Benefits of and progress towards massive water-based liquid scintillator detectors

David E. Jaffe

LS WbLS(1) WbLS(2) Water with UV illumination

Outline

Current knowledge of Water-based Liquid Scintillator (WbLS)

- Formulation
- Performance
- Scientific applications
 - $p \rightarrow K^+ \nu$ sensitivity
 - Low energy $\bar{\nu}_e$ detection
 - Near-site WbLS-based detector
- 8 Research and Plans
 - Quenching/time-response/attenuation length
 - Purification/re-circulation
 - Long-term performance & stability
 - 1-ton demonstrator

WbLS Formulation: "Do oil & water mix?"

- Organic solvents, such as liquid scintillator (LS), are immiscible in water mainly due to the differences in polarities.
- A surfactant that contains lypophilic and hydrophilic groups is necessary to emulsify (or aggregate) the organic liquid scintillator into the water solvent.
- Engineering of a complexing medium to stabilize the lypophilic and hydrophilic molecules in a water medium with appropriate optical transmission and long stability is the key to WbLS development.
- Non-ionic surfactants of linear alkyl benzene derivatives (sulfonate and amine) were identified for different applications. Linear Alkylbenzene Sulfonic acid (LAS) is used.
- A stable, first-generation, WbLS with sufficient scintillation light has been developed.

WbLS performance

Light Yield as a function of PC% in Dodecane

- Adjustable light yield. Non-linear dependence of light yield and LS concentration (left figure)
- Scintillation decay time (next pages)
- Extinction length (next pages)
- Stability (First gen. WbLS stable for 2+ years)

WbLS scintillation decay time

Scintillation measured at 329 nm, excited by 250 nm light using time-resolved fluorescence spectrometry

WbLS emission and attenuation length

David E. Jaffe (BNL)

WbLS/Hyper-K

Detection of $p \rightarrow K^+ \nu$

 $K^+ \rightarrow \mu^+ + v_{\mu}$ (63.47%)

Simulation of SK-like geometry with 40% PMT coverage (WCsim).

Scintillation yield: 90 optical photons/MeV

Triple-coincidence: E(MeV) τ ring? K^+ 105 12ns no μ^+ 152 2.2 μ s yes e^+ < 50 — yes

$p \rightarrow K^+ \nu$ sensitivity estimate

^aEffective

Low-energy $\bar{\nu}_e$ detection

- Low-energy physics could be accessible with ~10% LS/water solution that is expected to produce ~2000 Optical Photons/MeV; however, ring-imaging ability would be lost or severely impaired.
- Hyper-K LOI estimates 83 (10-30 MeV) supernova relic anti-neutrinos (SRN) detected per year with 0.1% Gd-loaded water.
- Comparable performance might be possible for a future, WbLS-enhanced HK with 20% Photo-Coverage: 2000 OP/MeV×0.2(PC)×0.22(QE)×1/e(att.len.)≈ 32 PE/MeV or ~70 PE for neutron capture on ¹H. Could be some loss due to longer capture time ,τ(nH) ~ 200µs, τ(nGd) ~ 30µs, but the e⁺ energy resolution would be superior.

Conceptual near site WbLS-based detector

Possibility to measure energy and identify process at interaction point.

tag *n*-capture? measure *p n*-capture id's $\bar{\nu}/\nu$

Multiple modules along beam direction.

Concentric acrylic tubes:

- total internal reflection,
- WbLS compatibity,
- cost,
- $\bullet\,$ ability to empty/fill WbLS.

- Near-term research will enable understanding WbLS response as a function of proton velocity in a low energy proton BNL beam.
- Proton velocities of $\beta = 0.57$ and $\beta \approx 0.52$ correspond to the K^+ velocity in $p \to K^+\nu$ for free and bound protons, respectively.
- Examination of light yield in water, WbLS and LS as a function of β will allow absorption and re-emission effects to be disentangled from scintillator quenching.
- Establish light yield vs LS concentration
- Beam time scheduled for October 2012.

