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Chapter 1

INntroduction



Why guantum Monte Carlo? ( 1)
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Neutrino experimental communities need accurate theoretical calculations, with reliable error
estimates

QMC methods allow for solving the time-independent Schrédinger equation for nuclear
Hamiltonians and naturally provide estimates of the gaussian error of the calculation.




L epton-nucleus scattering

The inclusive cross section of the process in which
a lepton scatters off a nucleus and the hadronic
final state is undetected can be written as

d?o
dQdpd E

= L, W

* The leptonic tensor L,,W is fully specified by the lepton kinematic variables. For instance, in the
electron-nucleus scattering case

Ly = 2lkyuky, + Kok, — g (kK')]

- The Hadronic tensor contains all the information on target response

WH =% (Wl " ()| x ) (T x| T ()| W0)d™ (po + ¢ — px)

Note that the initial state does not depend on the momentum transfer!




Two-body currents and nuclear correlations

Two-body meson exchange currents and nuclear correlations need to be fully accounted for in ab initio
calculations of response functions

 |nitial State Correlations * Final State Interactions

U —

« Meson Exchange Currents




Non-relativistic regime

In the non-relativistic regime, typically corresponding to |q| < 500 MeV, both the initial and the
final state of the hadronic tensor are eigenstates of the nonrelativistic nuclear hamiltonian
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Why quantum Monte Carlo? (|l )

In the relativistic regime, the final state includes at least one particle carrying large momentum,
whereas the initial nuclear state is still an eigenstate of the nuclear Hamiltonian.

The spectral function formalism allow one to circumvent the difficulties associated with the

relativistic treatment of the nuclear final state and current operator, while at the same time preserving
essential features (such as correlations) inherent to the realistic description of nuclear dynamics
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The sum rule of the spectral function
corresponds to the momentum distribution
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The momentum distribution of nuclei as
large as '°O and “°Ca has been computed
using QMC fully accounting for the
correlations of the nuclear ground state




Chapter 2

Nuclear potentials and currents



The nuclear Hamiltonian

In both the non-relativistic and relativistic regimes, the the protons and the neutrons of the initial
nuclear state can be treated as point like non relativistic particles, the dynamics of which are
described by the hamiltonian

The two-body potential is the most studied of all, with thousands of experimental NN scattering
data points at laboratory energies from essentially zero to hundreds of MeV

Warning: non ab initio approaches DO NOT rely on the thousands NN scattering data

Attempts are now being made to understand NN interaction directly through lattice QCD, though
much more development will be required before it can be used directly in studies of nuclei

In the last two decades, advances have been made using chiral effective field theory, which
employs chiral symmetry and a set of low-energy constants to fit the NN scattering data.

Three-nucleon (3N) interactions effectively include the lowest nucleon excitation, the A(1232)
resonance, end other nuclear effects
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The Argonne v1g is a finite, local, configuration-space potential controlled by ~4300 np and pp
scattering data below 350 MeV of the Nijmegen database

It is expressed as a sum of electromagnetic and one-pion-exchange terms and phenomenological
intermediate- and short-range parts, which can be written as an overall operator sum
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The remaining operators, including quadratic spin-orbit interaction and charge symeetry breaking
effects, are needed to achieve the description of the Nijmegen scattering data with x~ >~ 1

The Argonne vig model has a total of 42 independent parameters. While the fit was made up to 350
MeV, the phase shifts are qualitatively good up to much larger energies > 600 MeV




Three-body potential

An Hamiltonian which only includes Argonne v1ig does not provide enough binding in the light
nuclei and overestimates the equilibrium density of symmetric nuclear matter.

Three-body force is needed

T
Urbana IX A
contains the attractive Fujita and
Miyazawa two-pion exchange interaction [
and a phenomenological repulsive term.
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three-pion exchange diagrams and the
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Nuclear currents

The nuclear electromagnetic current is constrained by the Hamiltonian through the continuity equation

V - Jem +i[H, Jpy] =0

» Because the NN potential does not commute with the charge operator, the above equation implies
that Jgnm involves two-nucleon contributions. They account for processes in which the vector boson
couples to the currents arising from meson exchange between two interacting nucleons.

