Recent Results from RENO & Prospects with RENO-50 Soo-Bong Kim (KNRC, Seoul National University) "NuSTEC School 2015" Okayama University, Japan, Nov. 8-14, 2015"

Nov.8-14, 2015, Okayama, Japan

Summary of Developments in Neutrino Physics

- 1930: Introduction of neutrino as an undetectable, neutral particle by Pauli
- 1956: Discovery of neutrino by Reines (1995 Nobel prize)
- 1962: Discovery of muon neutrino by Lederman et al. (1988 Nobel prize)

- 1967~1985: Detection of solar neutrinos by Davis (2002 Nobel prize)
- 1987: Detection of neutrino burst from Supernova (2002 Nobel prize)
- 1998: Discovery of neutrino oscillation by Super-Kamiokande (confirmed by accelerator neutrino beam at K2K in 2003) (2015 Nobel prize)
- 2001: Discovery of solar neutrino oscillation by SNO (2015 Nobel prize) (confirmed by reactor neutrino oscillation at KamLAND in 2003)

• 2012: Discovery of reactor neutrino oscillation due to θ_{13} by Daya Bay and RENO

Neutrino Physics with Reactor

2003 Observation of reactor neutrino oscillation ($\theta_{12} \& \Delta m_{21}^2$) Inner Detector Outer Detector 0 0 0 0 Liquid Water Scintilalto Plastic Balloon Mineral PMT **KamLAND**

2012 Measurement of the smallest mixing angle θ_{13}

1956 Discovery of (anti)neutrino

Reactor θ_{13} Experiments

RENO at Yonggwang, Korea

θ_{13} Reactor Neutrino Detectors

Detection of Reactor Antineutrinos

RENO Collaboration

Reactor Experiment for Neutrino Oscillation

(10 institutions and 40 physicists)

- Chonnam National University
- Chung-Ang University
- Dongshin University
- GIST
- Gyeongsang National University
- Kyungpook National University
- Sejong University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

- Total cost : \$10M
- Start of project : 2006
- The first experiment running with both near & far detectors from Aug. 2011

RENO Experimental Set-up

RENO Detector

- 354 ID +67 OD 10" PMTs
- Target : 16.5 ton Gd-LS, R=1.4m, H=3.2m
- Gamma Catcher: 30 ton LS, R=2.0m, H=4.4m
- Buffer: 65 ton mineral oil, R=2.7m, H=5.8m
- Veto : 350 ton water, R=4.2m, H=8.8m

RENO Status

Recent RENO Results and Status

- ~800 days of data
- New measured-value of θ_{13} from rate-only analysis
- Observation of energy dependent disappearance of reactor neutrinos to measure Δm_{ee}^2 and θ_{13} (to be submitted)
- Observation of an excess at 5 MeV in reactor neutrino spectrum
- Independent measurement of θ₁₃ with n-H for a delayed signal (additional background reduction in progress)
- Search for sterile neutrinos in progress

Improvements after Neutrino 2014

- Relax Q_{max}/Q_{tot} cut : 0.03 \rightarrow 0.07

- allow more accidentals to increase acceptance of signal and minimize any bias to the spectral shape

- More precisely observed spectra of Li/He background
 - reduced the Li/He background uncertainty based on an increased control sample

More accurate energy calibration

 best efforts on understanding of non-linear energy response and energy scale uncertainty

- Elaborate study of systematic uncertainties on a spectral fitter
 - estimated systematic errors based on a detailed study of spectral fitter in the measurement of $\Delta m_{ee}{}^2$

Neutron Capture by Gd

Measured Spectra of IBD Prompt Signal

Near Live time = 761.11 days # of IBD candidate = 470,787# of background = 26,375 (5.6 %) Far Live time = 794.72 days # of IBD candidate = 52,250# of background = 6,292 (12.0 %)

Observed Daily Averaged IBD Rate

- Good agreement with observed rate and prediction.
- Accurate measurement of thermal power by reactor neutrinos

Observed vs. Expected IBD Rates

- Indication of correct background subtraction

New θ_{13} Measurement by Rate-only Analysis

(Preliminary)