WbLS stability and purification(1)

Figure 5 Time-course analysis of consortium growth at different linear alkylbenzene sulfonate concentrations (in mg $|^{-1}\rangle$: (\blacklozenge) 10; (\bigstar) 20; (\blacksquare) 50; and (\diamondsuit) 100. Values are means \pm standard deviations for three replicates.

- $\bullet~$ LAS degradation only occurs at ${<}50 mg/L$
- LAS stability and compatibility (acrylic) stable for 2+ years since formulation
- LAS at ≥100mg/L completely inhibits bacteria growth (extensive studies by environmental-research groups in academia and industry).

WbLS stability and purification(2)

- Micro-organism growth is known to degrade attenuation length in water detectors and requires constant circulation
- Inorganic metallic ions can be removed either by vacuum distillation (SNO+) or multi-filtration (GADZOOKS)
- WbLS, a mix of LAS, PC, water and PPO can simplify the online-purification process
 - WbLS can be vacuum distilled
 - 10% LS-loaded water can pass 0.1μ teflon filter without loss. Testing with ultra/nanofilters planned.
 - Testing with ion exchange and reverse osmosis also planned
- Purification plan
 - All raw materials will be purified before synthesis
 - LAS/PC inhibits bio-activity; is circulation needed? If so, apply filtration and/or distillation.

- 1-ton prototype to evaluate capability to detect neutrino interactions, resolve Cerenkov and scintillation light, serve as a veto detector and maintain long-term stability
- Possible test scenarios:
 - WbLS detector in few GeV neutrino beam at FNAL
 - Gd-WbLS in few MeV reactor neutrino flux
 - WbLS detector in 0.1 1 GeV proton beam at BNL (mimics kaon kinematics from $p \rightarrow K^+ \nu$)
 - WbLS detector in conjunction with another detector to tag incoming muons
 - WbLS test after EGADS completion?

- Water-based Liquid Scintillator is a new detection medium with high stability, fast pulse, long attenuation length and Cerenkov/scintillation light capability.
- The potential enhancement to proton decay sensitivity of a WbLS is established
- Extensive studies of WbLS properties in particle beams underway
- Studies of purification and stability ongoing

Many thanks to Milind Diwan, Brett Viren, Minfang Yeh, Chao Zhang for their contributions to this presentations..

References:

- "A new water-based liquid scintillator and potential applications", M.Yeh et al., Nucl.Instrum.Meth. A660 (2011) 51.
- "Water-based Liquid Scintillator for Large-Scale Physics", M.Yeh, ANT 2011
- "A New Water-based Liquid Scintillator for Large Neutrino Physics", M.Yeh, APS April Meeting 2012

Backup

David E. Jaffe (BNL)

 $\mathsf{LAS} = \mathsf{Linear} \; \mathsf{Alkylbenzene} \; \mathsf{Sulfonic} \; \mathsf{acid}$

- Very safe to handle
- Binding strength for LS and water is better than other surfactants studied
- Another surfactant (TX) is not as stable. Liquid goes into two phases in a few months

Biodegradation

- LAS degradation only occurs at 50mg/L (0.05%) or lower
- Stability and compatibility (acrylic) are under monitoring; no change since synthesis (2-years+)

Cn: n = # of carbons hooked to benzene ring.

"Retention time" analogous to column height in chromatograph.

A little LS gives lots of light

Now Look at Details on This Mode $K^+ \rightarrow \mu^+ + \nu_\mu$ (63%, primary signal channel)

Muon Energy Distribution

When Kaon decays on flight (4.2%), the muon energy cease to be mono-energetic

Photo-Electron Distribution

WbLS/Hyper-K

Prompt Energy Cut

- Develop the first cut on total prompt light < 100 ns
 - 800 < PE < 1100
 - Efficiency: 96.8%
- To avoid the Michel positron light leak into the prompt time window (t < 100 ns), require muon decay later than 100 ns.
 - Assuming muon decay time can be reconstructed by pulse edge
 - small/too-early muon decay signals violate this assumption, will discuss later
 - Efficiency: 95.6%

Background: Atmospheric Muon-neutrino

Background: Muon

K⁺ -> μ⁺ + ν_µ (63.47%)

If nu_mu has the 'right' energy, it becomes a background to 'early-decay' kaons 29

