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NUSTEC

Quasielastic and Elastic ν−scattering processes on Nucleons and
Nuclei

Basic Processes on Nucleon Target
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Quasielastic and Elastic ν−scattering processes on Nucleons and
Nuclei
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NUSTEC

Why are they important ??

Structure of hadrons and nuclei

Nucleon Form factors

Size, charge-distribution, axial charge, Magnetic moment distributions, etc.

Strangeness content of the Nucleon

Test the models for Nucleon Structure

Precision tests of QCD

Non nucleonic degrees of freedom in nuclei

Short and long range correlations, Meson exchange currents in vector
and axial vector sector, sub nucleonic degrees of freedom in nuclei
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NUSTEC

Why are they important ??

Structure of Weak interaction and its applications

Tests of CVC and PCAC

Tests of second class currents: G invariance & T invariance

Precision tests of standard model and presence of NSI

Dynamics of core collapse processes

Tests of models for nucleosynthesis

Tests for solar models and models for Earth’s interior
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NUSTEC

Why are they important ??

Neutrino properties and interactions

Neutrino mass, magnetic moment

Neutrino oscillation parameters

CP violation in lepton sector

Mass Hierarchy of neutrino mass ∆m2
i
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Specifically in the Context of Neutrino Oscillations

Most important input in analysis of present oscillation experiments in
∼ GeV region
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Most important input in analysis of present oscillation experiments in
∼ GeV region

Sources of largest signal in
appearance channel
in which you produce neutrinos of one type but observe neutrinos of a

different type – the signal is the observation of a non-zero number of this

different type (after allowing for any backgrounds).

νl(ν̄l) → νl′ (ν̄l′ ) l 6= l′

disappearance channel
in which you know how many neutrinos of a specified type you produce, and

you count the number of that same type of neutrinos that you detect at

distance L – the oscillation signal is a deficit in the number observed;

νl(ν̄l) → νl(ν̄l)
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Specifically in the Context of Neutrino Oscillations

Validation of νµ(ν̄µ) flux from cross section measurements in ND for
various nuclei like 12C ,16 O,37 Ar ,56 Fe.

Determination of Eν energy in terms of measured Eµ and θ.

Eν =
2MnEl − m2

l − (M 2
p − M 2

n)

2
(

Mn − El + |~k′|cosθ
)

Nuclear effects arise due to
Binding energy
Fermi motion
QE like events(meson exchange currents, multi nucleon correlation... )

Eν is important in ν−oscillation analysis because

P(νe → νµ) = sin2(2θ)sin2
(

1.27 △ m2 L(km)
Eν (GeV )

)

6 / 1



NUSTEC

Specifically in the Context of Neutrino Oscillations

A comparative study of Neutrino- Nucleon cross section for νµ(ν̄µ) in
appearance channel and νe(ν̄e) in disappearance channel induced
reactions are important for studies of CP violation, Mass Hierarchy.

A comparative study of νµ(νe) and ν̄µ(ν̄e) are important for the
determination of neutrino oscillation parameters.

A knowledge of QE like events gives information about various nuclear
effects beyond single particle Model like

Short range and long range correlations
Meson Exchange currents
Multi-nucleon contributions

A precise knowledge of QE and QE like events helps to reduce
systematic errors in the analysis of all neutrinos oscillation
experiments.
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NUSTEC

QE ν−Nucleus scattering in the historical perspective

First Calculation of QE ν−Nucleus Scattering
In 1934 Bethe and Peierls after Pauli(1930), proposed ν. Fermi(1933)
proposed theory of β decay. Similar matrix elements are involved in
nuclear transitions :
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QE ν−Nucleus scattering in the historical perspective

First Calculation of QE ν−Nucleus Scattering
In 1934 Bethe and Peierls after Pauli(1930), proposed ν. Fermi(1933)
proposed theory of β decay. Similar matrix elements are involved in
nuclear transitions :

σ =
A

T 1
2

; A = Area × time ≈ R2 × R

C

R = h̄
meC

−→ σ ≈ 10−44cm2 −→ unobservable

1946 Pontecorvo proposed experiments at reactors with high ν̄e fluxes

1953-56 Reines and Cowan ν̄e + p → n + e+

1956 Davis νe 6= ν̄e; ν̄e + Cl 9 Ar + e−

Both experiments are performed at Savanah river reactor site
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σ =
1

