# Excavation of the HK Cavern

### Masato SHIOZAWA

Kamioka Observatory, Institute for Cosmic Ray Research, U of Tokyo, and Kamioka Satellite, Kavli Institute for the Mathematics and Physics of the Universe, U of Tokyo

Open Hyper-K meeting, August-22-2012

### Contents

- Summary of baseline design
  - Geological survey results
  - Cavity stability study, support design
  - Scheduling excavation process
- Ongoing study

## Hyper-K candidate site



- ♦ 8km south from Super-K
  - same T2K beam off-axis angle (2.5 degree)
  - same baseline length (295km)
- 2.6km horizontal drive from entrance



### Side view of the site



## geological survey and rock property measurements

- The candidate site is dominated by gneiss and Inishi-type rock. Contaminated with skarn, aplite, clay.
- Survey in the tunnels and the boreholes were performed
  - Obtain classification of rock mass
- in-situ rock stress measurements were performed at -300mL.
- Borehole loading tests were also performed to estimate the mechanical properties of in-situ rock mass.



## Rock class model (-370mL, tank floor level)



|  | Cavern | ana | lysis |
|--|--------|-----|-------|
|--|--------|-----|-------|

|            |     | Rock mass class (%) |         |      |      |     |  |  |  |  |  |  |  |  |
|------------|-----|---------------------|---------|------|------|-----|--|--|--|--|--|--|--|--|
|            | А   | В                   | СН      | СМ   | CL   | D   |  |  |  |  |  |  |  |  |
| North-side | 0.0 | 0.0                 | 71.8    | 28.2 | 0.0  | 0.0 |  |  |  |  |  |  |  |  |
| Cavern     |     | 71.8                |         |      | 28.2 |     |  |  |  |  |  |  |  |  |
| South-side | 0.0 | 9.0                 | 70.7    | 20.3 | 0.0  | 0.0 |  |  |  |  |  |  |  |  |
| Cavern     |     | 79.7                |         |      | 20.3 |     |  |  |  |  |  |  |  |  |
| Tatal      | 0.0 | 4.5                 | 71.3    | 24.2 | 0.0  | 0.0 |  |  |  |  |  |  |  |  |
|            |     | 75.8                |         | 24.2 |      |     |  |  |  |  |  |  |  |  |
|            | ·   |                     | Plane V | iew  |      |     |  |  |  |  |  |  |  |  |

Table 3.4 Input Property Values

| Rock mass class                      | В     | СН    | $\mathbf{C}\mathbf{M}$ |
|--------------------------------------|-------|-------|------------------------|
| Young's modulus(kN/mm <sup>2</sup> ) | 10.10 | 3.43  | 1.22                   |
| Poisson's ratio                      | 0.25  | 0.25  | 0.25                   |
| Cohesion(N/mm <sup>2</sup> )         | 4.90  | 2.40  | 1.40                   |
| Internal friction angle(deg)         | 60.00 | 50.00 | 45.00                  |

Cross-Section View



Longitudinal Sectional View







- ~I 2m depth of loosened region is affordable by appropriate design of PS anchors and rock bolts.
- Past experiences in underground power plants in Japan.

### anchors and cable-bolts



### Excavation (bench cut)

Cross section View



Side View







### Waste rock disposal place



• need to secure the disposal place, for example, geological survey, stability study are yet to be done.

