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Introduction 



Why quantum Monte Carlo? ( I ) 

• Quantum Monte Carlo (QMC) can be 
exploited to compute the electroweak 
response fully taking into account the 
correlations induced by the nuclear 
interactions and meson-exchange 
currents

• The Relativistic Fermi gas model is not 
adeguate to account for both the 
complexity of nuclear dynamics and the 
variety of reaction mechanisms 
contributing to the observed neutrino - 
nucleus cross section

can be added to form the total error matrix. For the neutrino
flux and background cross section uncertainties, a re-
weighting method is employed which removes the diffi-
culty of requiring hundreds of simulations with adequate
statistics. In this method, each neutrino interaction event is
given a new weight calculated with a particular parameter
excursion. This is performed considering correlations be-
tween parameters and allows each generated event to be
reused many times saving significant CPU time. The nature
of the detector uncertainties does not allow for this method
of error evaluation as parameter uncertainties can only be
applied as each particle or optical photon propagates
through the detector. Approximately 100 different simu-
lated data sets are generated with the detector parameters
varied according to the estimated 1! errors including
correlations. Equation (4) is then used to calculate the
detector error matrix. The error on the unfolding procedure
is calculated from the difference in final results when using
different input model assumptions (Sec. IVD). The statis-
tical error on data is not added explicitly but is included via
the statistical fluctuations of the simulated data sets (which
have the same number of events as the data).

The final uncertainties are reported in the following
sections. The breakdown among the various contributions
are summarized and discussed in Sec. VD. For simplicity,
the full error matrices are not reported for all distributions.
Instead, the errors are separated into a total normalization
error, which is an error on the overall scale of the cross
section, and a ‘‘shape error’’ which contains the uncer-
tainty that does not factor out into a scale error. This allows
for a distribution of data to be used (e.g. in a model fit) with
an overall scale error for uncertainties that are completely
correlated between bins, together with the remaining bin-
dependent shape error.

V. RESULTS AND DISCUSSION

A. CCQE flux-integrated double differential
cross section

The flux-integrated, double differential cross section per
neutron, d2!

dT"d cos#"
, for the $" CCQE process is extracted as

described in Sec. IVD and is shown in Fig. 13 for the
kinematic range, !1< cos#" <þ1, 0:2< T"ðGeVÞ<
2:0. The errors, for T" outside of this range, are too large
to allow a measurement. Also, bins with low event popu-
lation near or outside of the kinematic edge of the distri-
bution (corresponding to large E$) do not allow for a
measurement and are shown as zero in the plot. The
numerical values for this double differential cross section
are provided in Table VI in the appendix.

The flux-integrated CCQE total cross section, obtained
by integrating the double differential cross section (over
!1< cos#" <þ1, 0< T"ðGeVÞ<1), is measured to be
9:429% 10!39 cm2. The total normalization error on this
measurement is 10.7%.

The kinematic quantities, T" and cos#", have been
corrected for detector resolution effects only (Sec. IVD).
Thus, this result is the most model-independent measure-
ment of this process possible with the MiniBooNE detec-
tor. No requirements on the nucleonic final state are used to
define this process. The neutrino flux is an absolute pre-
diction [19] and has not been adjusted based on measured
processes in the MiniBooNE detector.
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FIG. 13 (color online). Flux-integrated double differential
cross section per target neutron for the $" CCQE process. The

dark bars indicate the measured values and the surrounding
lighter bands show the shape error. The overall normalization
(scale) error is 10.7%. Numerical values are provided in Table VI
in the Appendix.
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FIG. 14 (color online). Flux-integrated single differential cross
section per target neutron for the $" CCQE process. The

measured values are shown as points with the shape error as
shaded bars. Calculations from the NUANCE RFG model with
different assumptions for the model parameters are shown as
histograms. Numerical values are provided in Table IX in the
appendix.
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• Neutrino experimental communities need accurate theoretical calculations, with reliable error 
estimates

• QMC methods allow for solving the time-independent Schrödinger equation for nuclear 
Hamiltonians and naturally provide estimates of the gaussian error of the calculation.



Lepton-nucleus scattering 

The inclusive cross section of the process in which 
a lepton scatters off a nucleus and the hadronic 
final state is undetected can be written as

• The Hadronic tensor contains all the information on target response

• The leptonic tensor         is fully specified by the lepton kinematic variables. For instance, in the 
electron-nucleus scattering case

Lµ⌫

d2�

d⌦`dE`0
= Lµ⌫W

µ⌫

Wµ⌫ =
X

X

h 0|Jµ †(q)| Xih X |J⌫(q)| 0i�(4)(p0 + q � pX)

Note that the initial state does not depend on the momentum transfer!
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Two-body meson exchange currents and nuclear correlations need to be fully accounted for in ab initio 
calculations of response functions

• Initial State Correlations

How can 2p2h final states be produced?

The observed excess of CCQE cross section may be traced back to the
occurrence of events with 2p2h final states.

Initial State Correlations (ISC):

Meson Exchange Currents
(MEC):

Final State Interactions (FSI):
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• Meson Exchange Currents

• Final State Interactions

Two-body currents and nuclear correlations 



Non-relativistic regime 

QMC calculation of the 
nuclear response from 
threshold up to the 
quasielastic region (for 
nuclei as large as 12C) 
are currently carried out 
on leadership-class 
computers

In the non-relativistic regime, typically corresponding to                           , both the initial and the 
final state of the hadronic tensor are eigenstates of the nonrelativistic nuclear hamiltonian

 As for the electron scattering on 12C

H| 0i = E0| 0i H| Xi = EX | Xi

| Xi = |11B, pi, |11C, ni, |10B, pni, |10B, ppi . . .
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x
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Why quantum Monte Carlo? ( II ) 

The spectral function formalism allow one to circumvent the difficulties associated with the 
relativistic treatment of the nuclear final state and current operator, while at the same time preserving 
essential features (such as correlations) inherent to the realistic description of nuclear dynamics

In the relativistic regime, the final state includes at least one particle carrying large momentum, 
whereas the initial nuclear state is still an eigenstate of the nuclear Hamiltonian.
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The sum rule of the spectral function 
corresponds to the momentum distribution

Z
dEP (k, E) = n(k)

The momentum distribution of nuclei as 
large as 16O and 40Ca has been computed 
using QMC fully accounting for the 
correlations of the nuclear ground state 
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Nuclear potentials and currents 



The nuclear Hamiltonian 
In both the non-relativistic and relativistic regimes, the the protons and the neutrons of the initial 
nuclear state can be treated as point like non relativistic particles, the dynamics of which are 
described by the hamiltonian


H =
X

i

p2
i

2m
+

X

i<j

vij +
X

i<j<k

Vijk + . . .