Tc

(

h̄

mec

)3

≈ 10−44cm2
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σ =
1

Tc

(

h̄

mec

)3

≈ 10−44cm2

Fission and S.N. reaction

ν̄e + p −→ n + e+;

ν̄e + d −→ n + n + e+
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NUSTEC

σ =
1

Tc

(

h̄

mec

)3

≈ 10−44cm2

Fission and S.N. reaction

ν̄e + p −→ n + e+;

ν̄e + d −→ n + n + e+

Later at accelerator neutrinos, the following reaction was studied in detail

νµ + d −→ µ− + p + p
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� Problem :
Calculate reaction cross section for the reactions.

ν̄e +p −→ n + e+;

 0

 1

 2
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 0  1  2  3  4  5  6  7  8  9  10

xs
ec

 in
 1

0- 42
 c

m
2

E (MeV)
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NUSTEC

After this many people proposed experiments with accelerator
neutrinos in late 1950’s Cowan(1956), Markov(1960),
Pontecorvo(1958),Schwartz(1960), Asarav(1960)

Theoretical calculations first done in Fermi theory with V-A
interactions for free nucleons, Lee and Yang(1960), Cabibbo and
Gatto(1960), Yamaguchi(1960)

With nuclear effects calculated by, Berman(1961), Loveseth(1963), Bell
and Llewellyn-Smith(1964)

Many experiments have been done on QE ν− Nucleus scattering in the
entire energy region of neutrinos with reactor, solar, atmospheric and
accelerator neutrinos.
A list is given below:

N Low energy ν−N scattering with reactor, solar, atmospheric and
accelerator neutrinos.

N Intermediate and high energy experiments with accelerator neutrino
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Reactor ν̄ Target Year

Savannah River 37Cl, d 1953-56, 1979
ILL Greneble H , d 1981, 1995

Gosgen H 1986
Krasnoyavsk H , d 1987, 2000

Rovno H , d 1991
Bugey H 1994-95

Palo Verde H , d 2001
CHOOZ H , d 2003

KamLAND H2O 2011
Daya Bay H2O 2011

RENO H2O 2011
JUNO H2O 2014
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Solar ν Target Year

Homestake 37Cl 1967

SAGE 71Ga 1990

GALLEX 71Ga 1990
SNO, SNO+ D2O 1999

Atmospheric ν Target Year

KGF Fe, Ne 1965
KAMIOKA H2O 1983

SuperK H2O 1999
ICECUBE Ice 2006

Other sources of ν Target Year

LAMPF H 1980

GALLEX 71Ga 1991

KARMEN 12C , 56Fe 1991-2005

LSND 12C , 127I 1997-2003

SAGE 71Ga 1999-2006
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Accelerator ν Target Year

GGM(CERN) C2H6, CF3Dr 1964-79
ANL Fe, D2 1969-1982
BNL D2, H2 1980-83

FNAL D2, Ne − H2 1982-84
Serpukhov Al 1985

SKAT CF3Br 1988-92
BEBC D2 1990

NOMAD CH2 2000
MiniBooNE CH2 2002

K2K CH2, H2O 2003-2004
SciBooNE CH 2007
ArgoNeuT Ar 2009

MicroBooNE Ar 2009
MINERνA C ,Fe,Pb 2009

NOνA CH 2010
T2K H2O 2010

LBNO Ar ,CH2 future
DUNE Ar ,CH2 future
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After this many people proposed experiments with accelerator
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Theory of QE ν− Nucleus scattering

Two ingredients are needed

1. Theory of ν−Nucleon scattering

Standard model

Non Standard Interaction and Beyond Standard Model physics
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Theory of QE ν− Nucleus scattering

Two ingredients are needed

1. Theory of ν−Nucleon scattering

Standard model

Non Standard Interaction and Beyond Standard Model physics

2. Nuclear model to describe Nucleons bound in Nucleus

Fermi Gas Model and its various versions

Shell Model with two body correlations treated in various ways.

