Water Cherenkov detector and Neutrino Physics

✓ Neutrino detection✓ Neutrino experiment

- Solar neutrinos
- Supernova neutrinos
- Atmospheric neutrinos
 Future

Yusuke Koshio Okayama University NuSTEC school, 9th Nov., 2015

Happy news

The nobel prize in Physics 2015

T.Kajita and A.McDonald

The Breakthrough Prize in Fundamental Physics 2016
5 experiments (Super-K, SNO, KamLAND, K2K/T2K, Daya Bay)
7 leaders (T.Kajita (SK, atmospheric ν), Y.Suzuki (SK, solar ν),
A.McDonald (SNO), A.Suzuki (KamLAND), K.Nishikawa (K2K/T2K),
Y.Wang and Kam-Biu Luk (Daya Bay))

Neutrino detection

Neutrino experiment

Deep underground in order to

remove cosmic ray.

Large size of detector is required, because of very small cross section

18

Neutrino spectrum

8-14, Nov. 2015

NuSTEC school

Water Cherenkov detector

NuSTEC school

Water Cherenkov detector

Interaction with electron

$$\nu + e^{-} \rightarrow \nu + e^{-}$$

(Both Charged Current and Neutral Current interaction)

✓ All neutrinos are sensitive ✓ The cross section for v_e is larger than others because of CC effect.

- ✓ Well known cross section.
- ✓ Good directionality
 - useful for Solar/SN neutrino

$$\begin{array}{c} \nu + N \rightarrow | + N' \\ \rightarrow \nu + N \end{array}$$

(Both Charged Current and Neutral Current interaction)

✓ Actually, nucleons are strongly binding in nucleus.
 ✓ Only free nucleon, such as proton in H₂O, CH, deuteron in D₂O, etc, occurs
 ✓ Consider nuclear effect for these interaction.

Inverse beta decay

$$\left[\overline{\nu}_{e} + p \rightarrow e^{+} + n\right]$$

(Charged Current interaction)

✓ Dominates for detectors with lots of free proton

- Detect positron signal in water, scintillator, etc.
- \checkmark Well known cross section
- \checkmark Good energy resolution
 - $E_e \sim E_v (m_n m_p)$

Interaction with deuteron

Deuteron is a nucleus which consists on proton and neutron Both Charged Current and Neutral Current interaction occur.

✓ v_e only
 ✓ Gives v_e energy spectrum well
 ✓ Weak direction sensitive

 $\begin{array}{c|c}
\nu_{e} & \nu_{e} \\
\text{deuteron} & Z \\
n \\
p \\
\end{array}$

NC

✓ Equal cross section for all v type
 ✓ this diagram is resulting in neutron since it is detectable in SNO

Important for SNO experiment

NuSTEC school

Atmospheric, accelerator neutrinos ($E_v > 100 MeV$)

✓ Charged Current Quasi-Elastic scattering
 ✓ Neutral Current elastic scattering
 ✓ Charged Current single meson production
 ✓ Charged Current deep inelastic scattering

NuSTEC school

 $(\overline{\nu})$

Atmospheric, accelerator neutrinos ($E_v > 100 MeV$)

✓ Charged Current Quasi-Elastic scattering

- Dominant interaction around a few 100 MeV. (p)
- Two bodies decay \rightarrow Possible to reconstruct the neutrino energy from the kinematics of charged lepton.

NuSTEC school

lepton

р

(n)

:W

(anti-lepton)

Atmospheric, accelerator neutrinos ($E_v > 100 MeV$)

✓Charged Current deep inelastic scattering

- Dominant interaction around a few 10 GeV.
- Scattering off quark.
- Cross section is comparably precise obtained.

Atmospheric, accelerator neutrinos ($E_v > 100 MeV$)

 \checkmark Single pion production $~\checkmark$ Single meson production via resonances

Second dominant interaction Sometimes B.G. for others if miss pion

Possible to calculate the cross section for known nucleon resonance including the coherence

Water Cherenkov detector

Water Cherenkov detector

Cherenkov angle

 $\cos \theta = \frac{1}{n\beta}$, How much is the angle in the case of n=1.33, β ~1?

Cherenkov spectrum

$$\frac{dN}{d\lambda} = \frac{2\pi\alpha x}{c} \left(1 - \frac{1}{n^2\beta^2}\right) \frac{1}{\lambda^2},$$
 PMT sensitive region

How many photons are emitted per 1cm in the wave length (300~600nm)?

How many photons are detected for 10MeV electrons in the PMTs? Assuming 2MeV/cm, 20m diameter detector, water transparency 100m, photo coverage 40%

Kamiokande (1983~1996)

Kamioka mine, Japan, 1000m underground (2700m.w.e.), 3000 tons of water tank, with 1000 of 20' PMT

8-14, Nov. 2015

Super-Kamiokande (1996~)

Super-Kamiokande (1996~)

SNO experiment (1999~2008)

http://www.sno.phy.queensu.ca/

Sudbury Neutrino Observatory 2092m underground (5900m w.e.) The following interactions can be separately observed ✓ Charged Current (CC) $v_e + d \rightarrow p + p + e^{-}$ Only v_e ✓ Neutral Current (NC) $v + d \rightarrow v + p + n$ All v types ✓ Elastic scattering (ES) $V+e^- \rightarrow V+e^$ $v_e + 0.154(v_{\mu}+v_{\tau})$

IceCube experiment (2006~)

Solar neutrinos

Solar neutrino

 \rightarrow ~10⁷years radiated from the center to the surface.