The two-body potential is the most studied of all, with thousands of experimental NN scattering 
data points at laboratory energies from essentially zero to hundreds of MeV

Warning: non ab initio approaches DO NOT rely on the thousands NN scattering data


Attempts are now being made to understand NN interaction directly through lattice QCD, though 
much more development will be required before it can be used directly in studies of nuclei

In the last two decades, advances have been made using chiral effective field theory, which 
employs chiral symmetry and a set of low-energy constants to fit the NN scattering data.

Three-nucleon (3N) interactions effectively include the lowest nucleon excitation, the ∆(1232) 
resonance, end other nuclear effects



The Argonne v18 is a finite, local, configuration-space potential controlled by ~4300 np and pp 
scattering data below 350 MeV of the Nijmegen database

• Static part

• Spin-orbit

The remaining operators, including quadratic spin-orbit interaction and charge symmetry breaking 
effects, are needed to achieve the description of the Nijmegen scattering data with              .

Deuteron, S- and D- wave phase shifts

P-wave phase shifts

It is expressed as a sum of electromagnetic and one-pion-exchange terms and phenomenological 
intermediate- and short-range parts, which can be written as an overall operator sum

Two-body potential 

�2 ' 1

v18(rij) = v�ij + v⇡ij + vIij + vSij =
18X

p=1

vp(rij)O
p
ij

The Argonne v18 model has a total of 42 independent parameters. While the fit was made up to 350

MeV, the phase shifts are qualitatively good up to much larger energies ≥ 600 MeV

Op=1�6
ij = (1,�ij , Sij)⌦ (1, ⌧ij)

Op=7�8
ij = Lij · Sij ⌦ (1, ⌧ij)



Three-body potential 

Urbana IX 

contains the attractive Fujita and 
Miyazawa two-pion exchange interaction 
and a phenomenological repulsive term.

Illinois 7

also includes terms originating from 
three-pion exchange diagrams and the 
two-pion S-wave contribution.
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An Hamiltonian which only includes Argonne v18 does not provide enough binding in the light 
nuclei and overestimates the equilibrium density of symmetric nuclear matter.


Three-body force is needed




Nuclear currents 

QE e/⌫
Scattering

Nuclear
interactions

Correlations

Nuclear
currents

e/⌫
scattering

Interference

Summary

Electromagnetic current operators

Set of (conserved) EM current operators

contain no free parameters and are consistent with
short-range behavior of v and V 2⇡

Many-body EM charge operators represent relativistic
corrections to ⇢(1), and lead to small corrections
These many-body corrections are important to
reproduce a variety of nuclear EM observables
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FIG. 4: (Color online) Magnetic moments in nuclear magne-
tons for A ≤ 9 nuclei. Black stars indicate the experimen-
tal values [35–37], while blue dots (red diamonds) represent
GFMC calculations which include the IA one-body EM cur-
rent (total χEFT current up to N3LO). Predictions are for
nuclei with A > 3.

and the NLO OPE term contributes in both the trinu-
cleon clusters and in between the trinucleon clusters and
the valence pp (nn) pair. The IA m.m. for 9Be is close
to the experimental value, while those for 9Li and 9C
are far from the data, so this pattern of small and large
MEC corrections provides good overall agreement with
the data.

The χEFT results reported in Tables III and V are
summarized in Fig. 4, where the experimental data [34–
37] (there are no data for the m.m. of 9B) are repre-
sented by black stars. We show also the experimen-
tal values for the proton and neutron m.m.’s, as well
as their sum, which corresponds to the m.m. of an S-
wave deuteron. The experimental values of the A = 2–3
m.m.’s have been utilized to fix the LECs, therefore pre-
dictions are for A > 3 nuclei. The blue dots labeled
as GFMC(IA) represent theoretical predictions obtained
with the standard IA one-nucleon EM current entering
at LO: diagram (a) of Fig. 1. The GFMC(IA) results
reproduce the bulk properties of the m.m.’s of the light
nuclei considered here. In particular, we can recognize
three classes of nuclei with non-zero m.m.’s, i.e., odd-
even nuclei whose m.m.’s are driven by an unpaired va-
lence proton, even-odd nuclei driven by an unpaired va-
lence neutron, and odd-odd nuclei with either a deuteron
cluster or a triton-neutron (3He-proton) cluster outside
an even-even core. Predictions which include all the con-
tributions to the N3LO χEFT EM currents illustrated
in Fig. 1 are represented by the red diamonds of Fig. 4,
labeled GFMC(TOT). In all cases except 6Li and 9Be
(where the IA is already very good and the MEC correc-
tion is very small) the predicted m.m.’s are closer to the
experimental data when the MEC corrections are added
to the IA one-body EM operator.

It is also interesting to consider the spatial distribution
of the various contributions to the m.m., i.e., to examine
the magnetic density. The one-body IA contributions
from the starting VMC wave functions are shown in Fig. 5
for the isobaric analog pairs 7Li–7Be, 8Li–8B, and 9Li–
9C. (The VMC values for the IA m.m.’s are within a few
% of the final GFMC values, so we expect their spatial
distribution to be reasonably accurate.) In the figure, the
red upward-pointing triangles are the contribution from
the proton spin, µp[ρp↑(r)−ρp↓(r)], and similarly the blue
downward-pointing triangles are the contribution from
the neutron spin. The green diamonds are the proton
orbital (convection current) contribution, and the black
circles are the sum. The integrals of the black curves over
d3r give the total m.m.’s of the nuclei in IA.