Relativistic Mean Field theoretical Models

Relativistic Green Function approach with complex optical potential

Superscaling Approximation(SuSA)
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Theory of QE ν− Nucleon scattering

ν−N scattering in the Standard Model

Quasi elastic

|∆S | = 0

νl + n −→ l− + p

ν̄l + p −→ l+ + n

|∆S | = 1

ν̄l + p −→ l+ + Λ0

ν̄l + p −→ l+ + Σ0

ν̄l + n −→ l+ + Σ−

Elastic scattering

νl(ν̄l) + p −→ νl(ν̄l) + p

νl(ν̄l) + n −→ νl(ν̄l) + n

Quasi elastic

|∆S | = 0

νl + n −→ l− + p

ν̄l + p −→ l+ + n

|∆S | = 1

ν̄l + p −→ l+ + Λ0

ν̄l + p −→ l+ + Σ0

ν̄l + n −→ l+ + Σ−

Elastic scattering

νl(ν̄l) + p −→ νl(ν̄l) + p

νl(ν̄l) + n −→ νl(ν̄l) + n

νl + n −→ l− + Σ+;∆Q = −∆S

νl(ν̄l) + p −→ νl(ν̄l) + Σ0

νl(ν̄l) + p −→ νl(ν̄l) + Λ0

}

FCNC

Not allowed in standard model:
Beyond Standard Model ??
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NUSTEC

Theory of QE ν− Nucleon scattering

Kinematics: Free nucleons and
nuclear effects

νl(k) + n(p) −→ l−(k′) + p(p′)

qµ = (k − k′)µ = (p′ − p)µ;

q2 = m2
µ − 2EνEl + 2Eν |~k′|cosθ
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q2 = m2
µ − 2EνEl + 2Eν |~k′|cosθ

Q.E. kinematics: p′2 = p2 =⇒ (p +q)2

In lab frame

q0 =
−q2 + M 2

p − M 2
n

2Mn

Eν =
2MnEl − m2

l − (M 2
p − M 2

n)

2
(

Mn − El +
√

E2
l

− m2
l

cosθ
)

Eν =
El

1 − El(1−cosθ)
M

El =
Eν

1 +
Eν (1−cosθ)

M

In the limit ml = 0
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Theory of QE ν− Nucleon scattering

Kinematics: Free nucleons and
nuclear effects

νl(k) + n(p) −→ l−(k′) + p(p′)

qµ = (k − k′)µ = (p′ − p)µ;

q2 = m2
µ − 2EνEl + 2Eν |~k′|cosθ

Q.E. kinematics: p′2 = p2 =⇒ (p +q)2

In lab frame

q0 =
−q2 + M 2

p − M 2
n

2Mn

Eν =
2MnEl − m2

l − (M 2
p − M 2

n)

2
(

Mn − El +
√

E2
l

− m2
l

cosθ
)

Eν =
El

1 − El(1−cosθ)
M

El =
Eν

1 +
Eν (1−cosθ)

M

In the limit ml = 0

Problem : Derive expressions for Eν & El(ml 6= 0)
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The quasi-elastic peak will be at

q0 = ∆E =
−q2

2M

But in nuclei
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The quasi-elastic peak will be at

q0 = ∆E =
−q2

2M

But in nuclei
The peak will be shifted due to binding energy

Eν =
2(Mn − EB)E′

l
− m2

l
− EB(EB − 2Mn) − (M2

p − M2
n )

2
(

Mn − EB − El + |~k′|cosθ
)

Instead of δ function, peak at q0 = −q2

2M
, the peak will be broadened due

to Fermi motion and width will be a measure of Fermi momentum

distribution of nuclei ≃ q0 ≃
(~p+~q)2

2Mn

It is indeed so in the case of electron scattering.

In case of neutrino scattering where neutrinos have a energy spectrum,
the situation is more complicated.
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Eν reconstruction is affected by the nuclear effects in the following
way:

Smearing due to Fermi motion may introduce an error of about 60
MeV.

More important are the QE like events, whose energy dependence is
quite different than genuine QE events. May lead to an energy shift of
about 150MeV around Eν ∼ 1GeV .

The lepton energy(and angles) of these QE like events correspond to
the scattering from strongly correlated nucleons(not quasi-free) or
mesons in flight or nucleons in excited state for which the above
kinematics does not hold.