|                                           | 1stYear |   |   |    |      | 1stYear 2nd Year |   |     |   |     |     |   | 3rd Year   |      |      |     |   |   |     |     |   | 4th Year |      |      |    |     |     |   | 5th Year |     |       |      |     |      |       |    |   |     |     |       |      |      |          |    |   |     |
|-------------------------------------------|---------|---|---|----|------|------------------|---|-----|---|-----|-----|---|------------|------|------|-----|---|---|-----|-----|---|----------|------|------|----|-----|-----|---|----------|-----|-------|------|-----|------|-------|----|---|-----|-----|-------|------|------|----------|----|---|-----|
|                                           | 4 5     | 6 | 7 | 89 | 10 1 | 11 12            | 1 | 2 3 | 4 | 5 6 | 6 7 | 8 | 9          | 10 1 | 1 12 | 2 1 | 2 | 3 | 4 5 | 5 6 | 7 | 8 9      | 9 10 | ) 11 | 12 | 1 2 | 2 3 | 4 | 5        | 6   | 7 8   | 3 9  | 10  | 11 1 | 2 1   | 2  | 3 | 4 ! | 56  | 6 7   | 8    | 9 1  | 0 11     | 12 | 1 | 2 3 |
| 1.New and additional excavation section   |         |   |   |    |      |                  |   |     |   |     |     |   |            |      |      |     |   |   |     |     |   |          |      |      |    |     |     |   |          |     |       |      |     |      |       |    |   |     |     |       |      |      |          |    |   |     |
| Temporary Facities of<br>Tunnnel entrance |         |   |   |    |      |                  |   |     |   |     |     |   |            |      |      |     |   |   |     |     |   |          |      |      |    |     |     |   |          |     |       |      |     |      |       |    |   |     |     |       |      |      |          |    |   |     |
| Tunnnel                                   |         |   |   |    |      |                  |   |     |   |     |     |   | <b>•</b> [ | Exca | avat | ion |   |   |     |     |   |          |      |      |    |     |     |   |          |     |       |      | ast | sho  | tc re | te |   | +   | _   |       |      | _    | $\vdash$ |    |   |     |
| 2.Approach Tunnnel                        |         |   |   |    |      |                  |   |     |   |     |     |   |            |      |      |     |   |   |     |     |   |          |      |      |    |     |     |   |          |     |       |      |     |      |       |    |   | T   |     |       |      |      |          |    |   |     |
| Tunnnel                                   |         |   |   |    |      |                  |   |     |   |     |     |   |            |      |      |     |   |   |     |     |   |          |      |      |    |     |     | - | E        | xca | vatio | on 🗖 |     |      |       |    |   | -   | Las | st sh | otci | rete |          |    |   |     |
| Muck transport shaft                      |         |   |   |    |      |                  |   |     |   |     |     |   |            |      | -    |     |   |   |     |     |   |          |      |      |    |     |     |   |          |     |       |      |     |      |       |    |   |     |     |       |      |      |          |    |   |     |
| Muck pit                                  |         |   |   |    |      |                  |   |     |   |     |     |   |            |      |      |     |   |   |     |     |   |          |      |      |    |     |     |   |          |     |       |      |     |      |       |    |   |     |     |       |      |      |          |    |   |     |
|                                           |         |   |   |    |      |                  |   |     |   |     |     |   |            |      |      |     |   |   |     |     |   |          |      |      |    |     |     |   |          |     |       |      |     |      |       |    |   |     |     |       |      |      |          |    |   |     |
| 3.Belt-conveyor Tunnel                    |         |   |   |    |      |                  |   |     |   |     |     |   |            |      |      |     |   |   |     |     |   |          |      |      |    |     |     |   |          |     |       |      |     |      |       |    |   |     |     |       |      |      |          |    |   |     |
|                                           |         |   |   |    |      |                  |   |     |   |     |     |   |            |      |      |     |   |   |     |     |   |          |      |      |    |     |     |   |          |     |       |      |     |      |       |    |   |     |     |       |      |      |          |    |   |     |
| 4.Water purification room                 |         |   |   |    |      |                  |   |     |   |     |     |   |            |      |      |     |   | _ |     |     |   |          |      |      |    |     |     |   |          |     |       |      |     |      |       |    |   |     |     |       |      |      |          |    |   |     |
|                                           |         |   |   |    |      |                  |   |     |   |     |     |   |            |      |      |     |   |   |     |     |   |          |      |      |    |     |     |   |          |     |       |      |     |      |       |    |   |     |     |       |      |      |          |    |   |     |
| 5.Tank Cavern                             |         |   | Τ |    |      |                  |   |     |   |     |     |   |            |      |      |     |   |   |     |     |   |          |      |      |    |     |     |   |          |     |       |      |     |      |       |    | - | -   | -   |       |      |      |          |    |   |     |
|                                           |         |   |   |    |      |                  |   |     |   |     |     |   |            |      |      |     |   |   |     |     |   |          |      |      |    |     |     | 1 |          |     |       |      |     |      |       |    |   |     |     |       |      |      |          |    |   |     |

