A New Method of Event Reconstruction for the Hyper Kamiokande Detector

Mike Wilking, TRIUMF Hyper-K Workshop 23-August-2012

Physics Goals

- All Hyper-K physics goals depend on the quality of the event reconstruction, especially at higher energy
- CP violation
 - Electron momentum/angular resolution
 - π^0 rejection (i.e. π^0 detection efficiency)
 - Additional signal channels? v_e -CC π^+ ?
- Proton decay
 - e⁺π⁰: electron/photon kinematics
 - $K^+\overline{v}$: timing resolution; efficiency to detect low energy particle in the presence of high energy particles

A New Algorithm: fiTQun

- For each SK event, we have, for every hit PMT
 - A measured charge
 - A measured time
- For a given track(s) hypothesis, a charge and time PDF can be produced for every PMT
 - Fitter modifies the track parameters to maximize the correspondence between the measured values and the PDFs
 - Based on the algorithm use by MiniBooNE (NIM A608, 206 (2009))
- Multi-track fits are possible using the same procedure
 - e.g. electron and π^0 fits use the same machinery
 - Can directly compare fit likelihoods
 - Current reconstruction (apfit) uses different techniques for π^0 s
 - Can fit π⁺ tracks as well (more later)

Predicted Charge (µ)

Cherenkov light emission profile

- µ^{dir} is the predicted charge due to "direct light" only (scattered light is handled separately & less important)
- μ is an integral over the length of the track (parameterized by the momentum, p)
- Cherenkov light emission is characterized by $g(s, cos\theta)$
 - These functions must be generated separately for each particle type
 - All particle ID comes from these distributions
- Ω, T, and ε depend on the geometry and detector properties
 - Can be used for all particle hypotheses

PMT solid angle

Integral Calculation

- g(s) can vary rapidly as a function of s
 - e.g. when PMT moves into or out of the Cherenkov cone
- However, $J(s) = \Omega(s)T(s)\varepsilon(s)$ varies slowly as a function of s
 - Can approximate as J(s) = j₀ + j₁*s + j₂*s² ("parabolic approximation")
 - Evaluate integrals in advance: I_i (R₀,cosθ₀) = ∫ ds*g(s,cosθ)*sⁱ
- Now, $\mu^{dir} = \Phi(p) * (I_0 * j_0 + I_1 * j_1 + I_2 * j_2)$
 - No need to integrate within fitter minimization

Modularized Design

- To add a new particle type, only need to generate a new g(s,cos)
- To change the water quality, only need to modify T(R)
- To change the PMT size/type, only need to modify $\Omega(R)/\epsilon(\eta)$
- To change the tank geometry, only need to generate a new scattering table
- To change the photocathode coverage, no modifications are required

One-Track Fit Results (MC Only)

Electrons

- Uniform distribution of electrons between 0 and I GeV/c
 - Isotropic & random position (inside FV & charge>200pe)
- Significant improvements in the vertex and momentum resolution

Muons

10

Angle Between Fit and True Direction

12

14

[deg]

0.02

0.01

0₀

- Uniform distribution of muons between 0 and 1 GeV/c
 - Isotropic & random position (inside FV & charge>200pe)

Significant improvements in the vertex and momentum resolution

Single Track Particle ID

True Momentum [MeV/c]

 Simple line cut can be used to separate muons and electrons

 Significantly improved particle ID

π⁰ Fitter

- Assumes two electron hypothesis rings produced at a common vertex
- **12 parameters** (single track fit had 7)
 - Vertex (X,Y,Z,T)
 - Directions $(\theta_1, \phi_1, \theta_2, \phi_2)$
 - Momenta (p1, p2)
 - Conversion lengths (c1, c2)

• Seeding the fit

- Use result of single-track electron fit
- Scan over various angles with a 50 MeV/c electron and evaluate the likelihood function
- First, fit while floating only p_1 and p_2
- Do full 12 parameter fit

• Tested on ~50,000 MC π^0 events ~30,000 electron events

 Random momenta between 0 and 500 MeV/c, random vertex position, and isotropic directions

True TT⁰'s

- In the Hyper-K LOI, v_e appearance measurements cut on π^0 mass to remove π^0 background
- The π⁰ mass tail is much smaller for fiTQun than standard SK reconstruction
 - Significant spike at zero mass in apfit
- Lower plot: π⁰ rejection efficiency after 105 MeV/c² cut (T2K cut value)
 - fiTQun is more sensitive to lower energy photons

π⁰ Rejection Cuts

- Can check fraction of π^0 that survive various values of the π^0 mass cut
 - T2K v_e appearance measurement uses 105 MeV/c² cut
- Lower plot: ratio of upper plot (fiTQun / apfit)
 - For a cut of ~60-80, fiTQun selects <30% of the background selected by apfit

π⁰ Rate Measurement

- v_{μ} -NC events (mostly π^0 s) are currently ~40% of the T2K v_e appearance background
 - Also the largest contribution to the uncertainty on the background
 - 43% rate uncertainty assumed for T2K oscillation analysis based on fits to MiniBooNE data
- Can also use reconstructed π^0 events at the far detector to constrain this uncertainty
 - Even the ~15 events in the current T2K data set can provide a useful constraint on the π^0 background
 - For a Tokai-to-Hyper-K experiment, external data and near detector measurements will likely not be necessary

π⁺ Fitter

- Pions and muons propagate and produce Cherenkov light in a very similar manner (similar masses)
- The main difference is due to hadronic interactions
- Ring pattern observed is a "kinked" pion trajectory
- This is the first demonstration of pion/muon separation at SK (in MC)