One needs theoretical inputs for description of QE like events to make
correction for those events in determination of Eν .
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NUSTEC

Neutrino nucleon scattering

Interaction Lagrangian and matrix element in SM

Lint = − g

2
√

2
JCC

µ W +µ + h.c − g

2cosθw
JNC

µ Zµ

Gf√
2

=
g2

8M 2
w

,
MW

MZ
= cosθw
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2cosθw
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µ Zµ

Gf√
2

=
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8M 2
w

,
MW

MZ
= cosθw

with

JCC
µ = P̄γµ(1 − γ5)VCKM N + ν̄lγµ(1 − γ5)e + h.c.
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Neutrino nucleon scattering

Interaction Lagrangian and matrix element in SM

Lint = − g

2
√

2
JCC

µ W +µ + h.c − g

2cosθw
JNC

µ Zµ

Gf√
2

=
g2

8M 2
w

,
MW

MZ
= cosθw

with

JCC
µ = P̄γµ(1 − γ5)VCKM N + ν̄lγµ(1 − γ5)e + h.c.

with P = (u,c, t), N = (d,s,c), VCKM = CKM matrix

and

JNC
µ = Σi Ψ̄iγµ(I3i − Qi sin2 θw)Ψi

where i runs over all fermions of SM.i.e.

(

νl

e−

)

L

, (νl , l)R , l = e,µ,τ

I3 is weak isospin and Q is the charge of ith fermion.
Quark doublets of L−handed quraks and singlet for R−handed quarks for

all generators.
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NUSTEC

Interaction Lagrangian and matrix element in SM

Translated at Nucleon level and assuming M 2
W , M 2

Z >> q2 in the W,Z
propagator we obtain the SM Lagrangian at Nucleon level:

Lint = − GF√
2

aJ
h
µl

µ
+ h.c.

for CC
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Translated at Nucleon level and assuming M 2
W , M 2

Z >> q2 in the W,Z
propagator we obtain the SM Lagrangian at Nucleon level:

Lint = − GF√
2

aJ
h
µl

µ
+ h.c.

for CC

J
h
µ = V

1+i2
µ − A

1+i2
µ

for ∆S = 0 CC, a = cosθc

J
h
µ = V

4+i5
µ − A

4+i5
µ

for ∆S = 1 CC, a = sinθc

22 / 1



NUSTEC

Interaction Lagrangian and matrix element in SM

Translated at Nucleon level and assuming M 2
W , M 2
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propagator we obtain the SM Lagrangian at Nucleon level:

Lint = − GF√
2

aJ
h
µl

µ
+ h.c.

for CC

J
h
µ = V

1+i2
µ − A

1+i2
µ

for ∆S = 0 CC, a = cosθc

J
h
µ = V

4+i5
µ − A

4+i5
µ

for ∆S = 1 CC, a = sinθc

V NC
µ − ANC

µ

V
NC
µ = V

3
µ − 2sin

2
θwJ

eµ
µ − 1

2
(V

S
µ − A

S
µ),

for ∆S = 0, NC, a=1

A
NC
µ = A

3
µ − 1

2
A

S
µ
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Translated at Nucleon level and assuming M 2
W , M 2

Z >> q2 in the W,Z
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h
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µ

for ∆S = 0 CC, a = cosθc

J
h
µ = V

4+i5
µ − A

4+i5
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for ∆S = 1 CC, a = sinθc

V NC
µ − ANC

µ

V
NC
µ = V

3
µ − 2sin

2
θwJ

eµ
µ − 1

2
(V

S
µ − A

S
µ),

for ∆S = 0, NC, a=1

A
NC
µ = A

3
µ − 1

2
A

S
µ

Superscript i in V i
µ and Ai

µ refer to SU(3) index and S refers to the
strangeness current which are isoscalar.
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Matrix elements and Form factors

With the Lagrangian, we define the matrix elements corresponding to
CC and NC processes.

CC processes:
νl(k) + n(p) −→ l−(k′) + p(p′)

M =
Gf cosθc(sinθc)√

2

〈

p′ | Jcc
µ | p

〉

ν̄lγ
µ(1 − γ5)l

〈

p′ | JCC
µ | p

〉

= ū(p′)

[

γµFV
1 (q2) +

iσµνqν

2M
FV

2 (q2) +
qµ

M
FV

3 (q2)

+γµγ5FA(q2) +
pµ + p′

µ

M
γ5FA

3 (q2) +
qµ

M
γ5FP(q2)

]

u(p)

Problem : Show that this is the most general structure of the M .E .

where FV
1 (q2),FV

2 (q2),FV
3 (q2) are vector form factors.