#### Table 6.1 Construction outline schedule chart of HK-Project

~5 years for excavation

## More accurate analysis (ongoing study)

- Elastic, static analysis was conduced
  - one calculation for the whole cavern.
  - evaluate the plasticity region based on elastic analysis
    - Mohr-Coulomb's criterion as failure criteria, general (mean) values for Young's modulus
    - design PS anchors, rockbolts, and shotcrete to support the loosened area.
    - elastic limit of the supports themselves not taken into account
- Elasto-plastic, static analysis (ongoing study)
  - step-by-step calculations for each excavation benches.
  - perform calculation even after the stress exceeds the elastic limit.
    - Hoek-Brown's criterion as failure criteria, revised Young's modulus
    - strain softening calculation
    - Designed supports are considered in the calculation
    - elastic limit of the supports also taken into account.



\\//



affordable cable tension and plasticity region depth for B and CH class.

## Remarks on the cavity analysis

- Analysis for CM class contamination yet to be done.
  - Results should depend on size and position of the CM area.
- The cavern construction is feasible but final tuning of the shape and size might be necessary when preconstruction survey is conducted.
- Estimation of cost and construction period to be revised near future.

# supplements

#### Table 2.1 Rock mass classification of Central Research Institute of Electric Power

Industry

| Rock                   | Description                                                                  |
|------------------------|------------------------------------------------------------------------------|
| class                  |                                                                              |
|                        | The rock mass is very fresh, and the rock forming minerals and grains        |
| Δ                      | undergo neither weathering nor alteration. Joints are extremely tight and    |
| 11                     | their surfaces ha no visible sign of weathering. Sound by hammer blow is     |
|                        | clear.                                                                       |
|                        | The rock mass is solid. There is no opening joint and crack (even of 1       |
| В                      | mm). But rock forming minerals and grains undergo a little weathering        |
|                        | and alteration in partly. Sound by hammer blow is clear.                     |
|                        | The rock mass is relatively solid. The rock forming minerals and grains      |
| au                     | undergo weathering except for quartz. Rock is contaminated by limonite,      |
| СН                     | etc. The cohesion of joints and cracks are slightly decreased. Clay minerals |
|                        | remain on the separation surface. Sound by hammer blow is a little dim.      |
|                        | The rock mass is somewhat soft. The rock forming minerals and grains         |
|                        | are somewhat softened by weathering, except for quartz. The cohesion of      |
| $\mathbf{C}\mathbf{M}$ | joints and cracks is somewhat decreased and rock blocks are separated by     |
|                        | ordinary hammer blow along the joints. Clay materials remain on the          |
|                        | separation surface. Sound by hammer blow is somewhat dim.                    |
|                        | The rock mass is soft. The rock forming minerals and grains are softened     |
| OT.                    | by weathering. The cohesion of joints and cracks is decreased and rock       |
| CL                     | blocks are separated by soft hammer blow along the joints. Clay minerals     |
|                        | remain on the separation surface. Sound by hammer blow is dim.               |
|                        | The rock mass is remarkably soft. The rock forming minerals and grains       |
|                        | are softened by weathering. The cohesion of joints and cracks is almost      |
| D                      | absent. The rock mass collapses by light hammer blow. Clay minerals          |
|                        | remain on the separation surface. Sound by hammer blow is remarkably         |
|                        | dim.                                                                         |
|                        |                                                                              |