* The inclusion of two-body currents is essential for low-momentum and low-energy transfer transitions.
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Chiral EF1

Chiral effective field theory (XEFT) has withessed much progress during the two decades since the
pioneering papers by Weinberg (1990, 1991, 1992)

In XEFT, the symmetries of guantum chromodynamics (QCD), in particular its approximate chiral
symmetry, are employed to systematically constrain classes of Lagrangians describing the interactions
of baryons with pions as well as the interactions of these hadrons with electroweak fields

Each class is characterized by a given power of the pion mass and/or momentum, the latter generically
denoted by p, and can therefore be thought of as a term in a series expansion in powers of p/ Ay,
where Ay ~ 1GeV specifies the chiral-symmetry breaking scale

Each class also involves a certain number of unknown coefficients, called low-energy constants (LEC’s),
which are determined by fits to experimental data

Until very recently, nuclear potentials derived within X EFT were highly non local. As a consequence,

implementing them in quantum Monte Carlo was not feasible



Chiral EF1

Recently chiral nuclear interactions have been developed that are local up to next-to-next-to-leading
order (N2LO). These interactions employ a different regularization scheme from previous chiral
interactions, with a cutoff in the relative NN momentum.

They are therefore fairly simple to treat with standard QMC techniques to calculate properties of nuclei
and neutron matter,
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Chiral EF1

Within XEFT nuclear potentials and currents obey a power counting scheme
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Chiral EF1

XEFT provides a framework to derive consistent many-body forces and currents and the tools to
rigorously estimate their uncertainties, along with a systematic prescription for reducing them

10
O v
110

0 [deg]

-20
-30

-40

1 0Q

' 10}
a 120 1 :
(O] 1 [
S, 20}
o [
-30}
1
0
fo)
3 -1
©
— -2
o]
-3
0 -4
0 100 200 300 0 100 200 300 0 100 200 300

Eiab [MeV] Eiab [MeV] Eiab [MeV]

QMC is the only method allowing to disentangle the theoretical uncertainty arising from the nuclear
interaction from the one associated with the many-body computational scheme.




Chapter 2 bis

More on nuclear currents and
correlations



Scattering off uncorrelated nucleons




Scattering off uncorrelated nucleons




Scattering off correlated nucleons




Scattering off correlated nucleons




Scattering off correlated nucleons




Scattering off correlated nucleons




Chapter 3

An overview on guantum Monte Carlo



Why Quantum Monte Carlo? ( Il

Quantum Monte Carlo provides us a way to go from
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Why Quantum Monte Carlo? (Il')

to... and more...
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Quantum Monte Carlo methods

Let us assume that

« The temperature of the system is much smaller than the Fermi energy

- We are interested in the ground-state properties of the system

Quantum Monte Carlo methods give us two options for solving the many-body Schrodinger
equation

Variational Monte Carlo (VMC)

In VMC, one assumes a form for the trial wave function and optimizes its variational

parameters, typically by minimizing the energy and/or the variance of the energy. The
expectation of the Hamiltonian is evaluated by means of Monte Carlo method.

Diffusion Monte Carlo (DMC)

“Exactly” solve the problem by projecting the ground state from an arbitrary initial guess
of the wave function by means of a propagation in imaginary time.



Chapter 3

Variational Monte Carlo



Variational Monte Carlo

Variational Monte Carlo uses the stochastic integration method to evaluate the expectation value of
the Hamiltonian for a chosen trial wave function, which depends on a set of variational parameters.
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Variational Monte Carlo

The variational principle guarantees that the energy of the trial wave function is greater than or
equal to the ground-state energy with the same quantum numbers as

V| H|W
(U7l ’T>>E0

Fr =
ET (OO T

The variational parameters are determined by minimizing the trial energy. In the atomic liquid “He
atoms case this amounts to

0Er _
ob
Note that, in order to compute the trial energy for a given set of variational parameters, the

following multi-dimensional integral in the degrees of freedom of the system (coordinates, spin
and isospin) has to be evaluated
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Multi dimensional integrals