For the neutron-rich lithium isotopes, there is one un-
paired proton (embedded in a p-shell triton cluster) with
essentially the same large positive contribution in all
three cases. The proton orbital term is also everywhere
positive, but relatively small. For 7Li and 9Li, the neu-
trons are paired up, and give only a small contribution,
so the total m.m. is close to the sum of the proton spin
and orbital parts. However 8Li has one unpaired neu-
tron which acts against the proton and significantly re-
duces the overall m.m. values. For the proton-rich iso-
baric analogs, there is one unpaired neutron (embedded
in a p-shell 3He cluster) with the same sizable negative
contribution in all three cases. In 7Be and 9C, the pro-
tons are paired up and give little net contribution, but
the orbital term is always positive and acts against the
neutron spin term. In 8B there is also one unpaired pro-
ton, which gives a bigger contribution than the unpaired
neutron and results in a net positive m.m. value.

In Table VI, we explicitly show the various contribu-
tions entering the χEFT operator. The labeling in the
table has been defined in Sec. III A. We list the contribu-
tions at each order. At N3LO, we separate the terms that
do not depend on EM LECs (i.e. the LOOP contribution
and the contact MIN currents; the former depends on the
known axial coupling constant, gA, and pion decay am-
plitude, Fπ , while the latter depends on the strong LECs
entering the NN χEFT potential at N2LO) and those
that depend on them (i.e. the contact NM and the OPE
current whose isovector component has been saturated
with the ∆ transition current). In most cases, chiral
convergence is observed but for the isovector N3LO OPE
contribution whose order of magnitude is in some cases
comparable to the OPE contribution at NLO. It is likely
that the explicit inclusion of ∆ degrees of freedom in the
present χEFT would significantly improve the conver-
gence pattern, since in such a theory this isovector OPE
current, presently entering at N3LO, would be promoted
to N2LO.

In Table VI, we do not provide the errors associated
with the individual terms at each order because they are
highly correlated. We limit ourselves to report the errors
associated with the IA, MEC, and total results. Also
in this table, we denote calculations performed enforcing

• The inclusion of two-body currents is essential for low-momentum and low-energy transfer transitions.

 The nuclear electromagnetic current is constrained by the Hamiltonian through the continuity equation

• Because the NN potential does not commute with the charge operator, the above equation implies 
that          involves two-nucleon contributions. They account for processes in which the vector boson 
couples to the currents arising from meson exchange between two interacting nucleons.

r · JEM + i[H, J0
EM] = 0

JEM



Chiral EFT 
Chiral effective field theory (   EFT) has witnessed much progress during the two decades since the 
pioneering papers by Weinberg  (1990, 1991, 1992)

In    EFT, the symmetries of quantum chromodynamics (QCD), in particular its approximate chiral 
symmetry, are employed to systematically constrain classes of Lagrangians describing the interactions 
of baryons with pions as well as the interactions of these hadrons with electroweak fields

�

�

Each class is characterized by a given power of the pion mass and/or momentum, the latter generically 
denoted by   , and can therefore be thought of as a term in a series expansion in powers of            , 
where               GeV specifies the chiral-symmetry breaking scale

p p/⇤�
⇤� ' 1

Each class also involves a certain number of unknown coefficients, called low-energy constants (LEC’s), 
which are determined by fits to experimental data

Until very recently, nuclear potentials derived within    EFT were highly non local. As a consequence, 
implementing them in quantum Monte Carlo was not feasible

�



Chiral EFT 
Recently chiral nuclear interactions have been developed that are local up to next-to-next-to-leading 
order (N2LO). These interactions employ a different regularization scheme from previous chiral 
interactions, with a cutoff in the relative NN momentum.

They are therefore fairly simple to treat with standard QMC techniques to calculate properties of nuclei

and neutron matter,
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FIG. 2. (color online). Ground-state energies and point pro-
ton radii for A = 3, 4 nuclei calculated at NLO and N2LO
(with VD2 and VE⌧ ) compared with experiment. Blue (red)
symbols correspond to R0 = 1.0 fm (R0 = 1.2 fm). The er-
rors are obtained as described in the text and also include the
GFMC statistical uncertainties.

We show the energies for R0 = 1.0 fm for the NN and
full 3N interactions. We use VD2 and the three di↵erent
VE structures: VE⌧ (blue band), VE (red band), and
VEP (green band). The error bands are determined as in
the light nuclei case. The VEP interaction fits A = 4, 5
with a vanishing cD, hence this choice of VE leads to
an equation of state identical to the equation of state
with NN + VC as in Ref. [22] (the projector P is zero
for pure neutron systems) and qualitatively similar to
previous results using chiral interactions at N2LO [32]
and N3LO [33].

As discussed, the contributions of VD and VE are only
regulator e↵ects for neutrons. However, they are sizable
and result in a larger error band. At saturation den-
sity n0 ⇠ 0.16 fm�3 the di↵erence of the central value of
the energy per neutron after inclusion of the 3N contacts
VE or VE⌧ is ⇠2 MeV, leading to a total error band
with a range of ⇠6.5 MeV when considering di↵erent VE

structures. This relatively large uncertainty can be quali-
tatively explained when considering the following e↵ects.
Because the expectation value h

P
i<j ⌧ i · ⌧ ji has a sign

opposite to that of the expectation value h i in 4He, cE
will also have opposite signs in the two cases to fit the
binding energy. However, in neutron matter both oper-
ators are the same, spreading the uncertainty band. A
similar argument was made in Ref. [34].
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FIG. 3. (color online). The energy per particle in neutron
matter as a function of density for the NN and full 3N inter-
actions at N2LO with R0 = 1.0 fm. We use VD2 and di↵erent
3N contact structures: the blue band corresponds to VE⌧ , the
red band to VE and the green band to VEP . The green band
coincides with the NN+2⇡-exchange-only result because both
VD and VE vanish in this case. The bands are calculated as
described in the text.

With the regulators used here, the Fierz-
rearrangement invariance valid at infinite cuto↵ is
only approximate at finite cuto↵, and hence the di↵erent
choices of VD and VE can lead to di↵erent results.
The di↵erent local structures can lead to finite relative
P -wave contributions. These can be eliminated by
choosing VEP , which has a projection onto even-parity
waves (predominantly S waves). The usual nonlocal
regulator in momentum-space does not couple S and P
waves.