Nuclear fusion reactions can occur deep inside the Sun.

Go through the sun immediately (~2sec), since neutrinos only interact with matter via weak force. After ~8min, arrival at the earth \rightarrow Solar neutrinos can derive the current status in the center of the sun.

This reaction is actually realized via pp-chain and CNO cycle.

Solar neutrino

Dominant process in the Sun (~99%)

pp-chain

of the energy)

W.Fowler

CNO cycle

Small ratio (<1%) in the Sun, poorly know yet

H.A.Bethe

р

Standard Solar Model (SSM)

First generation detectors (70's~)

Homestake experiment

Homestake gold mine, South Dakota, USA 1620m underground (4400m.w.e.) since 1970.

$$\begin{array}{c} \nu_{e} + {}^{37}\text{Cl} \rightarrow e^{-} + \underbrace{{}^{37}\text{Ar}}_{t_{1/2}=35\text{days}} (\text{CC}) \end{array}$$

Flux ratio (meas./SSM)=0.31±0.03

Kamiokande (1983~1996)

Kamioka mine, Japan, 1000m underground (2700m.w.e.), 3000 tons of water tank, with 1000 of 20' PMT

 $\nu + e^{-} \rightarrow \nu + e^{-} (ES)$ (Eth=7.5MeV)

✓ First realtime solar neutrino measurement.
 ✓ Strong peak to the solar direction.

Gallium experiments

SAGE

BAKSAN in Russia, 1800m underground (4700m w.e.), since 1990. 50 tons of metallic gallium.

GALLEX/GNO

Gran Sasso in Italy, 1300m underground (3500m w.e.), since 1991. 30 tons of natural gallium.

 $v_{e} + {}^{71}Ga \rightarrow e^{-} + {}^{71}Ge (CC)$ (Eth=0.233MeV) $t_{1/2}=11days$ Measurable pp neutrinos
Flux ratio (meas./SSM): less solar model depended
0.53 ± 0.04 (SAGE)
0.55 ± 0.04 (GALLEX+GNO)
0.54 ± 0.03 (combined)

Flux deficit was observed

Second generation detectors (90's~)

Solar neutrino measurement in SK

50000 tons of Water Cherenkov detector

Cherenkov light

Charged particle

	Phase	Period	Livetime (days)	Fiducial vol. (kton)	# of PMTs	Energy thr.(MeV)
	SK-I 19	1996.4 ~ 2001.7	1496	22.5	11146 (40%)	4.5
	SK-II	2002.10 ~ 2005.10	791		5182 (20%)	6.5
	SK-III	2006.7 ~ 2008.8	548	22.5 (>5.5MeV) 13.3 (<5.5MeV)	11129 (40%)	4.5
	SK-IV	2008.9 ~	1669	22.5 (>5.5MeV) 13.3 (4.5 <e<5.5) 8.8 (<4.5MeV)</e<5.5) 		3.5
eutrino total 4504 days					(coverage)	(Kinetic energy)
NUSTEC school						

39.3 m 8-14, Nov. 2015

Solar neutrino measurement in SK

NuSTEC school

Solar neutrino measurement in SK

The observed signal direction with the Sun

The deficit from the prediction (40.6%) was observed with high precision (~3%)

(~2001)

SNO experiment (1999~2008)

http://www.sno.phy.queensu.ca/

Sudbury Neutrino Observatory 2092m underground (5900m w.e.) The following interactions can be separately observed ✓ Charged Current (CC) $v_e + d \rightarrow p + p + e^{-}$ Only v_e ✓ Neutral Current (NC) $v + d \rightarrow v + p + n$ All v types ✓ Elastic scattering (ES) $V+e^- \rightarrow V+e^$ $v_e + 0.154(v_{\mu}+v_{\tau})$

Combined with SK and SNO

Combined with SK and SNO

NuSTEC school

KamLAND

http://www.awa.tohoku.ac.jp/KamLAND/index.html

Re-use the Kamiokande cavern since 2001

- Reactor neutrinos (L~160km from the main reactor)
- Geo neutrinos
- Solar neutrinos

Delayed coincidence

8-14, Nov. 2015

Neutrino oscillation with reactors

KamLAND (reactor neutrino)

Discovery of neutrino oscillation for $\overline{v_e}$

NuSTEC school

Neutrino oscillation of Solar+KamL

Recent results in SK

Survival probability of solar ve

Another motivation

Day/Night differences

	Amplit	Straight calc.	
	Δm^{2}_{21} =4.84x10 ⁻⁵ eV ²	Δm^{2} 21=7.50x10 ⁻⁵ eV ²	(D-N)/((D+N)/2)
SK-I	-2.0±1.8±1.0%	-1.9±1.7±1.0%	-2.1±2.0±1.3%
SK-II	-4.4±3.8±1.0%	-4.4±3.6±1.0%	-5.5±4.2±3.7%
SK-III	-4.2±2.7±0.7%	-3.8±2.6±0.7%	-5.9±3.2±1.3%
SK-IV	-3.6±1.6±0.6%	-3.3±1.5±0.6%	-4.9±1.8±1.4%
combined	-3.3±1.0±0.5%	-3.1±1.0±0.5%	-4.1±1.2±0.8%
non-zero significance	3.0σ	2.8σ	2.8σ

 $(\sin^2\theta_{12}=0.311, \sin^2\theta_{13}=0.025)$

preliminary

First direct observation of matter effect in the neutrino oscillation

Recoil electron spectrum

to be continued...