FA(Q2),FP(Q2),FA
3 (Q2) are axial vector form factors.
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= ū(p′)

[

γµFV
1 (q2) +

iσµνqν

2M
FV

2 (q2) +
qµ

M
FV

3 (q2)

+γµγ5FA(q2) +
pµ + p′

µ

M
γ5FA

3 (q2) +
qµ

M
γ5FP(q2)

]

u(p)

Problem : Show that this is the most general structure of the M .E .

where FV
1 (q2),FV

2 (q2),FV
3 (q2) are vector form factors.

FA(Q2),FP(Q2),FA
3 (Q2) are axial vector form factors.

23 / 1



NUSTEC

Matrix elements and Form factors

With the Lagrangian, we define the matrix elements corresponding to
CC and NC processes.

CC processes:
νl(k) + n(p) −→ l−(k′) + p(p′)

M =
Gf cosθc(sinθc)√

2

〈

p′ | Jcc
µ | p

〉

ν̄lγ
µ(1 − γ5)l

〈

p′ | JCC
µ | p

〉
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= ū(p′)

[

γµFV
1 (q2) +

iσµνqν

2M
FV

2 (q2) +
qµ

M
FV

3 (q2)

+γµγ5FA(q2) +
pµ + p′

µ

M
γ5FA

3 (q2) +
qµ

M
γ5FP(q2)

]

u(p)

Problem : Show that this is the most general structure of the M .E .

where FV
1 (q2),FV

2 (q2),FV
3 (q2) are vector form factors.

FA(Q2),FP(Q2),FA
3 (Q2) are axial vector form factors.

23 / 1



NUSTEC

Matrix elements and Form factors

We define the matrix element for NC processes on protons and
neutrons i.e.

νl(k) + p(p) −→ νl(k
′) + p(p′)

νl(k) + n(p) −→ νl(k
′) + n(p′)
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+
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M
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]
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〈

p′ | JNC
µ | p

〉

n

= ū(p′)

[

γµF̃n
1 +

iσµνqν F̃n
2

2Mn

+
qµ

M
γ5F̃V ,n

3 (q2)

+γµγ5F̃n
A +

qµγ5F̃n
P

Mn

+
(pµ + p′

µ)

M
γ5F̃A,n

3 (q2)

]
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Vector form factors are

F̃p
1,2 = (

1

2
− 2sin2θW )Fp

1,2 − 1

2
Fn

1,2 − 1

2
Fs

1,2

F̃n
1,2 = (

1

2
− 2sin2θW )Fn

1,2 − 1

2
Fp

1,2 − 1

2
Fs

1,2
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Vector form factors are

F̃p
1,2 = (

1

2
− 2sin2θW )Fp

1,2 − 1

2
Fn

1,2 − 1

2
Fs

1,2

F̃n
1,2 = (

1

2
− 2sin2θW )Fn

1,2 − 1

2
Fp

1,2 − 1

2
Fs

1,2

Axial form factors for nucleons

F̃A
p,n = ±1

2
FA − 1

2
Fs

A

Fs
1 ,Fs

2 and Fs
A are strangeness vector and axial vector form factors.
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NUSTEC

Determination of Form factors using properties of hadronic currents

Conserved vector current follows from SU(2) symmetry of strong
interaction (keeping u and d in same doublets) and can be generalized
to SU(3) symmetry to describe ∆S = 1 processes.
V +

µ , V −
µ along with V 3

µ of EM current form an isotriplet leading to
CVC.
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T invariance: All Form factors are real
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T invariance: All Form factors are real

G invariance: Isospin and charge conjugation

G = C eiπI2 , p −→ n

under G
First class currents ( F1,F2,FA,FP )

V µ −→ V µ

Aµ −→ −Aµ

Second class currents ( FV
3 ,FA

3 )

V µ −→ −V µ

Aµ −→ Aµ

Therefore assuming G-invariance FV
3 = FA

3 = 0
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T invariance: All Form factors are real

G invariance: Isospin and charge conjugation

G = C eiπI2 , p −→ n

under G
First class currents ( F1,F2,FA,FP )

V µ −→ V µ

Aµ −→ −Aµ

Second class currents ( FV
3 ,FA

3 )

V µ −→ −V µ

Aµ −→ Aµ

Therefore assuming G-invariance FV
3 = FA

3 = 0

PCAC, Pion Pole dominance and G–T relation:

Fp(q2) =
2MFA(q2)

q2 − m2
π
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NUSTEC

Parametrisation of Form factors

FV
1 (q2) and FV

2 (q2) are given in terms of Sachs Form factors GE(q2)
and GM (q2) which are parameterised in dipole form.