Our goal consists in computing the following D-dimensional integral

by bp
I(D):/ d:cl.../ depF(xy,...,zp)

1 D

In the one-dimensional case, we can divide the area below to the curve into rectangles

I(1) ~h Z F(x;)

A(1) = h*|F'(z:)] + O(h%)

1
h -
XN

a X; b T

How many points do we need to achieve a given precision ?
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Multi dimensional integrals

A generalization of the As for the D-dimensional case, it is easy to find

(D) ~ hP Z F(x;)

A(D) = hWPTYVF(z;)| + O(RPT2) =»> Nx 5
1

hOCW

Note that more clever methods can be used, but the error is always proportional to h® .

Problem

How many points do we need to compute the expectation value of the Hamiltonian for a system
containing 12 particles interacting with a central potential with a precision ¢ = 0.1 ?



Multi dimensional integrals

A generalization of the As for the D-dimensional case, it is easy to find

(D) ~ hP Z F(x;)

A(D) = hWPTYVF(z;)| + O(RPT2) =»> Nx 5
1

hOCW

Note that more clever methods can be used, but the error is always proportional to h® .

Problem
How many points do we need to compute the expectation value of the Hamiltonian for a system
containing 12 particles interacting with a central potential with a precision ¢ = 0.1 ?

Solution
Because the potential is central, we will be dealing with a 36-dimensional integral

D=36 = N o 103¢ = [10'" hours on Miral!!




Monte Carlo quadrature

It clearly appears that standard numerical integration methods are not suitable to compute the
energy per particle (and other relevant quantities) of °C!

Problem
What do we do?



Monte Carlo quadrature

It clearly appears that standard numerical integration methods are not suitable to compute the
energy per particle (and other relevant quantities) of °C!

Problem

What do we do?

Solution

We wait for the rain to fall, we collect raindrops and then we measure how much rain has fallen...

Circle Area  wL?/4 m
Square Area L2 4




The central Imit theorem

Suppose that the N continuum random variables X1, ..., LN are drawn from the probability
distribution P(x) and consider the function f (). We may define a new random variable

L
SN = N Zf(xz)
i—1

If the samples are statistically independent, the central limit theorem states that the probability
distribution of S is gaussian

1 (SN_*EN)Q
P(SN) — e 7N

2
QWON

where the average and the variance of S are given by

Sy = / dzP(z)f(z) oN = \/ % [ / dzP(z)f2(z) — Sn

These results hold true for any dimensionality of the space in which the variable x is defined !!!




The central Imit theorem

Therefore, the central limit theorem provides a recipe to numerically evaluate multi-dimensional
integrals of the form

I = /dxf(x)

- Since the probability density has to be positive definite, rewrite the integral as:

I = /dacP(m) é((i))

- Sample N (with N “large”) points from the probability density P(a:')

- Average the N values of f(x;) and fQ(%)




The central Imit theorem

Two key aspects of Monte Carlo quadrature

* the error can be rigorously estimated

- the estimate of the error decreases as 1 / v N regardless of the dimensionality

Problem

How many points do we need to sample to compute the expectation value of the Hamiltonian for
a system containing 12 particles interacting with a central potential with a precisione = 0.1 ?



The central Imit theorem

Two key aspects of Monte Carlo quadrature

* the error can be rigorously estimated

- the estimate of the error decreases as 1 / v N regardless of the dimensionality

Problem
How many points do we need to sample to compute the expectation value of the Hamiltonian for
a system containing 12 particles interacting with a central potential with a precisione = 0.1 ?

Solution
N o €2 ~ 100

Problem
And what about a system containing 36 particles (interacting with a central potential) ?



The central Imit theorem

Two key aspects of Monte Carlo quadrature

* the error can be rigorously estimated

- the estimate of the error decreases as 1 / v N regardless of the dimensionality

Problem
How many points do we need to sample to compute the expectation value of the Hamiltonian for
a system containing 12 particles interacting with a central potential with a precisione = 0.1 ?

Solution
N o €2 ~ 100

Problem
And what about a system containing 36 particles (interacting with a central potential) ?

