7.8	20
DIS cross section ($E_{nu} < 10 \text{ GeV}$)	-0.16	1.0^{b}
DIS cross section	2.27	5
Coherent π production	1.53	100
NC/(CC)	1.51	20
Nuclear effect in ¹⁶ O nucleus	-13.8	30
Nuclear effect in pion spectrum	0.8	1.0°
ν_{τ} contamination	1.0	30
NC in FC μ -like (hadron simulation)	-4.6	10
CCQE $\bar{\nu}_i / \nu_i$ (i=e, μ) ratio	0.84	1.0^a
$CCQE \mu/e ratio$	1.12	1.0^a
Single π production, π^0/π^{\pm} ratio	-29.0	40
Single π production, $\bar{\nu}_i/\nu_i$ (i=e, μ) ratio	-0.04	1.0^{d}
π^+ decay uncertainty Sub-GeV 1-ring $e\text{-like}$ 0-decay	-0.48	0.5
μ -like 1-decay	0.77	-0.8
e-like 1-decay	3.9	-4.1
μ -like 0-decay	-0.77	0.8
μ -like 2-decay	5.46	-5.7

			SK-I		SK-	SK-II SK-II		Π
Systematic Error			\mathbf{fit}	σ	fit	σ	fit	σ
FC reduction			0.005	0.2	0.008	0.2	0.061	0.8
PC reduction			-0.99	2.4	-2.12	4.8	0.034	0.5
FC/PC separation			-0.058	0.6	0.068	0.5	-0.28	0.9
PC-stop/PC-through separation	n (top)		7.84	14	-17.47	21	-20.03	31
PC-stop/PC-through separation	n (barrel)		-2.27	7.5	-31.51	17	3.44	23
PC-stop/PC-through separation	n (bottom)		-2.32	11.	-7.32	12	1.59	11
Non- ν BG (e-like)	Sub-GeV		0.077	0.5	0.004	0.2	0.003	0.1
	Multi-GeV		0.047	0.3	0.005	0.3	0.011	0.4
Non- ν BG (μ -like)	Sub-GeV		-0.01	0.1	0.02	0.1	0.052	0.1
. ,	Multi-GeV		-0.01	0.1	0.02	0.1	0.11	0.2
	Sub-GeV 1-ring	μ -like 0-decay	-0.04	0.4	0.02	0.1	0.052	0.1
	PC		-0.02	0.2	0.14	0.7	0.95	1.8
Fiducial volume			-0.23	2	0.43	2	0.93	2
Ring separation	$< 400 { m MeV}$	e-like	1.23	2.3	-1.67	1.3	0.12	2.3
		μ -like	0.37	0.7	-2.96	2.3	0.037	0.7
	> 400 MeV	<i>e</i> -like	0.21	0.4	-2.19	1.7	0.021	0.4
		μ -like	0.37	0.7	-0.90	0.7	0.036	0.7
	Multi-GeV	<i>e</i> -like	1.97	3.7	-3.35	2.6	0.19	3.7
		μ -like	0.91	1.7	-2.19	1.7	0.089	1.7
	Multi-ring sub-GeV	μ-like	-2.40	-4.5	10.56	-8.2	-0.24	-4.5
	Multi-ring multi-GeV	<i>e</i> -like	0.05	0.1	-2.45	1.9	0.16	3.1
	_	μ -like	-2.19	-4.1	1.03	-0.8	-0.21	-4.1

Particle identification	Sub-GeV	e-like	-0.007	0.1	0.13	0.5	0.004	0.1
		μ -like	0.007	-0.1	-0.13	-0.5	-0.004	-0.1
	Multi-GeV	e-like	-0.014	0.2	0.023	0.1	0.008	0.2
		μ -like	0.014	-0.2	-0.023	-0.1	-0.008	-0.2
Particle identification (multi-ring)	Sub-GeV	μ -like	-0.18	-3.9	-0.55	-2.2	-0.15	-3.9
	Multi-GeV	e-like	0.078	1.7	0.45	1.8	0.063	1.7
		μ -like	-0.13	-2.9	-0.86	-3.4	-0.11	-2.9
Energy calibration			-0.002	1.1	-0.56	1.7	-0.35	2.7
Up/Down asymmetry energy calil	oration		-0.4	0.6	-0.15	0.6	-0.03	1.3
Upward-going muon reduction	Stopping		-0.057	0.7	-0.14	0.7	0.14	0.7
	Through-going		-0.041	0.5	-0.10	0.5	0.10	0.5
Upward stopping/through-going μ	ι separation		-0.04	0.4	0.006	0.4	0.04	0.6
Energy cut for upward stopping μ	ļ		-0.13	0.8	-0.26	1.4	0.78	2.1
Path length cut for upward throu	gh-going μ		0.39	1.8	-1.0	2.1	0.4	1.6
Upward through-going μ showering	g separation		9.42	9.0	2.28	13.0	6.1	6.0
BG subtraction of upward μ^{a}	Stopping		4.16	16	-7.47	21	0.004	20
	Non-showering		-1.24	11	8.08	15	6.34	19
	Showering		2.27	18	-18.16	14	24.7	24
Multi-GeV Single-Ring Electron H	3G		5.95	16.3	-4.67	23.4	1.06	41.4
Multi-GeV Multi-Ring Electron E	BG		-4.38	35.6	-1.4	22.3	-16.8	38.0
Multi-GeV Multi-Ring e-like likeli	ihood		-1.12	6.4	0.5	11.1	-0.3	5.3
Sub-GeV 1-ring π^0 selection	$100 < P_e < 250$	MeV/c	-3.94	11.2	-4.08	7.5	-5.34	7.7
	$250 < P_e < 400$		-4.05	11.5	-4.85	8.9	-18.37	26.4
	$400 < P_e < 630$		-8.23	23.4	-9.52	17.5	-8.70	12.5
	$630 < P_e < 1000$		-6.72	19.1	-5.81	10.7	-18.58	26.7
	$1000 < P_e < 1330$		-4.57	13.0	-6.03	11.1	-18.58	26.7
Sub-GeV 2-ring π^0			-0.31	2	0.024	2	0.009	1
Decay-e tagging			0.16	1.5	0.41	1.5	1.06	1.5
Solar Activity			0.6	20	27.9	50	3.78	20

Systematic errors for MME likelihood and ν_{e} and anti- ν_{e} separation likelihood

Multi-GeV multi-ring v_e and anti- v_e separation

SK1	7.16 %
SK2	7.91 %
SK3	7.68 %
SK4	6.82 %

*% of CC(v_e +anti- v_e) in MME sample