GE(q2) = F1(q2) +
q2

4M2
F2(q2)

GM (q2) = F1(q2) + F2(q2)

Gp

E
(q2) =

1

(1 − q2/M2
v )2

= GD(q2)

Gp

M
(q2) = (1 + µp)Gp

E
(q2)

Gn
M (q2) = µnGp

E
(q2)

Gn
E(q2) = (

q2

4M2
)µnGp

E
(q2)ξn

ξn =
1

(1 − λn
q2

4M2 )

The strangeness vector form
factors Fs

1,2(q2) are parameterised

in a way similar to FV
1,2(q2) in

terms of corresponding Sach’s
form factors in the strange sector

G
(s)
E

(q2) = ρsτGD(q2)

G
(s)
M

(q2) = µsGD(q2)

ρs =
dG

(s)
E

dτ

∣

∣

∣

∣

∣

τ=0

µp = 1.7927µN , µn = −1.913µN , Mv = 0.84GeV , λn = 5.6

Other parameterisations in recent years: Gari-Krüempelmann, Kelly,
Alberico et al, BBA03, BBBA05, BBBA07 etc.
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Alberico et al, BBA03, BBBA05, BBBA07 etc.

28 / 1



NUSTEC

Axial vector FF

Axial vector form factors are parameterised in dipole form as:

FA(Q2) =
FA(0)

(

1 − q2

M2
A

)2
; Fs

A(q2) =
∆s

(1 − q2

M2
A

)2
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(1 − q2
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where FA(0) = 1.2 for β decay and MA = 1.016
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Axial vector FF

Axial vector form factors are parameterised in dipole form as:

FA(Q2) =
FA(0)

(

1 − q2

M2
A

)2
; Fs

A(q2) =
∆s

(1 − q2

M2
A

)2

where FA(0) = 1.2 for β decay and MA = 1.016

To be determined from experimental data in total cross section and angular
distributions of leptons in QE scattering from nucleus and nucleons.

Axial form factors for nucleons

F̃A
p,n = ±

1

2
FA −

1

2
Fs

A

∆s ≡ strange sea quark contribution to nucleon spin
Representative values of ∆s are from 0 → -0.15

Parameterisation from threshold Electroproduction

dE

dq2

∣

∣

∣

q2=0
=

〈

r2
A

〉

+
3

M2

(

k2 +
1

2

)

+
3

64f 2
π

(

1 −
12

π2

)
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NUSTEC

For free nucleon

d2σνl

dΩ(k̂′)dE ′
l

=
M 2

EnEp

|~k′|
|~k |

G2

4π2
LµνJµνδ(q0 + En − Ep)

where Jµν = 1
2 Tr

[

(6 p′ + M )Γµ(6 p + M )Γ̃ν
]

dσ

dq2
=

G2M 2 cos2 θc

8πE2
ν

[

A(q2) ± s − u

M 2
B(q2) +

(s − u)2

M 4
C (q2)

]

where
s − u = (k + p)2 − (k′ − p)2 = 4MEν − q2 − m2

e
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A = 2x′|FV
1 + FV

2 |2 − (1 + x′)|FV
1 |2 − x′(1 + x′)|FV

2 |2 + (1 + x′)|FA|2

−4x′(1 + x′)|FA
3 |2 − κ2

[

|FV
1 + FV

2 |2 + |FA + 2FP |2 − 4(1 + x′)(|FA|2 + |FP |2)
]

,

B = ∓4x′Re
[

F∗
A(FV

1 + FV
2 )

]

+ 4κ2Re
[

FA∗
3

(

FA − x′FP

)

− FV∗
3

(

FV
1 − x′FV

2

)]

,

C =
1

4

(

|FV
1 |2 + x′|FV

2 |2 + |FA|2 + 4x′|FA
3 |2

)