• Allows for $CC\pi^+ E_v$ reconstruction $44,120 \times 10^{-4}$

muon tracks pion tracks

Proton Decay: e⁺π⁰

- Improved reconstruction can have significant consequences on proton decay searches
- Current SK e⁺π⁰ measurement has low background
 (0.3 events; I4I kton*year)
 - At Hyper-K, background is much larger at 10 years of exposure (9 events; 5.6 Mton*year)
 - Backgrounds are controlled with cuts on π⁰ and proton mass
 - Improved resolution allows these cuts to be tightened
 - π⁰ mass cut can only be used if both photon rings are detected
 - fiTQun has improved detection of low energy photons

Proton Decay: K⁺v

- Hyper-K LOI claims a 90% CL of 2.5*10³⁴ years after 10 years of running
- 7.1% efficiency for $K^+ \rightarrow \mu^+$ channel (with γ tag)
 - Absolute efficiency limited to 25% (fraction of ¹⁵N decays that produce a 6.3 MeV photon)
 - Hits in a 50 degree region around the muon track are removed from gamma search
 - fiTQun improves ability to detect low energy photons, even in the presence of a high energy ring
- 6.7% efficiency for $K^+ \rightarrow \pi^+ \pi^0$
 - No attempt to reconstruct π^+ ring (205 MeV/c)
 - Instead, look for charge in opposite direction of π^0 , veto on any other charge
 - fiTQun has improved low energy ring detection as well as a new π^+ hypothesis ring fit to search for the dim π^+ ring
- Opportunity for significant efficiency gains using fiTQun
 - For comparison, 28 kt fiducial LAr detector gives a 90% CL of 3.5*10³⁴ years after 10 years of running

Summary

- We now have new reconstruction for single track muon and electron hypotheses, as well as first implementations of π^0 and π^+ fitters
 - All fitters are out-performing current SK reconstruction (only on MC so far)
 - A π^+ hypothesis fit has never been used before
- fiTQun can significantly reduce the π⁰ background in a CP violation measurement
 - Not only using cuts on π⁰ mass, but also L(π⁰)/L(e) vs various reconstructed parameters
- Improvements expected for proton decay sensitivity
 - Will be particularly interesting for $p \rightarrow K^+ \overline{\nu}$

Backups

Super K Particle ID

- Muons rings are thick with sharp edges
 - Long straight tracks (less scattering)
- Electrons produce fuzzy rings
 - More scattering, EM showers
- Photons from π⁰ decay convert to e⁺/e⁻ pairs
 - 2 electron-like rings
 - If I ring is lost, π⁰ will mimic single-electron oscillation signal
- V_{μ} neutral current events (mostly π^{0} s) are currently 42% of the V_{e} appearance background
 - Improvements to π^0 rejection can have a significant impact on sensitivity to θ_{13}

True Electrons

- T2K v_e appearance measurement cuts on π^0 mass to remove π^0 background
- apfit has a large peak at zero mass
 - Very good if cutting on mass to identify π⁰ events
- Lower plot: electron survival rate for various $M_{\pi 0}$ cut values
 - Electron efficiency is the same above ~50-60 MeV/c²
 - Cut value for current V_e appearance measurement is 105 MeV/c²

Calculating T and E

- Use the detector MC:
 - Direct light only (no scat light)
 - Perfect Trans. (no scat/abs)
- Produce a "point sources" of Cherenkov light
 - I00 simultaneous 3 MeV electrons ("electron bombs")
- For ε (PMT angular acceptance):
 - Bombs vs angle
- For T (water transmission):
 - Bombs vs distance
 - Ratio of Direct Light to Perfect Trans.

Higher Momentum TT⁰'s

apfit+POLfit π⁰ mass

- Randomly generated from 500 to 1500 MeV/c
 - Want to check lower energy photons
- Efficiency to be rejected by 105 MeV/c² $M_{\pi 0}$ cut is much better for fiTQun

2500 fiTQun 2000 apfit+POLfit 1500 1000 500 20 40 60 180 200 80 100 120 160 Reconstructed π^0 Mass (MeV/c²) fiTQun efficiency vs lower gamma energy

Likelihood Ratios

- For the new reconstruction, we don't want to make a 1D mass cut
 - Will eventually cut on likelihood ratios vs electron momentum, $M_{\pi 0}$, etc

π⁰'s

electrons

Future Improvements

- To understand how well we can do by improving the seeding, the fit can be seeded with the true information
 - This tells us if there is a proper maximum in the likelihood surface
- Several improvements to the seeding are possible

e.g. use π⁰ mass improve the guess of the second photon energy

Best Case Scenario (Truth Seed)

π⁰ Survival Rate

 If we could perfectly seed the fitter, we could reduce the π⁰ background below ~10% of current level 0.45 fiTQun 0.4 0.35 POLfit 0.3 0.25 0.2 0.15 0.1 0.05 20 40 60 80 100 120 π^0 Mass Cut Value (MeV/c²)

Best Case Scenario (Truth Seed)

 π⁰'s can be found down to photon energy threshold (for 500 MeV/c π⁰'s)

Event Display: m⁰ Fit

I-ring e-like Fit Predicted Charge

Event Displays Kinked-track π⁺ Fitter

Processing Time

 If fiTQun runs only:

I-track
 electron fit

 I-track muon fit

• π^0 fit

Reconstruction Challenges

- The main issue to overcome will be differences in the fitter performance on data and MC
 - This fitter uses more information than previous reconstruction algorithms
 - Parts of the fitter are determined from the MC
- Several validation studies will be needed
 - Stopping cosmics
 - Michel electrons
 - Atmospheric neutrinos
 - Detector calibration samples
 - Cone generator
 - Ni data, laser, etc.
- Significant work left to do!