$\sin^2 2\theta_{13} = 0.087 \pm 0.008(\text{stat.}) \pm 0.008(\text{syst.})$

Uncertainties sources	Uncertainties (%)	Errors of $sin^2 2\theta_{13}$ (fraction)
Statistics (near) (far)	0.21 % 0.54 %	0.0080
Systematics (near) (far)	0.94% 1.06%	0.0081
Reactor	0.9 %	0.0032 (39.5 %)
Detection efficiency	0.2 %	0.0037 (45.7 %)
Backgrounds (near) (far)	0.14 % 0.51 %	0.0070 (86.4 %)

Observation of an excess at 5 MeV

Correlation of 5 MeV Excess with Reactor Power

** Recent ab initio calculation [D. Dwyer and T.J. Langford, PRL 114, 012502 (2015)]:

 The excess may be explained by addition of eight isotopes, such as ⁹⁶Y and ⁹²Rb

Why n-H IBD Analysis?

Motivation:

- 1. Independent measurement of θ_{13} value.
- 2. Consistency and systematic check on reactor neutrinos.

- * RENO's low accidental background makes it possible to perform n-H analysis.
 - -- low radioactivity PMT
 - -- successful purification of LS and detector materials.

IBD Sample with n-H

preliminarv

	n HIPD Event Vertex Distribution					
2		X DISTIBUTION	90		Near	Far
2 1.5		v-catcher	80	Live time(day)	379.663	384.473
1			60	IBD Candidate	249,799	54,277
0 [I]			50	IBD(/day)	619.916	67.823
-0.5 -1			30	Accidental (/day)	25.16±0.42	68.90±0.35
-1.5			20	Fast Neutron(/day)	5.62±0.30	1.30±0.08
-2		3 3.5 4	10 0	LiHe(/day)	9.87±1.48	3.19±0.37
	$\rho^2 [m^2]$	0 0.0 4				

Results from n-H IBD sample

Very preliminary (B data set, ~400 days) **Rate-only result**

$\sin^2 2\theta_{13} = 0.103 \pm 0.014$ (stat.) ± 0.014 (syst.)

(Neutrino 2014) $\sin^2 2\theta_{13} = 0.095 \pm 0.015 (\text{stat.}) \pm 0.025 (\text{syst.})$

← Significant reduction in the uncertainty of the accidental background and new results coming soon.

preliminary

Reactor Neutrino Oscillations

Energy Calibration from γ-ray Sources

B12 Energy Spectrum (Near & Far)

Energy Scale Difference between Near & Far

Energy scale difference < 0.15%

Far/Near Shape Analysis for Δm_{ee}^2

Results from Spectral Fit

Systematic Errors of θ_{13} & Δm_{ee}^2

(work in progress)

 $\sin^2 2\theta_{13} = 0.088 \pm 0.008(\text{stat}) \pm 0.007(\text{syst})$ (± 11 %)

 $\Delta m_{ee}^{2} = [2.52 \pm 0.19(\text{stat}) \pm 0.17(\text{syst})] \times 10^{-3} \text{ eV}^{2}$ (2)

Uncertainties sources	Uncertainties (%)	Errors of $sin^2 2\theta_{13}$	Errors of ∆m _{ee} ² (x 10 ⁻³ eV ²)
Statistics (near) (far)	0.21 % 0.54 %	0.008	0.19
Total Systematics	0.94 % 1.06 %	0.007	0.17
Reactor	0.9 %	0.0025 (34.2 %)	-
Detection efficiency	0.2 %	0.0025 (34.2 %)	-
Energy scale diff.	0.15 %*	0.0015 (15.6 %)	0.07
Backgrounds (near) (far)	0.14 % 0.51 %	0.0060 (82.2 %)	0.15

(* tentative)

Observed L/E Dependent Oscillation

(work in progress)

θ_{13} from Reactor and Accelerator Experiments

First hint of δ_{CP} combining Reactor and Accelerator data

Best overlap is for Normal hierarchy & $\delta_{CP} = -\pi/2$

Is Nature very kind to us? Are we very lucky? Is CP violated maximally?