,

s = (k + p)2 = 2MEν + M2,

u =
(

k′ − p
)2

= m2
ℓ − 2MEℓ = m2

ℓ − 2MEν − q2,

x′ =
−q2

4M2
.
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A = 2x′|FV
1 + FV

2 |2 − (1 + x′)|FV
1 |2 − x′(1 + x′)|FV

2 |2 + (1 + x′)|FA|2

−4x′(1 + x′)|FA
3 |2 − κ2

[

|FV
1 + FV

2 |2 + |FA + 2FP |2 − 4(1 + x′)(|FA|2 + |FP |2)
]

,

B = ∓4x′Re
[

F∗
A(FV

1 + FV
2 )

]

+ 4κ2Re
[

FA∗
3

(

FA − x′FP

)

− FV∗
3

(

FV
1 − x′FV

2

)]

,

C =
1

4

(

|FV
1 |2 + x′|FV

2 |2 + |FA|2 + 4x′|FA
3 |2

)

,

s = (k + p)2 = 2MEν + M2,

u =
(

k′ − p
)2

= m2
ℓ − 2MEℓ = m2

ℓ − 2MEν − q2,

x′ =
−q2

4M2
.

Problem : Derive the above equations
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NUSTEC

A similar expression is derived for elastic NC scattering cross sections
from proton and neutron targets.

Replace FV
1,2 −→ FZ

1,2 and FA −→ FZ
A for protons and neutrons.
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A similar expression is derived for elastic NC scattering cross sections
from proton and neutron targets.

Replace FV
1,2 −→ FZ

1,2 and FA −→ FZ
A for protons and neutrons.

Charge radius for proton is

< r2 >p=
6

Gp
E

(0)

dGp
E

dq2

∣

∣

∣

q2=0
,

and similar expressions for radius for magnetic moment distribution
and axial charge distribution. For neutron radius for charge
distribution is defined as

< r2 >n= 6
dGn

E

dq2

∣

∣

∣

q2=0

and similar expression for radius of strangeness distribution.
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NUSTEC

Information about strangeness content of nucleon is obtained from NC,
elastic neutrino nucleon scattering.

It is done by writing the cross section dσ
dq2 as an expansion in small

variables at low q2 in terms of small variables like q2

M2 , q2

ME
:

dσNC

dq2
=

1

8π
G2

[

R +
q2

4E2
ν

T

]

+ O(q4,m4
l ,m2

l q2)
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Information about strangeness content of nucleon is obtained from NC,
elastic neutrino nucleon scattering.

It is done by writing the cross section dσ
dq2 as an expansion in small

variables at low q2 in terms of small variables like q2

M2 , q2

ME
:

dσNC

dq2
=

1

8π
G2

[

R +
q2

4E2
ν

T

]

+ O(q4,m4
l ,m2

l q2)

R
(p)

NC
= α

2
V + (gA − ∆s)

2
,

T
(p)

NC
= α

2
V − (gA − ∆s)

2
+ 2

Eν

M
[αV ∓ (gA − ∆s)]

2 ∓ 4
Eν

M
(gA − ∆s)κ

(p)

NC
−

(

Eν

M
κ

(p)

NC

)2

+ 4E
2
ν

{

αV

[

1

3

(

αV〈r
2
p 〉 − 〈r

2
n 〉 − 〈r

2
s 〉

)

− 1

2M2
κ

(p)

NC

]

+
1

3
(gA − ∆s)

(

gA〈r
2
A〉 − ∆s〈r

2
As〉

)

}

with
κ

(p)
NC = αV(µp − 1) − µn − µs

αV = 1 − 4sin2 θW
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Information about strangeness content of nucleon is obtained from NC,
elastic neutrino nucleon scattering.

It is done by writing the cross section dσ
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:
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dq2
=

1

8π
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4E2
ν

T

]

+ O(q4,m4
l ,m2

l q2)

R
(n)

NC
= 1 + (gA + ∆s)

2
,

T
(n)

NC
= 1 − (gA + ∆s)

2
+ 2

Eν

M
[1 ∓ (gA + ∆s)]

2 ± 4
Eν

M
(gA + ∆s)κ

(n)

NC
−

(

Eν

M
κ

(n)

NC

)2

+ 4E
2
ν

{

− 1

3

(

αV〈r
2
n 〉 − 〈r

2
p 〉 − 〈r

2
s 〉

)

+
1

2M2
κ

(n)

NC
+

1

3
(gA + ∆s)

(

gA〈r
2
A〉 + ∆s〈r

2
As〉

)

}

with
κ

(n)
NC = 1 − µp + αVµn − µs.