Solution
THE SAME Il



Variational Monte Carlo

Remember that the numerator of the expectation value of the Hamiltonian for a system
containing A particles interacting with a spin-independent potential reads

Er = / dR UL (R)H U1 (R)

In order to use the central limit theorem, the former integral has to be rewritten as

Ep - / IR |Ur(R)|2EL(R)

where we have defined the local energy

HYr(R)
U7 (R)

EL(R) —

Since it is positive and integrable, |\PT(R) \2 can be regarded as a probability density.

In order to compute the trial energy one has to find a way to sample \‘PT(R) \2




M(RT)? algorithm

The algorithm was first described in a paper by Metropolis, Rosenbluth, Rosenbluth, Teller and
Teller M(RT)?. It shares common features to the rejection techniques because:

« It involves explicitly proposing a tentative value of the variable we want to sample,
which may be rejected.

- The normalization of the sampled function is irrelevant.

M(RT)? algorithm has its own advantages and disadvantages:

Pros Cons

* It can be used to sample essentially « Sampling is correct only asymptotically
any density function regardless of
analytic complexity in any number of « Consecutive variables produced are
dimensions often very strongly correlated

: L * Not well suited to sample distributions
- Itis of very great simplicity. with parameters that change

frequently.




M(RT)? algorithm

To begin with, consider a 1-D harmonic oscillator. We want to sample the probability distribution
described by the modulus squared of our trial wave function

P(z) = |Ur(z))? Wr(x) = exp <_a %2>

M(RT)? algorithm is based on the idea of random walk in the space of the random variable ' The

game consists of generating a random variable applying a transformation to another. This “moving”
point is called walker.

Transition

4 probabilit
Piti(xi41) = /dfCiPi(fﬁi)T(xi — Tit1) ’ !

By recursively applying the same transformation we get

Pn(ZL‘n) — /dil?l e dil?lpl (lel)T(Zﬁl — 332) ce T(il?n_l — Qﬁn)

Under some very general conditions it can be proven that

lim P,(z,) = P(x) = where P(x) only dependson T

n—oo




M(RT)? algorithm

Let us impose a further condition, i.e. that the asymptotic distribution is an “equilibrium” state:
P(x)I'(x —y) = Py)T(y — x)

The latter is called detailed balance condition, because it does not hold only on average, but it
tells that point by point there is no net flux of probability!

We can arbitrarily split the transition probability in two terms

T(r —y) =Gz —y)Alr —y) It tells wether the
It describes the probability of P | I >  proposed move is
moving the walker fromx — v. gcczpted or rejected

The detailed balance then reads
Aly »z)  P(r)G(r —y)

Alz —y)  Ply)Gly — )

It can be easily checked that the following acceptance probability satisfies the above requirement

P(x)G(x — y))
P(y)G(y — )

A(y — x) = min (1,




M(RT)? algorithm

In QMC we use a very simple prescription for G(:I: — y) which in 1-D corresponds to shifting a
point by a value distributed according to a gaussian distribution

In the many-particle case, the one dimensional gaussian is replaced by a three-dimensional one
for each of the particles.

Since the probability of going from x to y is the same as the one for going from y to x, it turns out

that
Glzr—>y)=Gy—=z) <@ |Aly— )= min (1, ig;)




M(RT)? applied to VMC

At this point, we can describe the Metropolis algorithm for a VMC calculation in the 1-D case

Step 0 - Start from a “flat” distribution of walkers on the coordinate x

Step 1 - Move the walkers according to G(:I:Z- — yi+1), ie. Yir1 =2x;+C

(

U (Yit1)]?
Step 2- Compute the acceptance probability A(x; — y;41) = min (17 ’ |£(?Z;+;|)2‘ )
T\T;

(

Step 3- Accept or reject the proposed move

"I’T(yi+1)’2
X = Y;
U (2, > ¢ = Titl = Yitl

\‘I’T(yiﬂ)’z
< I, = I;
Vp(z)p =& T T



But how do we sample from a Gaussian?