In conclusion, we find for the first time that chiral in-
teractions can simultaneously fit light nuclei and low-
energy P -wave n-↵ scattering and provide reasonable es-
timates for the neutron matter equation of state. Other
commonly used phenomenological 3N models do not pro-
vide this capability. These chiral forces should be tested
in light p-shell nuclei, medium-mass nuclei, and isospin-
symmetric nuclear matter to gauge their ability to de-
scribe global properties of nuclear systems.

We also find that the ambiguities associated with
contact-operator choices can be significant when mov-
ing from light nuclei to neutron matter and possibly to
medium-mass nuclei where the T = 3

2 triples play a
more significant role. The reason for the sizable impact
may be the regulators used here, which break the Fierz-

Neutron matter 
equation of state

Binding 

enegies 

and radii
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GHDO ZLWK GLDJUDPV� LW LV YHU\ FRQYHQLHQW IRU DOJHEUDLFDO FDOFXODWLRQV� ,Q IDFW� LW IRUPDOO\ UHGXFHV WKH

��

Chiral EFT 
Within    EFT nuclear potentials and currents obey a power counting scheme
�

NN potential NNN potential NNNN potential 



Chiral EFT 
    EFT provides a framework to derive consistent many-body forces and currents and the tools to 
rigorously estimate their uncertainties, along with a systematic prescription for reducing them
�
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FIG. 9: Estimated theoretical uncertainty of the np phase shifts at NLO, N2LO and N3LO based on the cuto↵ of R = 0.9 fm
in comparison with the NPWA [41] (solid dots) and the GWU single-energy np partial wave analysis [89] (open triangles). The
light- (color online: yellow), medium- (color-online: green) and dark- (color-online: blue) shaded bands depict the estimated
theoretical uncertainties at NLO, N2LO and N3LO, as explained in the text. Only those partial waves are shown which have
been used in the fits at N3LO.

R = 1.2 fm. In summary, we find that the suggested approach for error estimation is more reliable than the standard
procedure by means of cuto↵ bands and, in addition, has the advantage of being applicable for a fixed value of R.
This allows one to avoid the artificial increase of the theoretical uncertainty due to cuto↵ artefacts, the issue which
is especially relevant at high energies where the chiral expansion converges slower. The issue with using the cuto↵
bands is expected to become particularly important at next-to-next-to-next-to-next-to-leading order (N4LO) in the
chiral expansion. In particular, we expect that the residual cuto↵ dependence at N4LO will be comparable to that
at N3LO, and that it will significantly overestimate the real N4LO uncertainty at higher energies in a close analogy
to what is observed at N2LO. Last but not least, the ability to carry out independent calculations with quantified
uncertainties also provides a useful consistency check.

Next, we show in Fig. 9 the estimated uncertainty of the S-, P- and D-wave phase shifts and the mixing angles ✏1 and
✏2 at NLO, N2LO and N3LO based on R = 0.9 fm. The various bands result by adding/subtracting the estimated
theoretical uncertainty, ±��(Elab) and ±�✏(Elab), to/from the results shown in Fig. 3. In a similar way, we also
looked at selected neutron-proton scattering observables at di↵erent energies shown in Figs. 10-13. For the lowest
considered energy of Elab = 50MeV, we show, in addition to the results using R = 0.9 fm, also our predictions for the
softest cuto↵ choice of R = 1.2 fm. While the uncertainty is clearly increased, the results actually still appear to be
rather accurate at this energy. Our results agree with the ones of the NPWA for all considered observables and energies
indicating that the employed way to estimate the uncertainties is quite reliable. Generally, we find that chiral EFT
at N3LO allows for very accurate results at energies below Elab ⇠ 100MeV and still provides accurate description of
the data at energies of the order of Elab ⇠ 200MeV. These findings are particularly promising for the ongoing studies
of the three-nucleon force whose contributions to nucleon-deuteron scattering observables are believed to increase at
energies above EN, lab ⇠ 100MeV. It would be interesting to perform a similar analysis of nucleon-deuteron scattering
data based on the improved chiral NN potentials in order to see whether accurate predictions are to be expected at
such energies at N3LO. Work along these lines is in progress.

Finally, we emphasize that our results depend little on the specific choice of the regulator function. In order to

QMC is the only method allowing to disentangle the theoretical uncertainty arising from the nuclear 
interaction from the one associated with the many-body computational scheme.
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correlations 



Scattering off uncorrelated nucleons 



Scattering off uncorrelated nucleons 



Scattering off correlated nucleons 



Scattering off correlated nucleons 



Scattering off correlated nucleons 



Scattering off correlated nucleons 
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An overview on quantum Monte Carlo  



Why Quantum Monte Carlo? ( III ) 
Quantum Monte Carlo provides us a way to go from

H =
X

i

p2
i

2m
+

X

i<j

vij +
X

i<j<k

Vijk + . . .

H| 0i = E0| 0i



Why Quantum Monte Carlo? ( III )
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Quantum Monte Carlo methods 

Quantum Monte Carlo methods give us two options for solving the many-body Schrödinger 
equation

Variational Monte Carlo (VMC) 

Diffusion Monte Carlo (DMC)

In VMC, one assumes a form for the trial wave function and optimizes its variational 
parameters, typically by minimizing the energy and/or the variance of the energy. The 
expectation of the Hamiltonian is evaluated by means of Monte Carlo method.

“Exactly” solve the problem by projecting the ground state from an arbitrary initial guess 
of the wave function by means of a propagation in imaginary time.

Let us assume that

• The temperature of the system is much smaller than the Fermi energy

• We are interested in the ground-state properties of the system



Chapter 3 
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Variational Monte Carlo  



Variational Monte Carlo 
Variational Monte Carlo uses the stochastic integration method to evaluate the expectation value of 
the Hamiltonian for a chosen trial wave function, which depends on a set of variational parameters.