Background: Atmospheric Muon-neutrino

From 4000 muon background event simulation

- Prompt energy cut 800 < PE < 1100 corresponds to 170 MeV < muon energy < 210 MeV
- The atmospheric neutrino background in this energy window is about 2 event/kt/year (scaled from SK and LENA paper)

Pulse Shape Discrimination

103 10 10 20 50 60 70 80 90

- Red: Signal Black: Background
- A cut at rising time > 10 ns gives
 - Signal Efficiency: 54.0%
 - Background Acceptance: 0

- Define a PSD variable to distinguish 'two-pulse' signal from 'one-pulse' background
 - Rising time from 15% of the maximum pulse to 85% of the maximum pulse
 - A timing spread of 2.2 ns has been applied to make the timing more realistic
 - PMT TTS (jitter): 2 ns
 - vertex recon resolution: 20 cm

Rising Time of The Waveform

31

Muon Energy Reconstruction

Background: Muon

- It's also possible to reconstruct the muon energy using
 - the early light from Cherenkov
 - the (reconstructed) opening angle of the Cherenkov ring
- A ML based reconstruction is needed to use the full information of timing and spacial pattern

Kaon Energy Reconstruction

Excess Deposited Energy

- Red: Signal Black: Background
- A cut at Kaon PE > 150 gives
 - Signal Efficiency: 91.9%
 - Background Acceptance: 0

- Assuming a resolution of 10% at 100 MeV can be achieved with such a reconstruction. We can plot the 'Prompt Energy - Reconstructed Muon Energy' (i.e. Kaon Energy) distribution.
- The non-zero bias for the background channel is caused by the linear energy scale used in my simple reconstruction. Background rejection will improve if we can understand correctly the nonlinearity
- This method strongly depends on the reconstruction resolution.

Illustration of Signal / Background Region

34

Michel Positron Cut

- For signal events, we require one and only one Michel positron be identified
- From scintillation light curve we assume that if muon decays within 10 ns, the Michel Positron signal cannot be separated from the parent muon signal. The inefficiency due to t_decay < 10 ns is 0.45%
- To reduce the random coincidence from radioactive background, we require the energy of Michel positron > 6 MeV (~50 PE). The efficiency of the cut is 99.7%

Summary of Efficiency

$K^+ \to \mu^+ + \nu_\mu (63.47\%)$	Golden Channel	Silver Channel
800 < PE in first 100 ns < 1100	96.8%	
One Michel positron	99.2%	
Muon decay later than 100 ns	95.6%	
Rising time >= 10 ns	54.0%	-
Rising time < 10 ns Kaon Recon PE > 150	-	42.4%
Total	49.6%	38.9%

36

Number of Protons

- Assuming 22.5 kton fiducial volume, H : O : C = 0.659 : 0.309 : 0.031
 - Free protons (H): 1.53e33
 - Bound protons (O, C): 5.98e33
- · For now treat bound protons the same as free protons
 - total protons: 7.5e33
 - due to the nuclear effects such as binding energy and Fermi motion, the kinetic energy of the kaons from bound proton decay will be modified
 - [LENA Paper]: limiting range for kaon KE is (25.1 198.8) MeV for s-state and (30.0 207.2) MeV for p-state
 - This has marginal effects on the golden channel but will have considerable effects on the silver channel which relies on the reconstruction of the kaon kinetic energy. Assuming 50% efficiency (flat distribution of KE).

Signal Prediction

$K^+ \to \mu^+ + \nu_\mu (63.47\%)$	Golden Channel	Silver Channel
Free Protons	1.53E+33	
Bound Protons	5.98E+33	3.0e33 (effective)
Efficiency	49.6%	38.9%
Running Time	10 years	
Current limit	2.3e33 years	
Predicted Events	10.3	4.9

Muon Background

- The atmospheric neutrino generated muon need to be in the energy range of (170, 210) MeV to mimic the prompt signal. The event rate is ~2 events/kt/year
- With the 4000 simulated muon events in this energy range, none passed the signal selection (timing cut / kaon energy recon cut). This means a background rejection > 99.975%
- At this rejection level, the expected muon background after 10 years running is ~0.1 events