Fortran, C, Python, have their own random number generators. These generators provide you with
random numbers &; uniformly distributed between 0 and 1

Problem

Given &1and &2 uniformly distributed between 0 and 1, how can we sample ¢ from a normal
gaussian distribution?



But how do we sample from a Gaussian?

Fortran, C, Python, have their own random number generators. These generators provide you with
random numbers &; uniformly distributed between 0 and 1

Problem

Given &1and &2 uniformly distributed between 0 and 1, how can we sample ¢ from a normal
gaussian distribution?

Solution
We use the Box-Mueller method:

(1= +/—21In(1 — &) cos(2mE) (o = v/—2In(1 — &) sin(27&y)

are both distributed according to

P(¢) = e %

The only drawback of this method is that it is fairly slow (but more than OK for our QMC purposes)



But how do we sample from a Gaussian?

function rgauss(irn)

implicit none

integer, parameter :: i8=selected_int_kind(15)
integer, parameter :: r8=selected_real_kind(15,9)
real(kind=r8) :: pi

real(kind=r8) :: rgauss,xl,x2

integer(kind=i8) :: irn

call ran(x1,irn)

call ran(x2,irn)

pi=4.0_r8xatan(1.0_r8)

rgauss=sqrt(-=2.0 r8%log(x1l))*cos(2.0 r8xpixx2)

return
end K\\ //f

uniformly distributed between 0 and 1



ANnd In practice the acceptance...

How do we sample the acceptance probability? Well, we first compute the ratio

\qﬁf(y¢+1)2
W (z;)|?
Then we roll the dice! We sample a random number § uniformly distributed between 0 and 1 and
U (yiy1)]? U (yiy1)]?

< & Move rejected

> £ Move accepted

W ()] W ()]

Ur(x) = exp (—ax®/2

- (~aa?/2)
prob=exp(-=alphakx(xnewk*2=xo(n)*x%x2))
call ran(csi,irn)

Accepted — if (csi.lt.prob) then

xn! n ! =Xnew

nacc=nacc+
Rejected —> else

xn(n)=xo(n)
endif



M(RT)? applied to VMC

Problem (at this point duable!)
Given the 1-D harmonic oscillator Hamiltonian

find the optimal variational parameter of the following trial wavefunction

X

w01 = xp (o)



M(RT)? applied to VMC

Problem (at this point duable!)
Given the 1-D harmonic oscillator Hamiltonian

find the optimal variational parameter of the following trial wavefunction

w01 = xp (o)

Solution

» Use the M(RT)? described earlier to sample the position x; of the walkers

« After some “equilibration” steps, compute the local energy of a given configuration

H\I/T(ZCZ) « $2 2
_ =T
Ul 2 gt

Er(z;) =

- Accumulate statistics, try a new o and iterate!



Nuclear VMC wave function

A good trial wave function to describe a nucleus has to reflect the complexity of the nuclear potential

It contains 3-body correlations stemming from 3-body potential

Up= |1+ Y UL Up <@ Uy =eaViy + eVl

ijk
i<j<k

The pair correlated wave function is written in terms of operator correlations arising from the 2-body
potential

Up = 5H(1+Uij) Vv, @@= U= Z u?(ri;) Oy

1<J p=2,6

The total antisymmetric Jastrow wave function depends on the quantum numbers of the given
nucleus

\IJJ: H chk H Z'Cj (I)A(JaMaTanS)

1<j<k 1<J




Green’s Function Monte Carlo

* A walker associated with wave function of the nucleus, do not only describes the positions
of the protons and neutrons, but also their spin and isospin!

 The GFMC wave function is written as a complex vector, the coordinates of which represent
a spin-isospin state of the system

e The 3H case fits in the slide!
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Green’s Function Monte Carlo

The wave function can be expresses as a sum over spin-isospin states

Question (easy)

How does the number of
spin- states grow with the
number of particles?