The interaction between 4He atoms 
forming an homogeneous liquid can be 
parametrized by means of the two-body 
Lennard-Jones potential

A reasonable trial wave function is small 
where the potential is repulsive and 
large where the potential is attractive

v(r) = 4✏

⇣�
r

⌘12
�

⇣�
r

⌘6
�

 T (R) =
Y

i<j

f(rij)

f(r) = exp

"
�1

2

✓
b

r

◆5
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Variational Monte Carlo 

Note that, in order to compute the trial energy for a given set of variational parameters, the 
following multi-dimensional integral in the degrees of freedom of the system (coordinates, spin 
and isospin) has to be evaluated

The variational principle guarantees that the energy of the trial wave function is greater than or 
equal to the ground-state energy with the same quantum numbers as

The variational parameters are determined by minimizing the trial energy. In the atomic liquid 4He 
atoms case this amounts to

@ET

@b
= 0

ET =
h T |H| T i
h T | T i

� E0

ET =

R
dR ⇤

T (R)H T (R)R
dR ⇤

T (R) T (R)
R ⌘ r1, . . . , rA



Multi dimensional integrals 

In the one-dimensional case, we can divide the area below to the curve into rectangles


Our goal consists in computing the following D-dimensional integral

ba x

xi

F (x)

How many points do we need to achieve a given precision ? 


I(1) ' h

X

i

F (xi)

�(1) = h2|F 0(xi)|+O(h3)

h / 1

N

I(D) =

Z b1

a1

dx1 . . .

Z bD

aD

dxDF (x1, . . . , xD)

�(1)

I(1)
= ✏ N / 1

✏

{



Note that more clever methods can be used, but the error is always proportional to      .


Multi dimensional integrals 
A generalization of the As for the D-dimensional case, it is easy to find 

How many points do we need to compute the expectation value of the Hamiltonian for a system 
containing 12 particles interacting with a central potential with a precision               ?

Problem 

✏ = 0.1

I(D) ' h

D
X

i

F (xi){�(D) = hD+1|rF (xi)|+O(hD+2)

h / 1

ND

N / 1

✏D

h↵



Note that more clever methods can be used, but the error is always proportional to      .


Multi dimensional integrals 
A generalization of the As for the D-dimensional case, it is easy to find 

How many points do we need to compute the expectation value of the Hamiltonian for a system 
containing 12 particles interacting with a central potential with a precision               ?

Problem 

Solution 

✏ = 0.1

Because the potential is central, we will be dealing with a 36-dimensional integral


hours on Mira!!!


I(D) ' h

D
X

i

F (xi){�(D) = hD+1|rF (xi)|+O(hD+2)

h / 1

ND

N / 1

✏D

D = 36 N / 1036 1017

h↵



Monte Carlo quadrature 
It clearly appears that standard numerical integration methods are not suitable to compute the 
energy per particle (and other relevant quantities) of 12C! 

Problem 
What do we do?




Monte Carlo quadrature 
It clearly appears that standard numerical integration methods are not suitable to compute the 
energy per particle (and other relevant quantities) of 12C! 

Problem 
What do we do?


Solution 
We wait for the rain to fall, we collect raindrops and then we measure how much rain has fallen…


Circle Area

Square Area
=

⇡L2/4

L2
=

⇡
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The central limit theorem 
Suppose that the N continuum random variables                      are drawn from the probability 
distribution           and consider the function         . We may define a new random variable

x1, . . . , xN

P (x) f(x)

SN =
1

N

NX

i=1

f(xi)

If the samples are statistically independent, the central limit theorem states that the probability 
distribution of        is gaussianSN

where the average and the variance of        are given by

P (SN ) =
1p
2⇡�2

N

e
(SN�S̄N )2

2�2
N

S̄N =

Z
dxP (x)f(x)

SN

�N =

s
1

N

Z
dxP (x)f2(x)� S̄N

�

These results hold true for any dimensionality of the space in which the variable    is defined !!!x



The central limit theorem 
Therefore, the central limit theorem provides a recipe to numerically evaluate multi-dimensional 
integrals of the form 

• Since the probability density has to be positive definite, rewrite the integral as:

I =

Z
dxf(x)

I =

Z
dxP (x)

f(x)

P (x)

• Sample N (with N “large”) points from the probability density         
P (x)

• Average the N values of            and f(xi) f

2(xi)

I =
1

N

NX

i=1

f(xi)±

vuuut 1

(N � 1)

2

4 1

N

NX

i=1

f

2(xi)�
 

1

N

NX

i=1

f(xi)
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• the error can be rigorously estimated

• the estimate of the error decreases as               regardless of the dimensionality

The central limit theorem 
Two key aspects of Monte Carlo quadrature

1/
p
N

How many points do we need to sample to compute the expectation value of the Hamiltonian for 
a system containing 12 particles interacting with a central potential with a precision               ?

Problem 

✏ = 0.1



• the error can be rigorously estimated

• the estimate of the error decreases as               regardless of the dimensionality

The central limit theorem 
Two key aspects of Monte Carlo quadrature

1/
p
N

How many points do we need to sample to compute the expectation value of the Hamiltonian for 
a system containing 12 particles interacting with a central potential with a precision               ?

Problem 

Solution 

✏ = 0.1

N / ✏2 ' 100

And what about a system containing 36 particles (interacting with a central potential) ?
Problem 



• the error can be rigorously estimated

• the estimate of the error decreases as               regardless of the dimensionality

The central limit theorem 
Two key aspects of Monte Carlo quadrature

1/
p
N

How many points do we need to sample to compute the expectation value of the Hamiltonian for 
a system containing 12 particles interacting with a central potential with a precision               ?

Problem 

Solution 

✏ = 0.1

N / ✏2 ' 100

And what about a system containing 36 particles (interacting with a central potential) ?
Problem 

Solution 
THE SAME !!!



Variational Monte Carlo 
Remember that the numerator of the expectation value of the Hamiltonian for a system 
containing A particles interacting with a spin-independent potential reads 

In order to use the central limit theorem, the former integral has to be rewritten as

Since it is positive and integrable,                   can be regarded as a probability density. 

where we have defined the local energy

EL(R) ⌘ H T (R)

 T (R)

| T (R)|2In order to compute the trial energy one has to find a way to sample

| T (R)|2

ET =

Z
dR ⇤

T (R)H T (R)

ET =

Z
dR | T (R)|2EL(R)



M(RT)2 algorithm 
The algorithm was first described in a paper by Metropolis, Rosenbluth, Rosenbluth, Teller and 
Teller M(RT)2. It shares common features to the rejection techniques because:

• It involves explicitly proposing a tentative value of the variable we want to sample, 
which may be rejected.

