Calibration of the LBNE Water Cherenkov Detector

G. Sinnis Los Alamos National Laboratory

The LBNE Water Cherenkov Detector

- Super Kamiokande provided a solid technical basis for the LBNEWCD
- Single 200 kTon fiducial volume detector
- 29,000 I2" high QE PMTs with light collectors (~40% gain in light collection)
- 20% "effective" photo-coverage
- Top Veto System
- Energy range 5 MeV 5 GeV

Calibration Systems

- Water properties
 - scattering and absorption (<2% uncertainty in attenuation length for 100m water)
- PMT calibration
 - timing < Ins from 0.1 PE 100 PE
 - pulse height < 10% from 0.1 PE to 100 PE</p>
 - relative QE <10% (in-situ)</pre>
- Energy calibration 5 MeV 5 GeV
 - resolution 5%/sqrt(E_{GeV}) and 50%/sqrt(E_{MeV})
 - absolute scale 2%

Water Properties

 Scattering and absorption of light affect energy resolution, vertex resolution, particle identification capability

 $\iota = \iota_o \exp(-l/l_o)$

$$1/l_0 = 1/l_{abs} + 1/l_{scatt}$$

- The larger the detector the more important is understanding of its optical properties
- Affects vertex resolution, particle id, energy resolution

muon analysis (wavelength range of interest)

8/23/12

Portable C-Star System

PMT Calibration System

- Pulse height and timing similar to Super Kamiokande
- For relative QE measurement desire to have movable, isotropic light source
- U. Hawaii R&D project to develop highly isotropic light source and test stand to characterize the laser ball in 4π

U. Hawaii Test Stand

Energy Calibration

Radioactive sources at low energies

- ¹⁶N (Q=10.4 MeV: 66% 6.1 MeV γ, 28% 10.4 MeV β£) from
 ¹⁶O (neutrons from DT generator) [Super-K]
- ⁸Li (0.8s 1/2 life) (β spectrum 13 MeV) DT source and ¹¹B target. Tagged via delayed alpha decay of Be. [SNO]
- pT source ³H(p,γ)⁴He (19.8 MeV mono-energetic γ's)
 [SNO]
- deck had ~40 calibration ports 8 radials + 16 azimuthal near fiducial volume edge + central port
- Natural events at high energies
 - Michel electrons, pion zero, stopping muons
 - Muon rate expected to be ~0.1-0.2 Hz
- Risk mitigation electron accelerator for high energies (100 MeV 1 GeV)

Energy Calibration Requirements for a far water Cherenkov Detector in Neutrino Long Baseline Experiments

J. Insler, T. Kutter LSU

Hyper-K Open Meeting 23. August 2012

Introduction

- How well do we need to calibrate the energy response of the LBNE far detector to measure relevant physics parameters ?
- Effort started in context of WCD and before $\theta_{\rm 13}$ was known with aim to develop a detector calibration strategy

 \rightarrow Focus on beam physics measurements

- $\theta_{\rm 13}$
- CP violation
- Mass hierarchy

Method

- Use GloBES to calculate sensitivities As function of
 - energy resolution
 - energy bias
- Developed independent approach (toy data analysis) to calculate sensitivities
 - Allows outputs and cross checks at intermediate stages
 - determine effect of energy resolution and energy bias on sensitivities

GLoBES Results

Assumes 5 years of v running, $\sin^2 2\theta_{13} = 0.1$ and $\delta_{CP} = 90^\circ$

WC, 200 kt

Sensitivity to Energy Resolution

Independent Approach

• Compute event rates from same inputs as used for GLoBES study

Analytical calculation of oscillation probabilities

	Oscillation Parameter	Value
	θ_{13}	0.16 rad
-	δ_{CP}	$\pi/2$ rad
-	θ_{12}	0.58 rad
-	θ_{23}	$\pi/4$ rad
-	Δm^2_{31}	$2.6 \times 10^{-3} eV^2$
」 ク	Δm^2_{21}	$7.9 \times 10^{-5} eV^2$

Independent Approach

• Compute event rates from same inputs as used for GLoBES study

Expected Signal and Backgrounds

Integrated rates from 0.5 – 8 GeV and scaled by detector efficiencies

 $\Delta \chi^2$ Calculation

$$\Delta \chi^2 = 2 \cdot \Sigma \left(N_{\nu} \cdot \ln \frac{N_{\nu}}{N_{\nu_{Expected}}} + N_{\nu_{Expected}} - N_{\nu} \right)$$

Based on Poisson statistics

NOTE: include energy bias and resolution at far detector only →relative uncertainty between near and far detector after accounting for near-far propagation effects

<u>NOTE</u>: simpler procedure than GLoBES' numerical marginalization over all oscillation and nuisance parameters

Results

Assumes 5 years of ν running, $\sin^2\theta_{13}$ = 0.1, and δ_{CP} = 90°, normal hierarchy

<u>Energy resolution</u> Results consistent with GLoBES study

Metric for measuring improvement in sensitivity: change in 3 σ contour area (normal hierarchy)

Energy Resolution	Change in 3σ Area
5%	0%
4%	-5.6%
3%	-8.2%
2%	-9.6%
1%	-11.0%

Energy Bias	Change in 3σ Area
5%	0%
4%	-1.4%
3%	-7.4%
2%	-11.0%
1%	-12.3%

LBNE: More recent updates to reflect knowledge of θ_{13}

Assumes 5 years of ν and anti- ν each \rightarrow 7.3 10²⁰ POT/year \rightarrow fiducial volume 200 kT

Hyper-K: T2K ν spectrum, 1.66 MW beam

- use T2K ν and anti- ν spectra
- adjust signal and background efficiencies
- baseline, detector size, ...

Assumes 5 years of ν and anti- ν each \rightarrow 34.5 10²⁰ POT/year \rightarrow fiducial volume: 560 kT

Summary and Outlook

- Studied effect of neutrino energy resolution and energy scale uncertainty on sensitivity to beam physics parameters
 - work done for LBNE WCD and initially w/o knowledge of $\theta_{\rm 13}$
 - can be easily reconfigured for Hyper-K (work in progress)

Results can be used to help develop energy calibration strategy

<u>ToDo:</u>

- Study effect of oscillation parameter correlations
- Study energy calibration requirements at lower energies, e.g. relevant for SN physics