Wo(ry...Ta)) = » UG(ri...Ta)|a)
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Green’s Function Monte Carlo

The wave function can be expresses as a sum over spin-isospin states
N
(Wo(ry...ra)) = E Uo(ry...ra)la)
a=1

Question (easy)
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Green’s Function Monte Carlo

The wave function can be expresses as a sum over spin-isospin states
N
(Wo(ry...ra)) = E Uo(ry...ra)la)
a=1

Question (easy)

1e-|—08 n T T [
How does the number of -
spin- states grow with the let07 L
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Solution  fet00F
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Green’s Function Monte Carlo

The wave function can be expresses as a sum over spin-isospin states

Question (easy)

How does the number of
spin- states grow with the
number of particles?

Solution
2A

Question (not so easy)

What about the number of
states in the charge basis?

(2)

Solution

Wo(ry...Ta)) =Y UG(ri...ra)la)

Number of states
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Need to go beyond MP

« GFMC has steadily undergone development to take advantage of each new generation of
parallel machine and was one of the first to deliver new scientific results each time.




Using supercomputers

« GFMC has steadily undergone development to take advantage of each new generation of
parallel machine and was one of the first to deliver new scientific results each time.
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Chapter 4

Diffusion Monte Carlo



Diffusion Monte Carlo

- The accuracy of a VMC calculation is limited by the knowledge of the trial wave function.

« The diffusion Monte Carlo (DMC) method, overcomes this limitation by using a projection
technique to enhance the true ground-state component of a starting trial wave function.

« The method relies on the observation that the trial wave function can be expanded in the
complete set of eigenstates of the the hamiltonian according to

W) :chmj’n> H|U,) = Ep[¥n)

n

which implies

lim e~ H=EOT|QL) = 0| W)
T—00

where T is the imaginary time. Hence, DMC projects out the exact lowest-energy state, provided
the trial wave function it is not orthogonal to the ground state.




Diffusion Monte Carlo

+ The direct calculation of e~ (H —Fo)7

difficulties

for strongly-interacting systems involves prohibitive

 To circumvent this problem, the imaginary-time evolution is broken into N small imaginary-time
steps, and complete sets of states are inserted

e H=E)T 1 1) = / dR; ...dRN|RN)(Rn|e " H=EIAT IRy 1) L

ce . <R2’6_(H_EO)AT‘R1>\I/T(R1)

Note the analogy with the Feynman’s path
integrals in quantum and statistical mechanics !!!

- At imaginary-time ;411 = (¢ + 1) A7 the walkers are distributed according to

U(Tiv1, Rit1) = /dRz'<Rz'+1\e(H_EomT!RQ‘I’(TuRz')



Diffusion Monte Carlo

The problem is then reduced to computing the short-time Green’s function of the system

G(Ri = Riy1,AT) = (Rile”(T=PIAT|R, )

The analytic solution of Green’s function of the full hamiltonian is in general not known. An
approximation to the Green’s function can be obtained using the Trotter Suzuki formula

<R¢’€_(T+V_EO)AT‘R¢+1> _ 6E0AT <Ri’€_TAT6_VAT‘R7:+1> + O(ATQ)

In the limit of small time-step, the Green’s function factorizes

G(RZ — Ri_|_1, AT) ~ Gd(Rz — Rz‘+1, AT)G()(RZ — Rz’—|—17 AT)



Diffusion Monte Carlo

The free Green’s function satisfies the master equation of a diffusion stochastic process

h2
—QGCZ(R — Rz—l—l; AT)

°G4(R; — R, 1. A
87_ v d( % ‘|‘17 T)

2m

It is given by a 3A-dimensional Gaussian describing the Brownian diffusion of A particles with a
dynamic governed by random collisions

3A

Gd(Rz — Ri_|_1, AT) — (QW;?;’AT) 2 - — (Ri—Riy1)?

