Nuclear effects in neutrino and electron interactions

Artur M. Ankowski Virginia Tech

NuSTEC Training in Neutrino-Nucleus Scattering Physics Okayama University, November 8–14, 2015

Blind monks examining an elephant Hanabusa Itchō

Outline

1) Introduction

- Impulse approximation
- Off-shell effects

2) Nuclear models

- Fermi gas model
- Shell model
- Spectral function approach

3) Kinematic energy reconstruction

- Simplest case
- Realistic case

4) Summary

Assumption: the dominant process of lepton-nucleus interaction is **scattering off a single nucleon**, with the remaining nucleons acting as a spectator system.

Assumption: the dominant process of lepton-nucleus interaction is **scattering off a single nucleon**, with the remaining nucleons acting as a spectator system.

It is valid when the momentum transfer $|\mathbf{q}|$ is high enough, as the probe's spatial resolution is $\sim 1/|\mathbf{q}|$.

$$\frac{d\sigma_{\ell A}^{\mathrm{IA}}}{d\omega d\Omega} = \sum_{N} \int d^{3}p \, dE \, P_{\mathrm{hole}}^{N}(\mathbf{p}, E) \, \frac{M}{E_{\mathbf{p}}} \frac{d\sigma_{\ell N}^{\mathrm{elem}}}{d\omega d\Omega} \, P_{\mathrm{part}}^{N}(\mathbf{p}', \mathcal{T}')$$

The (hole) spectral function describes the ground-state properties of the target nucleus.

$$\frac{d\sigma_{\ell A}^{\mathrm{IA}}}{d\omega d\Omega} = \sum_{N} \int d^{3}p \, dE \, P_{\mathrm{hole}}^{N}(\mathbf{p}, E) \, \frac{M}{E_{\mathbf{p}}} \frac{d\sigma_{\ell N}^{\mathrm{elem}}}{d\omega d\Omega} \, \underline{P_{\mathrm{part}}^{N}(\mathbf{p}', \mathcal{T}')}$$

Ensures the energy conservation and Pauli blocking

For scattering in a given angle, neutrinos and electrons differ only due to **the elementary cross section**.

In neutrino scattering, uncertainties come from (i) interaction dynamics and (ii) **nuclear effects**.

It is **highly improbable** that theoretical approaches unable to reproduce *(e,e')* data would describe nuclear effects in neutrino interactions at similar kinematics.

To be **reliable**, a description of nuclear effects has to be validated by **systematic comparisons** to *(e,e')* data, allowing its uncertainties to be estimated.

$$\frac{d\sigma_{\ell A}^{\mathrm{IA}}}{d\omega d\Omega} = \sum_{N} \int d^{3}p \, dE \, P_{\mathrm{hole}}^{N}(\mathbf{p}, E) \, \frac{M}{E_{\mathbf{p}}} \frac{d\sigma_{\ell N}^{\mathrm{elem}}}{d\omega d\Omega} \, P_{\mathrm{part}}^{N}(\mathbf{p}', \mathcal{T}')$$

Consider a nucleus stable against emission of nucleons.

As in its ground state, $E_A = M_A$, the energy cannot be decreased by emission of a nucleon

$$E_A = E_{A-1} + E_p < E_{A-1} + M$$

so the energy of a nucleon in the nucleus is lower than M.

V.R. Pandharipande, Nucl. Phys. B (Proc. Suppl.) 112, 51 (2002)

In a nuclear model, the initial nucleon's energy may

differ from the on-shell energy by a constant

$$E_p = \sqrt{M^2 + |\mathbf{p}|^2} - \epsilon$$

sophistication

ncreasing

be a function of the momentum

$$E_p = \sqrt{M^2 + |\mathbf{p}|^2} - \varepsilon(|\mathbf{p}|)$$

• only be correlated with the momentum

The elementary cross section,

$$\frac{d\sigma_{\ell N}^{\rm elem}}{dE_{\bf k'}d\Omega dE_{\bf p'}d\Omega} \propto L_{\mu\nu}H^{\mu\nu}$$

contains two tensors

$$L_{\mu\nu} \propto j_{\mu}^{\text{lept}} j_{\nu}^{\text{lept*}}$$
 and $H^{\mu\nu} \propto j_{\text{hadr}}^{\mu} j_{\text{hadr}}^{\nu*}$

with only the hadron one affected by off-shell effects.