Note: CRIEPI: Central Research Institute of Electric Power Industry

20

Referencs: R.Yoshinaka, S.Sakurai, K.Kikuchi: 岩盤分類とその適用, Journal of the

Japan

Degraded

Fresh, Solid

## Summary of rock classification

Table 2.3: Classification of Rock mass in the Tunnels :

|                   | Rock mass class (%) |      |      |                        |      |     |  |  |  |  |  |  |
|-------------------|---------------------|------|------|------------------------|------|-----|--|--|--|--|--|--|
|                   | А                   | В    | СН   | $\mathbf{C}\mathbf{M}$ | CL   | D   |  |  |  |  |  |  |
| -300mL Kita-mukae | 0.0                 | 51.6 | 43.6 | 3.0                    | 1.8  | 0.0 |  |  |  |  |  |  |
| Tunnel            |                     | 95.2 |      |                        | 4.8  |     |  |  |  |  |  |  |
| -300mL Survey     | 0.0                 | 67.9 | 27.7 | 4.0                    | 0.4  | 0.0 |  |  |  |  |  |  |
| Borehole          |                     | 95.6 |      |                        | 4.4  |     |  |  |  |  |  |  |
| -370mL Moribuden- | 0.0                 | 11.4 | 45.4 | 39.8 3.4 0.0           |      |     |  |  |  |  |  |  |
| mukae Tunnel      |                     | 56.8 |      | 43.2                   |      |     |  |  |  |  |  |  |
| -370mL Shin-2ban- | 0.0                 | 4.9  | 55.7 | 25.0                   | 14.4 | 0.0 |  |  |  |  |  |  |
| mukae             |                     | 60.6 |      | 39.4                   |      |     |  |  |  |  |  |  |
| -370mL Survey     | 2.4                 | 10.5 | 49.2 | 29.7                   | 5.7  | 0.2 |  |  |  |  |  |  |
| Borehole No.2     |                     | 62.1 |      | 35.6                   |      |     |  |  |  |  |  |  |
| -370mL Survey     | 0.0                 | 19.2 | 59.2 | 16.5                   | 3.8  | 0.3 |  |  |  |  |  |  |
| Borehole No.3     |                     | 78.4 |      | 20.6                   |      |     |  |  |  |  |  |  |
| -370mL Survey     | 6.6                 | 20.5 | 36.4 | 22.6                   | 7.1  | 3.1 |  |  |  |  |  |  |
| Borehole No.4     |                     | 63.5 |      |                        | 32.8 |     |  |  |  |  |  |  |
| -430mL Kita-mukae | 0.0                 | 18.1 | 39.0 | 38.1                   | 1.9  | 2.9 |  |  |  |  |  |  |
| Tunnel            |                     | 57.1 |      |                        | 42.9 |     |  |  |  |  |  |  |

• Suggesting that the area at 300mL and above has fairly good rock conditions.

No data below
-430mL

### **Factor of safety**

Using the Mohr-Coulomb criterion, the local factor of safety is calculated and compared a series of 3D stress analyses by FLAC3D.



Fig. Factor of safety(Strength/stress ratio) for Mohr-Coulomb failure criterion. (Left : relation of normal and shear stresses, Right : relation of major and minor principal stresses)

The strength for the stress state represented by green circle is determined by holding mean stress( $\sigma_m$ ) while increasing or decreasing normal stresses( $\sigma_1, \sigma_3$ ) until red circle touches the envelope. The ratio of the radii of the two circles is the factor of safety.

### collecting rock quality data for shallower levels.



### <主要断層 西北西からの鳥瞰>



### 茂住鉱岩盤調査

- ・調査坑道の岩盤は比較的堅硬であり、L級以下の岩盤は出現しない。
- ・調査坑道の周辺坑道では断層・亀裂があり、M・L級の岩盤が多い。
- ホーリングNo.1孔の岩盤は調査坑道とほぼ同様の比較的堅硬な岩盤状況であるが 深度60m以深ではL級の岩盤が出現する。
- ・ホーリングNo.2孔では深度50m付近までは調査坑道と同様であるが、50m以深では M・L級を主体とした岩盤となる。
- ・調査坑道入口では13号ヒ断層を確認した。