• The normalization of the sampled function is irrelevant.

M(RT)2  algorithm has its own advantages and disadvantages:

Pros Cons 

• It can be used to sample essentially 
any density function regardless of 
analytic complexity in any number of 
dimensions

•   It is of very great simplicity.

•  Sampling is correct only asymptotically

• Consecutive variables produced are 
often very strongly correlated

• Not well suited to sample distributions 
with parameters that change 
frequently.



M(RT)2 algorithm 

M(RT)2 algorithm is based on the idea of random walk in the space of the random variable    . The 
game consists of generating a random variable applying a transformation to another. This “moving” 
point is called walker.


To begin with, consider a 1-D harmonic oscillator. We want to sample the probability distribution 
described by the modulus squared of our trial wave function 


P (x) ⌘ | T (x)|2

x

By recursively applying the same transformation we get


Transition 
probability 

Pn(xn) =

Z
dx1 . . . dx1P1(x1)T (x1 ! x2) . . . T (xn�1 ! xn)

Under some very general conditions it can be proven that

lim
n!1

Pn(xn) = P (x) where           only depends on P (x) T

Pi+1(xi+1) =

Z
dxiPi(xi)T (xi ! xi+1)

 T (x) = exp

✓
�↵

x

2

2

◆



It tells wether the 
proposed move is 
accepted or rejected.

It describes the probability of 
moving the walker from             .

M(RT)2 algorithm 
Let us impose a further condition, i.e. that the asymptotic distribution is an “equilibrium” state:


P (x)T (x ! y) = P (y)T (y ! x)

The latter is called detailed balance condition, because it does not hold only on average, but it 
tells that point by point there is no net flux of probability!


We can arbitrarily split the transition probability in two terms


T (x ! y) = G(x ! y)A(x ! y)

x ! y

The detailed balance then reads

A(y ! x)

A(x ! y)
=

P (x)G(x ! y)

P (y)G(y ! x)

It can be easily checked that the following acceptance probability satisfies the above requirement


A(y ! x) = min

✓
1,

P (x)G(x ! y)

P (y)G(y ! x)

◆



M(RT)2 algorithm 
In QMC we use a very simple prescription for                   , which in 1-D corresponds to shifting a 
point by a value distributed according to a gaussian distribution

G(x ! y) = G(y ! x)

G(x ! y)

In the many-particle case, the one dimensional gaussian is replaced by a three-dimensional one 
for each of the particles. 

Since the probability of going from x to y is the same as the one for going from y to x, it turns out 
that 

xi

A(y ! x) = min

✓
1,

P (x)

P (y)

◆

xi+1 = xi + ⇣

xi + ⇣



M(RT)2 applied to VMC 
At this point, we can describe the Metropolis algorithm for a VMC calculation in the 1-D case

Step 0 - Start from a “flat” distribution of walkers on the coordinate x

Step 1 - Move the walkers according to                           , i.e. 

Step 2- Compute the acceptance probability                  A(xi ! yi+1) = min

✓
1,

| T (yi+1)|2

| T (xi)|2

◆

Step 3- Accept or reject the proposed move                 

xi+1 = yi+1
| T (yi+1)|2

| T (xi)|2
> ⇠

| T (yi+1)|2

| T (xi)|2
 ⇠

xi+1 = xi

G(xi ! yi+1) yi+1 = xi + ⇣



But how do we sample from a Gaussian? 
Fortran, C, Python, have their own random number generators. These generators provide you with 
random numbers     uniformly distributed between 0 and 1

Given      and      uniformly distributed between 0 and 1, how can we sample     from a normal 
gaussian distribution?

Problem 

⇠i

⇠1 ⇠2 ⇣



But how do we sample from a Gaussian? 
Fortran, C, Python, have their own random number generators. These generators provide you with 
random numbers     uniformly distributed between 0 and 1

Solution 
We use the Box-Mueller method:


Given      and      uniformly distributed between 0 and 1, how can we sample     from a normal 
gaussian distribution?

Problem 

⇠i

⇠1 ⇠2 ⇣

⇣1 =

p
�2 ln(1� ⇠1) cos(2⇡⇠2) ⇣2 =

p
�2 ln(1� ⇠1) sin(2⇡⇠2)

are both distributed according to


P (⇣i) =
1p
2⇡

e�
⇣2i
2

The only drawback of this method is that it is fairly slow (but more than OK for our QMC purposes)




But how do we sample from a Gaussian? 

uniformly distributed between 0 and 1



Accepted

And in practice the acceptance… 
How do we sample the acceptance probability? Well, we first compute the ratio

| T (yi+1)|2

| T (xi)|2

Then we roll the dice! We sample a random number     uniformly distributed between 0 and 1 and

| T (yi+1)|2

| T (xi)|2
> ⇠

| T (yi+1)|2

| T (xi)|2
 ⇠

⇠

Move accepted Move rejected

Rejected

 T (x) = exp

�
�↵x

2
/2

�



M(RT)2 applied to VMC 

Given the 1-D harmonic oscillator Hamiltonian
Problem (at this point duable!) 

H = �1

2

d2

dx2
+

x2

2

find the optimal variational parameter of the following trial wavefunction

 T (X) = exp
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M(RT)2 applied to VMC 

Solution 

Given the 1-D harmonic oscillator Hamiltonian
Problem (at this point duable!) 

H = �1

2

d2

dx2
+

x2

2

find the optimal variational parameter of the following trial wavefunction

• Use the M(RT)2 described earlier to sample the position      of the walkers 

• After some “equilibration” steps, compute the local energy of a given configuration

• Accumulate statistics, try a new    and iterate!�

xi

 T (X) = exp

✓
�↵

x

2

2

◆

EL(xi) =
H T (xi)

 T (xi)
=

↵

2
+

x2
i

2
[1� ↵2]



It contains 3-body correlations stemming from 3-body potential 

The pair correlated wave function is written in terms of operator correlations arising from the 2-body 
potential

The total antisymmetric Jastrow wave function depends on the quantum numbers of the given 
nucleus

Nuclear VMC wave function
A good trial wave function to describe a nucleus has to reflect the complexity of the nuclear potential 
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Green’s Function Monte Carlo 

• The 3H case fits in the slide!