The current appearing in the hadron tensor is known on the mass shell,

$$j_{\text{hadr}}^{\mu} = \overline{u}(\mathbf{p}', s') \left(\gamma^{\mu} F_1 + i \sigma^{\mu\kappa} \frac{q_{\kappa}}{2M} F_2 + \dots \right) u(\mathbf{p}, s)$$

or equivalently

$$j_{\text{hadr}}^{\mu} = \overline{u}(\mathbf{p}', s') \left(\gamma^{\mu}(F_1 + F_2) - \frac{(p+p')^{\mu}}{2M} F_2 + \dots \right) u(\mathbf{p}, s)$$

The prescription of de Forest [NPA 392, 232 (1983)]:

to approximate the off-shell hadron tensor, one can use the on-shell expression with the same momentum transfer and a modified energy transfer,

$$\begin{split} H^{\mu\nu}_{\text{off-shell}}(p,q) &\to H^{\mu\nu}_{\text{off-shell}}(\tilde{p},\tilde{q}) \\ \\ \tilde{p} &= (\sqrt{M^2 + \mathbf{p}^2}, \mathbf{p}) \quad \text{and} \quad \tilde{q} = (\tilde{\omega}, \mathbf{q}) \end{split}$$

with

The prescription of de Forest [NPA 392, 232 (1983)]:

as the initial nucleon's energy is now $E_p = \sqrt{M^2 + p^2}$ in our calculations, and the final energy is an observable, the energy transfer has to be

$$\tilde{\omega} = \sqrt{M^2 + (\mathbf{p} + \mathbf{q})^2} - \sqrt{M^2 + \mathbf{p}^2}$$

the difference between the "lepton" ω and "hadron" $\widetilde{\omega}$ is transferred to the spectator system of (A-1) nucleons.

Examples of an oversimplified treatment:

Imagine an infinite space filled uniformly with nucleons

Due to the translational invariance, the eigenstates can be labeled using momentum, $\psi(x) = C e^{-ipx}$.

Due to the boundary conditions, $p_i \frac{L}{2} = \frac{\pi}{2} + n\pi$ every state occupies $(2\pi/L)^3$ in the momentum space

Due to the boundary conditions, $p_i \frac{L}{2} = \frac{\pi}{2} + n\pi$ every state occupies $(2\pi/L)^3$ in the momentum space

Momentum space

Coordinate space

The corresponding hole and particle spectral functions are

$$P_{\text{hole}}^{\text{FG}}(\mathbf{p}, E) = \frac{3}{4\pi p_F^3} \,\theta(p_F - |\mathbf{p}|) \,\delta(E_p - \varepsilon - M + E),$$
$$P_{\text{part}}^{\text{FG}}(\mathbf{p}', \mathcal{T}') = [1 - \theta(p_F - |\mathbf{p}'|)] \,\delta(E_{p'} - M - \mathcal{T}'),$$

putting them to the cross section (below), you can recover the standard formula for the Fermi gas.

$$\frac{d\sigma_{\ell A}^{\mathrm{IA}}}{d\omega d\Omega} = \sum_{N} \int d^{3}p \, dE \, P_{\mathrm{hole}}^{N}(\mathbf{p}, E) \, \frac{M}{E_{\mathbf{p}}} \frac{d\sigma_{\ell N}^{\mathrm{elem}}}{d\omega d\Omega} \, P_{\mathrm{part}}^{N}(\mathbf{p}', \mathcal{T}')$$

Electron scattering off carbon, 500 MeV, 60 deg

Moniz et al., PRL 26, 445 (1971)

Electron scattering off carbon, 500 MeV, 60 deg

Moniz et al., PRL 26, 445 (1971)

What happens at a kinematics other than 500 MeV, 60deg?

Charge-density in nuclei

Local Fermi gas model

A spherically symmetric nucleus can be approximated by concentric spheres of a constant density.

Shell model

Example: oxygen nucleus

In a spherically symmetric potential, the eigenstates can be labeled using the total angular momentum.

Example: oxygen nucleus

Leuschner et al., PRC 49, 955 (1994)

Example: oxygen spectral function

3

2

 $P(\mathbf{p}, E) \ (10^{-8} \ \mathrm{MeV^{-4}})$

Depletion of the shell-model states

De Witt Huberts, JPG 16, 507 (1990)

Depletion of the shell-model states

The observed depletion is \sim 35% for the valence shells

and ~20% overall, when higher missing energy is probed.

D. Rohe, NuInt05

Spectral function approach

The main source of the depletion of the shell-model states are **short-range nucleon-nucleon correlations**.

Yielding NN pairs (typically pn pairs) with high relative momentum, they move ~20% of nucleons to the states of high removal energies.