The branching Green’s function, on the other hand, is simply given by

Gp(Ri = Rip1,AT) = e~ [V(Rit1)—Eo]AT

Hence, at the imaginary time 7,11 = (¢ + 1) AT the walkers are distributed according to

3A

U(Tip1, Riy1) = (27T7;7;AT)T/CZRZ-@ srtar (BimRit1)” o= [V(Riv1) = Bol ATy (1. R




Diffusion Monte Carlo

v(x) » A set of walkers is sampled from the trial wave
function

» Gaussian drift for the kinetic energy

1
2 2
( m )26—2;12%(%—%1)

2wh2 AT

* Branching and killing of the walkers induced
by the potential weight

w(wipr) = e VT = FolaT

- Ground-state expectation values are estimated
during the diffusion

>z (i H W) w(z;)

) = S ()




DMC for the 1d harmonic oscillator
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Importance sampling

The algorithm as it was shown so far is not suitable for potentials presenting a divergent behavior

- A strongly repulsive potential (e.g. repulsive Coulomb, Lennard-Jones, Argonne v1sg) will
result in a very fast absorption of walkers, eventually killing the whole population.

- An attractive potential (e.g. Coulomb attraction between the nucleus and electrons in an
atom) will generate an exponentially growing population

The idea of the importance sampling technique consists in using the knowledge of the trial wave
function to guide the imaginary-time projection. Consider

f(Tz', Rz) — \I/T(RZ)\IJ(TZ, RZ)

Its imaginary-time evolution is given by

Ur(Rit1)
Ur(R;)

f(Ti—|—17 Ri_|_1) = /dR@Gd(Rz — R7;_|_1, AT)G()(RZ — Ri_|_1, AT) f(Ti, Rz)




Importance sampling diffusion Monte Carlo

( ) » A set of walkers is sampled from the trial wave
vl function

» Gaussian drift for the kinetic energy

1
2 2
( m ) ’ PR (2i—@it1)

2wh2 AT

* Branching and killing of the walkers induced
by the potential weight

ey moar U (@)
) = [ (xz—l—l) EO]AT T 1+1
w\xr;) — €

- Ground-state expectation values are estimated
during the diffusion

(s | H| U7
) Ty

2 e, W(T3)

w(z;)

(H) =



Importance sampling diffusion Monte Carlo

The importance sampling can also be implemented by adding a drift in the free Green’s function

3A

~ . . _ m 2 - —[Ri—Ri 1—h2nf7’0 (Rit1)]
GalFi = Rip1, A7) = (QWHZAT) © e ) o
where the drift velocity is given by
VUr(R)
R) =

The branching Green’s function is also modified according to

HYr(R)
T (R)

Co(Ri — Risy, A7) = e~ [FL(Bis)-FolAT  gulpe E(R) =

Question
What is the most efficient implementation?

Solution
It depends on the problem. In general, the latter is the most efficient, as the diffusion process is

driven by the trial wave function. Also, the local energy is more stable than the potential energy.



There is a LOT more to say...

So far we have implicitly assumed that the wave function can be given a probabilistic interpretation,
but a fermionic wave function is NOT positive definite. In the nuclear case it is not even real!

Since the ground-state of a given Hamiltonian is always bosonic, searching for the ground-state
energy of a fermionic system is very similar to project onto an excited state.

However, since we are projecting onto 0 ! . . . ! P .
an antysimmetric trial wave function, O binding energy —o—
what really happens is that energy 920 L : 19
. . - -
converges to exact eigenvalue with an less EFT potential
exponentially growing statistical error. . 1
In other words, the signal to noise 40 R
ratio decays exponentially. = _
= -60 geit
This issue, known as sign problem, M M-
is common to all Monte Carlo -80 -
approaches when applied to L1l o
fermionic system, including Lattice 2100 F ol |
Many workarounds: fixed node, -120 : : : : : : : : |l
constrained path... but no definitive 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

solution so far. T



Chapter 5

How do we compute the electroweak
response functions”



Integral transform techniques

* We want to compute the following response functions (nonrelativistic limit of the hadronic tensor)

Rop(w,q) = > (UolJL (@) s) (P s|Ts(a)|Wo)
f
* The integral transform of the response function are generally defined as

E.p(o,q) = /dwK(a,w)Raﬁ(w,q)

* Using the completeness of the final states, they can be expressed in terms of ground-state
expectation values

Eus(0.q) = (Wol Ji(a)K (o, H — Eg)Js(a)| W)




L orentz integral transform (LIT)