• The GFMC wave function is written as a complex vector, the coordinates of which represent 
a spin-isospin state of the system 4

|Ψ3H⟩ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a ↑↑↑

a ↑↑↓

a ↑↓↑

a ↑↓↓

a ↓↑↑

a ↓↑↓

a ↓↓↑

a ↓↓↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(9)

Each coefficient aα, which is a function of the coordinates r1, r2 and r3, represents the

amplitude of a given many-particle spin configuration; for instance

a ↑↑↓ = ⟨↑↑↓ |Ψ3H⟩ . (10)

The application of the spin matrix σ12 ≡
∑

i σ
i
1σ

i
2 yields

σ̂12|Ψ3H⟩ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a ↑↑↑

a ↑↑↓

2a ↓↑↑ − a ↑↓↑

2a ↓↑↓ − a ↑↓↓

2a ↑↓↑ − a ↓↑↑

2a ↑↓↓ − a ↓↑↓

a ↓↓↑

a ↓↓↓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(11)

The “new” wave function can be expressed in terms of the coefficients of the old one.

Therefore, in order to reduce the computational complexity of the spin and isospin matrix

multiplication, a specialized table-drive code is implemented.

III. BEFORE MIRA AND ON MIRA

The GFMC code needed to be deeply revised to better capitalize the resources of a

leadership class computer like Intrepid (BQP) and Mira (BGQ).

The branching process of the GFMC algorithm involves replication and killing of the sam-

ples, the number of which can undergo large fluctuations. Therefore, to achieve an high

0

@
apnn
anpn
annp

1

A⌦

• A walker associated with wave function of the nucleus, do not only describes the positions 
of the protons and neutrons, but also their spin and isospin! 



Green’s Function Monte Carlo 
The wave function can be expresses as a sum over spin-isospin states

How does the number of 
spin- states grow with the 

number of particles?

| 0(r1 . . . rA)i =
NX

↵=1

 ↵
0 (r1 . . . rA)|↵i

Question (easy) 
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Green’s Function Monte Carlo 
The wave function can be expresses as a sum over spin-isospin states

How does the number of 
spin- states grow with the 

number of particles?

| 0(r1 . . . rA)i =
NX

↵=1

 ↵
0 (r1 . . . rA)|↵i

Question (easy) 

Solution 
2A

Question (not so easy) 
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Green’s Function Monte Carlo 
The wave function can be expresses as a sum over spin-isospin states

How does the number of 
spin- states grow with the 

number of particles?

| 0(r1 . . . rA)i =
NX

↵=1

 ↵
0 (r1 . . . rA)|↵i

N = 2A ⇥
✓
A

Z

◆

Question (easy) 

Solution 
2A

Question (not so easy) 
What about the number of 
states in the charge basis?

Solution ✓
A

Z

◆



Need to go beyond MPI

• GFMC has steadily undergone development to take advantage of each new generation of 
parallel machine and was one of the first to deliver new scientific results each time.
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Chapter 4 
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Diffusion Monte Carlo  



Diffusion Monte Carlo

• The accuracy of a VMC calculation is limited by the knowledge of the trial wave function. 

• The diffusion Monte Carlo (DMC) method, overcomes this limitation by using a projection 
technique to enhance the true ground-state component of a starting trial wave function.

• The method relies on the observation that the trial wave function can be expanded in the 
complete set of eigenstates of the the hamiltonian according to

| T i =
X

n

cn| ni H| ni = En| ni

which implies 

lim
⌧!1

e�(H�E0)⌧ | T i = c0| 0i

where    is the imaginary time. Hence, DMC projects out the exact lowest-energy state, provided 
the trial wave function it is not orthogonal to the ground state.

⌧



Diffusion Monte Carlo 
• The direct calculation of                      for strongly-interacting systems involves prohibitive 

difficulties
e�(H�E0)⌧

• To circumvent this problem, the imaginary-time evolution is broken into N small imaginary-time 
steps, and complete sets of states are inserted

e�(H�E0)⌧ | T i =
Z

dR1 . . . dRN |RN ihRN |e�(H�E0)�⌧ |RN�1i . . .

. . . hR2|e�(H�E0)�⌧ |R1i T (R1)

Note the analogy with the Feynman’s path 
integrals in quantum and statistical mechanics !!!

• At imaginary-time                                  the walkers are distributed according to ⌧i+1 = (i+ 1)�⌧

 (⌧i+1, Ri+1) =

Z
dRihRi+1|e(H�E0)�⌧ |Rii (⌧i, Ri)



Diffusion Monte Carlo 

The analytic solution of Green’s function of the full hamiltonian is in general not known. An 
approximation to the Green’s function can be obtained using the Trotter Suzuki formula

In the limit of small time-step, the Green’s function factorizes

hRi|e�(T+V�E0)�⌧ |Ri+1i = eE0�⌧ hRi|e�T�⌧e�V�⌧ |Ri+1i+O(�⌧2)

G(Ri ! Ri+1,�⌧) ' Gd(Ri ! Ri+1,�⌧)Gb(Ri ! Ri+1,�⌧)

The problem is then reduced to computing the short-time Green’s function of the system

G(Ri ! Ri+1,�⌧) = hRi|e�(H�E0)�⌧ |Ri+1i



Diffusion Monte Carlo 

The branching Green’s function, on the other hand, is simply given by

Gb(Ri ! Ri+1,�⌧) = e�[V (Ri+1)�E0]�⌧

Hence, at the imaginary time                                  the walkers are distributed according to 

It is given by a 3A-dimensional Gaussian describing the Brownian diffusion of A particles with a  
dynamic governed by random collisions

The free Green’s function satisfies the master equation of a diffusion stochastic process

� @

@⌧
Gd(Ri ! Ri+1,�⌧) = � ~2

2m
r2Gd(Ri ! Ri+1,�⌧)

⌧i+1 = (i+ 1)�⌧

Gd(Ri ! Ri+1,�⌧) =
⇣ m

2⇡~2�⌧

⌘ 3A
2
e�

m
2~2�⌧

(Ri�Ri+1)
2

 (⌧i+1, Ri+1) =
⇣ m

2⇡~2�⌧

⌘ 3A
2

Z
dRie

� m
2~2�⌧

(Ri�Ri+1)
2

e�[V (Ri+1)�E0]�⌧ (⌧i, Ri)



v(x)