Acciari et al. (ArgoNeuT), PRD 90, 012008 (2014)

The hole spectral function can be expressed as

Benhar&Pandharipande, RMP 65, 817 (1993)

Benhar&Pandharipande, RMP 65, 817 (1993)

Local-density approximation

The correlation component in nuclei can be obtained combining the results for infinite nuclear matter obtained at different densities:

$$P_{\mathrm{corr}}^{N}(\mathbf{p}, E) = \int dR \rho(R) P_{\mathrm{corr}}^{NM,N}(\rho, \mathbf{p}, E).$$

Benhar et al., NPA 579 493, (1994)

Final-state interactions

Their effect on the cross section is easy to understand in terms of the complex optical potential:

- the real part modifies the struck nucleon's energy spectrum: it differes from $\sqrt{M^2 + p'^2}$
- the imaginary part reduces the single-nucleon final states and produces multinucleon final states

$$e^{i(E+U)t} = e^{i(E+U_V)t}e^{-U_Wt}$$

Horikawa et al., PRC 22, 1680 (1980)

$$E_{\mathbf{k}} + M_A = E_{\mathbf{k}'} + E_{A-1} + E_{\mathbf{p}'}$$

Final-state interactions

In the convolution approach,

$$\frac{d\sigma^{\rm FSI}}{d\omega d\Omega} = \int d\omega' f_{\bf q} (\omega - \omega') \frac{d\sigma^{\rm IA}}{d\omega' d\Omega},$$

with the folding function

$$f_{\mathbf{q}}(\omega) = \delta(\omega)\sqrt{T_A} + \left(1 - \sqrt{T_A}\right)F_{\mathbf{q}}(\omega),$$

Nucl. transparency

Nuclear transparency

Nuclear transparency

Benhar et al., PRC 44, 2328 (1991)

Real part of the optical potential

We account for the spectrum modification by

$$f_{\mathbf{q}}(\omega - \omega') \to f_{\mathbf{q}}(\omega - \omega' - U_V).$$

This procedure is similar to that from the Fermi gas model to introduce the binding energy in the argument of $\delta(...)$.

$$U_V = U_V(t_{\rm kin})$$

$$t_{\rm kin} = \frac{E_{\bf k}^2(1 - \cos\theta)}{M + E_{\bf k}(1 - \cos\theta)}$$

Optical potential by Cooper *et al.*

Deb et al., PRC 72, 014608 (2005)

Optical potential by Cooper *et al.*

Simple comparison

Real part of the OP

- acts in the final state
- shifts the QE peak
 to low ω at low |q|
 (to high ω at high |q|)

Binding energy in RFG

- acts in the initial state
- shifts the QE peak to high ω

Compared calculations

Low excitation-energy phenomena

Barreau *et al*., NPA 402, 515 (1983)

Barreau *et al.*, NPA 402, 515 (1983)

Barreau *et al.*, NPA 402, 515 (1983)

Baran *et al.*, PRL 61, 400 (1988) Whitney *et al.*, PRC 9, 2230 (1974)

- The supplemental material of PRD 91,033005 (2015)
- shows comparisons to the data sets collected
- at 54 kinematical setups
 - energies from ~160 MeV to ~4 GeV,
 - angles from 12 to 145 degrees,
 - at the QE peak, the values of momentum transfer from ~145 to ~1060 MeV/c and $0.02 \le Q^2 \le 0.86$ (GeV/c)².

CCQE MINERvA data

CCQE MINERvA data

TABLE I. Fit results to the CC QE MINERvA data.				
	antineutrino	neutrino	combined fit	
	including	including theoretical uncertainties:		
M_A (GeV)	1.16 ± 0.06	1.17 ± 0.06	1.16 ± 0.06	
$\chi^2/d.o.f.$	0.38	1.33	0.93	
	neglectin	neglecting theoretical uncertainties:		
M_A (GeV)	1.15 ± 0.10	1.15 ± 0.07	1.13 ± 0.06	
$\chi^2/d.o.f.$	0.44	1.38	1.00	
	neglectin	neglecting FSI ($M_A = 1.16$ GeV):		
$\chi^2/d.o.f.$	2.49	2.45	2.42	

Kinematic energy reconstruction: simplest (unrealistic) case
Consider the simplest (unrealistic) case:

the beam is **monochromatic** but its energy is **unknown** and has to be reconstructed

$$E' = 768 \text{ MeV}$$

 $\theta = 37.5 \text{ deg}$
 $\Delta E' = 5 \text{ MeV}$

$$E' = 768 \text{ MeV}$$

 $\theta = 37.5 \text{ deg}$
 $\varDelta E' = 5 \text{ MeV}$

for
$$\epsilon = 25$$
 MeV
 $E = 960$ MeV
 $\Delta E = 7$ MeV

θ (deg)	37.5	37.1	36	36				
E' (MeV)	768.0	615.0	487.5	287.5				
$\Delta E'$ (MeV)	5	5	5	2.5				
$\epsilon = 25 \text{ MeV}$								
rec. <i>E</i>	960 ± 7	741 ± 7	571 ± 6	333 ± 3				
true E	961	730	560	320				
	Sealock et al., PRL 62, 1350 (1989)	O'Connell <i>et al.</i> , PRC 35, 1063 (1987)	Barreau NPA 40 (19	u <i>et al.</i> , 02, 515 83)				