* The Lorentz integral transform

K(o,w) = 1 5 * More recently, in combination with the
(w—0oRr)? + 07 coupled-cluster method, Lorentz
o integral transform has been applied to
the calculation of electromagnetic of nuclei as large as 180 ,220 and “°Ca.
and neutral-weak responses of light
nuclei.
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Euclidean response function

0.04 T T
: Ryz(w,q) ——
The the Kernel of the Euclidean response oo h;j;:} L
defines the Laplace transform o 0.01 M-l -----
e 7= 0.05 MoV~ =weeeee ]
K(r,w) =€ T
= 0.02 -
=
At finite imaginary time the contributions 001 L
from large energy transfer are quickly '
suppressed
0 ' - ' :
50 100 150 200 250 300
w[MeV]

The system is first heated up by the transition operator. How it cools down determines the

Euclidean response of the system

%%) ‘fg

<=>

(ol L (@)™~ F0)7 J5(q)|[Wo)

(WoleH=Eo)T W)



12C electromagnetic Euclidean response

In the electromagnetic transverse case, two-body current contributions substantially increase the one-
body response. This enhancement is effective over the whole imaginary-time region we have
considered.
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Inversion of the Euclidean response

The Euclidean response formalism allows one to extract dynamical properties of the system
from its ground-state.

» Best suited for quantum Monte Carlo approaches

» Wide range of applicability: atomic physics, cold atoms, neutrino scattering, neutron star
cooling...

Inverting the Euclidean response is an ill posed problem: any set of observations is limited and
noisy and the situation is even worse since the kernel is a smoothing operator.

it
A

We have found maximum entropy technique to be best suited for our purposes.

Eozﬁ (7-7 q) —) RozB (w7 q)



Image reconstruction from incomplete

and noisy data
S. F. Gull & G. J. Daniell

Mullard Radio Astronomy Observatory, Cavendish Laboratory, Madingley Road, Cambridge, UK

Results are presented of a powerful technigue for image
reconstruction by a maximum entropy method, which is
sufficiently fast to be useful for large and complicated

images. Although our examples are taken from the fields of

radio and X-ray astronomy, the technique is immediately
applicable in spectroscopy, electron microscopy, X-ray crys-
tallography, geophysics and virtually any type of optical
image processing. Applied to radioastronomical data, the
algorithm reveals details not seen by conventional analysis,
but which are known to exist.

- - - ~ - . - -

To avoid abstraction, we shall refer to our radioastronomical
example. Starting with incomplete and noisy data, one can obtain
by the Backus-Gilbert method a series of maps of the distribution
of radio brightness across the sky, all of which are consistent with
the data, but have different resolutions and noise levels. From the
data alone, there is no reason to prefer any one of these maps, and
the observer may select the most appropriate one to answer any
specific question. Hence, the method cannot produce a unique
‘best’ map of the sky. There is no single map that is equally
suitable for discussing both accurate flux measurements and
source positions.

Nevertheless, it is useful to have a single general-purpose map
of the sky, and the maximum-entropy map described here fulfils

Nature, 272, 688 (1978)



*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only in the dip
region, but also in the quasielastic peak and threshold regions.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only in the dip
region, but also in the quasielastic peak and threshold regions.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only in the dip
region, but also in the quasielastic peak and threshold regions.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only in the dip
region, but also in the quasielastic peak and threshold regions.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only in the dip
region, but also in the quasielastic peak and threshold regions.
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12C electromagnetic response

* Preliminary results on the inversion of the C Euclidean response are promising.
Need for more statistic (and computing time) and improved inversion techniques.
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12C electromagnetic response

* Preliminary results on the inversion of the C Euclidean response are promising.
Need for more statistic (and computing time) and improved inversion techniques.
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This is the end (for now)

Question
Solve the sign problem



The hyperon puzzle

The appearance of hyperons in the inner core of the star strongly depends on the details of the

underlying hypernuclear force

« The same hyperon-nucleon
potential has been employed in
AFDMC calculations to
determine the equation of state
and the mass-radius relation of
an infinite system of neutrons
and A particles.

« Possibility of a 2 solar masses
neutron star: new hints for the
solution of the hyperon puzzle.
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