 0(x)

• A set of walkers is sampled from the trial wave 
function 

• Gaussian drift for the kinetic energy

• Branching and killing of the walkers induced 
by the potential weight

• Ground-state expectation values are estimated 
during the diffusion

Diffusion Monte Carlo

⇣ m

2⇡~2�⌧

⌘ 1
2
e�

m
2~2�⌧

(xi�xi+1)
2

w(x
i+1) = e

�[V (xi+1)�E0]�⌧

hHi =
P

xi
hx

i

|H| 
T

iw(x
i

)
P

xi
hx

i

| 
T

iw(x
i

)



DMC for the 1d harmonic oscillator

H = �1

2

d2

dx2
+

x2

2

 0(x) = e

�x

2
/2

E0 = 1/2



Importance sampling 
The algorithm as it was shown so far is not suitable for potentials presenting a divergent behavior

• A strongly repulsive potential (e.g. repulsive Coulomb, Lennard-Jones, Argonne v18) will 
result in a very fast absorption of walkers, eventually killing the whole population.

• An attractive potential (e.g. Coulomb attraction between the nucleus and electrons in an 
atom) will generate an exponentially growing population


The idea of the importance sampling technique consists in using the knowledge of the trial wave 
function to guide the imaginary-time projection. Consider


f(⌧i, Ri) ⌘  T (Ri) (⌧i, Ri)

Its imaginary-time evolution is given by


f(⌧i+1, Ri+1) =

Z
dRiGd(Ri ! Ri+1,�⌧)Gb(Ri ! Ri+1,�⌧)

 T (Ri+1)

 T (Ri)
f(⌧i, Ri)



v(x)

 0(x)

• A set of walkers is sampled from the trial wave 
function 

• Gaussian drift for the kinetic energy

• Branching and killing of the walkers induced 
by the potential weight

• Ground-state expectation values are estimated 
during the diffusion

Importance sampling diffusion Monte Carlo

⇣ m

2⇡~2�⌧

⌘ 1
2
e�

m
2~2�⌧

(xi�xi+1)
2

hHi =
P

xi

hxi|H| T i
hxi| T i w(xi)

P
xi
w(xi)

w(x
i

) = e

�[V (xi+1)�E0]�⌧

 
T

(x
i+1)

 
T

(x
i

)



It depends on the problem. In general, the latter is the most efficient, as the diffusion process is 
driven by the trial wave function. Also, the local energy is more stable than the potential energy.


Importance sampling diffusion Monte Carlo
The importance sampling can also be implemented by adding a drift in the free Green’s function

where the drift velocity is given by

What is the most efficient implementation? 
Question 

Solution 

G̃d(Ri ! Ri+1,�⌧) =
⇣ m

2⇡~2�⌧

⌘ 3A
2
e�

m
2~2�⌧

[Ri�Ri+1� ~2�⌧
m vD(Ri+1)]

2

vD(R) =
r T (R)

 T (R)

The branching Green’s function is also modified according to

G̃b(Ri ! Ri+1,�⌧) = e�[EL(Ri+1)�E0]�⌧ EL(R) =
H T (R)

 T (R)



There is a LOT more to say…
So far we have implicitly assumed that the wave function can be given a probabilistic interpretation, 
but a fermionic wave function is NOT positive definite. In the nuclear case it is not even real! 

This issue, known as sign problem, 
is common to all Monte Carlo 
approaches when applied to 
fermionic system, including Lattice 

Since the ground-state of a given Hamiltonian is always bosonic, searching for the ground-state 
energy of a fermionic system is very similar to project onto an excited state.

However, since we are projecting onto 
an antysimmetric trial wave function, 
what really happens is that energy 
converges to exact eigenvalue with an 
exponentially growing statistical error. 
In other words, the signal to noise 
ratio decays exponentially.


Many workarounds: fixed node, 
constrained path… but no definitive 
solution so far.

-less EFT potential⇡



This is the end (for now)

Solve the sign problem
Question 



From hypernuclei to neutron stars: 
looking for the pieces of the puzzle 
Diego Lonardoni, Francesco Catalano, Stefano Gandolfi, Alessandro Lovato, 
Francesco Pederiva

Neutron Stars

The prediction of neutron star properties is strictly connected to the employed nuclear interactions. The 
appearance of hyperons in the inner core of the star is strongly dependent on the details of the underlying 
hypernuclear force. We employ a quantum Monte Carlo technique to develop a realistic hyperon-nucleon 
interaction based on the available experimental data for light- and medium-heavy hypernuclei. 

Introduction

Auxiliary Field Diffusion Monte Carlo
The imaginary-time projection technique is used to 
enhance the ground-state component of a starting 
many-body trial wave function:
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The Hubbard-Stratonovich transformation is applied 
to the propagator in order to efficiently deal with 
spin-isospin dependent Hamiltonians:

Hamiltonian

| 0i = lim
⌧!1

e�(H�E0)⌧ | T i

non
strange

strange

Hypernuclei
✓ A repulsive three-body ΛNN force is 

needed to reproduce the experimental Λ 
separation energies.

✓ Good agreement with experiments over a 
wide range of hypernuclear masses and 
for different Λ single particle states.

✓ Experiments: 
medium-heavy n-rich 
hypernuclei

✓ Stronger constraints 
on the Λnn force

✓ Theoretical studies

✓ The same hyperon-nucleon potential has been employed in AFDMC calculations to determine the equation 
of state and the mass-radius relation of an infinite system of neutrons and Λ particles.

✓ The predicted EOS and maximum mass strongly depend upon the details of the three-body ΛNN force.
✓ Possibility of a 2 solar masses neutron star: new hints for the solution of the hyperon puzzle.
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The hyperon puzzle 
The appearance of hyperons in the inner core of the star strongly depends on the details of the 
underlying hypernuclear force

• The same hyperon-nucleon 
potential has been employed in 
AFDMC calculations to 
determine the equation of state 
and the mass-radius relation of 
an infinite system of neutrons 
and Λ particles.

• Possibility of a 2 solar masses 
neutron star: new hints for the 
solution of the hyperon puzzle.