θ (deg)	37.5	37.1	36	36
E' (MeV)	768.0	615.0	487.5	287.5
$\Delta E'$ (MeV)	5	5	5	2.5
true E	961	730	560	320
<i>ϵ</i>	26 ± 5	16 ± 5	16 ± 3	13 ± 3

θ (deg)	37.5	37.1	36	36
E' (MeV)	768.0	615.0	487.5	287.5
$\Delta E' (MeV)$) 5	5	5	2.5
true E	961	730	560	320
	26 + 5	16 ± 5	16 + 3	13 + 3
<i>ϵ</i>	20 ± 3	10 ± 3	10 ± 3	13 ± 3
ϵ	20 ± 5 different <i>E</i>	\equiv differen	$t Q^2 \equiv diff$	$\frac{13 \pm 3}{2}$

Kinematic energy reconstruction: realistic case

Polychromatic beam

In modern experiments, the neutrino beams are not monochromatic, and the **energy must be reconstructed** from the observables, typically E' and $\cos \theta$ under the CCQE event hypothesis.

CCQE events

In practice, CCQE event candidates are defined as containing **no pions observed**.

+ CCQE (1p1h and 2p2h)pion production and followed by absorption undetected pions

CCQE with pions from FSI

CCQE-like events

Recall the monochromatic-beam case

CCQE events of given *l*[±] **kinematics**

CCQE events of given *l*[±] **kinematics**

Very different processes and neutrino energies contribute to CCQE-like events of a given E' and $\cos \theta$.

An undetected pion typically lowers the reconstructed energy by ~300–350 MeV.

Note that in the reconstruction formula, $M_{\Delta} = 1232 \text{ MeV}$ would be more suitable than M' = 939 MeV.

$$E_{v}^{\text{rec}} = \frac{2(M-\varepsilon)E_{\ell} + M'^{2} - (M-\varepsilon)^{2} - m_{\ell}^{2}}{2(M-\varepsilon-E_{\ell} + |\mathbf{k}_{\ell}|\cos\theta)}. \qquad \frac{M_{\Delta}^{2} - M'^{2}}{2M} \approx 340 \text{ MeV}$$

Absorbed or undetected pions

Summary

- An accurate description of nuclear effects, including finalstate interactions, is crucial for accurate reconstruction of neutrino energy.
- Theoretical models must be validated against (e,e') data to estimate their uncertainties.
- The spectral function formalism can be used in Monte Carlo simulations to improve the accuracy of description of nuclear effects.
- Final-state interactions can have an important effect on neutrino energy reconstruction, even at E ~ few GeV.

Question 1

Consider the process of quasielasic scattering on a free nucleon. Why is the antineutrino cross section lower than that for neutrino?

Question 2

At a given kinematics, the quasielastic cross sections $d\sigma_{IA}/d\omega d\Omega$ for neutrino and electron scattering off a nucleus are similar, barring the normalization. What is the total cross section for electrons? Why do neutrino and electron interactions differ qualitatively?

Question 3

At high neutrino energies, high scattering angles are strongly suppressed in quasielastic scattering. Can you explain it?

Problem 1

Consider charged-current scattering off a nuclear target leading to excitation of a resonance of the invariant mass *W*. How to reconstruct the neutrino energy from the charged-lepton's kinematics?

Problem 2

Assume a general case of charged-current interaction, with *n* nucleon and *m* meson tracks reconstructed in the detector. How to approximate the neutrino energy using the momentum conservation?

Problem 3

How to reconstruct the neutrino energy when a pion is produced in a single-nucleon knockout from a nucleus? Assume that the pion kinematics is known. Hint: use the relation between the energy and momentum of the knocked-out nucleon.

Backup slides

Energy reconstruction

Consider the probability distribution that a muon of given energy and scattering angle is produced by a neutrino of energy E_{ν}

$$\mathcal{P}(E_{\nu})\big|_{E_{\mu},\,\cos\theta} = \frac{\frac{d\sigma(E_{\nu})}{dE_{\mu}d\cos\theta}}{\int dE_{\nu}\frac{d\sigma(E_{\nu})}{dE_{\mu}d\cos\theta}}$$

kinematics relevant to the T2K experiment

At $\cos = 0.97$ the difference is ~16 MeV for RFG with $\varepsilon = 25$ MeV

kinematics relevant to the T2K experiment

At $\cos = 0.97$ the difference is ~16 MeV for RFG with $\varepsilon = 25$ MeV

kinematics relevant to the T2K experiment

At $\cos = 0.97$ the difference is ~16 MeV for RFG with $\varepsilon = 25$ MeV

To get the maxima right

 ε = 9 MeV @ cos = 0.97 ε =27 MeV @ cos = 0.92 ε =29 MeV @ cos = 0.87