Strong motivation for anti-neutrino run and precise measurement of θ_{13}

(T2K: PRL 112, 061802, 2014) ³²

Summary

- Observed an excess at 5 MeV in reactor neutrino spectrum
- New measurement of θ_{13} by rate-only analysis

 $\sin^2 2\theta_{13} = 0.087 \pm 0.008(\text{stat}) \pm 0.008(\text{syst})$

- (preliminary)
- Observation of energy dependent disappearance of reactor neutrinos and our first measurement of Δm_{ee}^2

$$\sin^2 2\theta_{13} = 0.088 \pm 0.008(\text{stat}) \pm 0.007(\text{syst})$$

 $\Delta m_{ee}^{2} = [2.52 \pm 0.19(\text{stat}) \pm 0.17(\text{syst})] \times 10^{-3} \text{ eV}^{2}$

(work in progress)

• Measurement of θ_{13} from on n-H IBD analysis

 $\sin^2 2\theta_{13} = 0.103 \pm 0.014 (\text{stat}) \pm 0.014 (\text{syst})$

(preliminary)

• $sin(2\theta_{13})$ to 5% accuracy Δm_{ee}^2 to $0.1 \times 10^{-3} eV^2$ (4%) accuracy within 3 years

Overview of RENO-50

RENO-50 : An underground detector consisting of 18 kton ultralow-radioactivity liquid scintillator & 15,000 20" PMTs, at 50 km away from the Hanbit(Yonggwang) nuclear power plant

- Goals : Determination of neutrino mass ordering
- High-precision measurement of θ_{12} , Δm_{21}^2 and Δm_{ee}^2
- Study neutrinos from reactors, the Sun, the Earth, Supernova, and any possible stellar objects
- Budget : \$ 100M for 6 year construction (Civil engineering: \$ 15M, Detector: \$ 85M)
- Schedule : 2015 ~ 2020 : Facility and detector construction 2021 ~ : Operation and experiment

Determination of Neutrino Mass Ordering

- Reactor experiments: JUNO and RENO-50
 - Subdominant oscillation pattern of Δm_{31}^2
 - Large liquid scintillator detector with a baseline of ~50 km
 - Extraordinary energy resolution (<3% at 1 MeV)
- Long baseline beam experiments: T2K, NOvA, T2HK and LBNE
 - Matter effects of neutrino oscillation
 - Small value of $|\Delta m_{32}^2|/E$ & long baseline L
- Atmospheric neutrino experiments with Mton scale : HK, LBNE, MEMPHIS, PINGU and INO
 - Matter effects of neutrino oscillation
 - Small value of $|\Delta m_{32}^2|/E$ & long baseline L

Reactor Neutrino Oscillations at 50 km

Neutrino mass ordering (sign of Δm_{31}^2)+precise values of θ_{12} , $\Delta m_{21}^2 \& \Delta m_{ee}^2$

Various Physics with RENO-50

- Precise (<1%) measurement of θ_{12} , Δm_{21}^2 and Δm_{ee}^2
 - Provide an interesting test for unitarity
 - Essential for the future discoveries
- Neutrino burst from a Supernova in our Galaxy
 - ~5,600 events (@8 kpc) (* NC tag from 15 MeV deexcitation γ)
 - Study the core collapsing mechanism with neutrino cooling
- Geo-neutrinos : ~ 1,000 geo-neutrinos for 5 years
 - Study the heat generation mechanism inside the Earth
- Solar neutrinos : with ultra low radioacitivity
 - MSW effect on neutrino oscillation
 - Probe the center of the Sun to study the metallicity problem
- Detection of J-PARC beam : ~200 events/year

J-PARC neutrino beam

Essential R&D

(1) Obtain energy resolution of 3% ■ Light yield of LS: > 1,000 pe/MeV (← 500 pe/MeV) ■ Attenuation length of LS: ~25 m (← ~15 m) ■ Surface coverage of PMT: ~60% using 15,000 HQE 20" PMTs (← ~30%) ■ Quantum efficiency of PMT: 35% (← ~20%) ■ Gain of PMT: ~10⁷

(2) Develop techniques of LS mass production & purification

Reduction of LS radioactivity to 10⁻¹⁶ g/g of U and Th
 Removal of LS impurities for attenuation length of ~25 m
 Mass production of LS with light yield of >1,000 pe/MeV

Current Status

- A longer baseline (~50 km) reactor experiment, RENO-50 is proposed to determine the mass ordering in 3-4σ for 10 years of data-taking, and to perform high-precision (<1%) measurements of θ₁₂, Δm²₂₁, & Δm²_{ee}.
- Domestic and international workshops held in 2013 to discuss the feasibility and physics opportunities
- An R&D funding (US \$2M for 3 years of 2015-2017) is obtained from the Samsung Science & Technology Foundation. R&D is in progress to produce TDR.
- A proposal has been submitted to obtain full funding.
- An international collaboration needs to be formed.
 You are welcome to join this effort!

Thanks for your attention!