αV = 1 − 4sin2 θW
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NUSTEC

Quasi elastic scattering from Nuclei

The interaction (of W and Z bosons) takes place with bound nucleons
which are off shell and interacting with other nucleons through
exchange of mesons
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Quasi elastic scattering from Nuclei

The interaction (of W and Z bosons) takes place with bound nucleons
which are off shell and interacting with other nucleons through
exchange of mesons

These may lead to an interaction of W/Z with additional degrees of
freedom in nuclei, which may be present due to nucleon interactions

Moreover after the Interaction, new particles may be produced which
are subsequently absorbed in the nucleus, leaving only leptons leading
to QE like events
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NUSTEC

Theory of QE ν− Nucleus scattering

Nuclear calculations are generally done in Nucleon only Impulse
Approximation(NOIA). The following nuclear effects are taken into account:

Pauli Blocking of Nucleons

Fermi motion of Nucleons.
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Theory of QE ν− Nucleus scattering

Nuclear calculations are generally done in Nucleon only Impulse
Approximation(NOIA). The following nuclear effects are taken into account:

Pauli Blocking of Nucleons

Fermi motion of Nucleons.

Beyond Impulse Approximation:

short range and long range correlations

Meson Exchange currents

Initial state interactions, spectral functions

Final state interactions(FSI) of nucleons and pions in nuclear medium
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QE Neutrino nucleus scattering from nuclear targets are studied in the
entire energy region of ν-energy

In the low energy scattering few nuclear states are excited.
Calculations are done using the specified final states and a sum over all
the final states are performed.

Simplest calculations are done using shell model (with its various
extensions like RPA, CRPA, QRPA) for describing the initial and final
state of nucleus.
In Impulse Approximation, it is assumed that the cross section is given as

incoherent sum of scattering from individual nucleons

W±

=

νe(ν̄e) l−(l+)

2

νe(ν̄e) l−(l+)

2

W±
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In low energy region the cross sections are calculated in terms

of multipole expansion.
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Multipole expansion of nuclear matrix elements and cross section

The matrix element for the weak transition from |i〉 to |f 〉 in the process
ν(ν̄) + A(Z ,N ) → l−(l+) + A(Z ± 1,N ∓ 1) is written as,

〈f |H |i〉 =
GF√

2
lµ

∫

d~xe−i~q.~x 〈f |Jµ |i〉

〈f |H |i〉 =
GF√

2

∫

d~xe−i~q.~x 〈f | l0J0 −~l. ~J |i〉

lµ = ūγµ(1 − γ5)u

and Jµ = J CC
µ for CC process

= J NC
µ for NC process

with

J CC
µ = V 1

µ + i V 2
µ − (A1

µ + i A2
µ)

J NC
µ = (1 − 2sin2 θW )V 3

µ − sin2 θW V Y
µ − 1

2
V S

µ −
(

A3
µ +

1

2
AS

µ

)

in general;J CC,NC
µ =

∑

i

J i
µ +

∑

i<j

J ij
µ
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We make a Multipole analysis of hadronic matrix element.

The matrix element will involve l0J0 and ~l. ~J .

Writing any vector ~l =
∑

lλ.~e†
λ

, lλ = ~eλ.~l we make a multipole
expansion for

e(i~q.~x) =

∞
∑

J=0

[4π(2J + 1)]
1
2 iJ jJ (kx)YJ0(Ωx) k = |~q|

eqλe
(i~q.~x)

= − i

k

∞
∑

J=0

[4π(2J + 1)]
1
2 i

J
▽(jJ (kx)YJ0(Ωx)), forλ = 0

= −
∞

∑

J≥1

[2π(2J + 1)]
1
2 i

J
[

λjJ (kx)Y
JJ1λ +

1

k
▽× (jJ (kx)Y

JJ1λ )
]

, forλ = ±1

Using these we write

〈

f | ĤW | i
〉

= − G
√

2

〈

f | {−
∑

λ±1

lλ

∞
∑

J≥1

[2π(2J + 1)
1
2 ](−i)

J × [λĴJ−λmag (k) + ĴJ−λe1 (k)]

+

∞
∑

J=0

[4π(2J + 1)]
1
2 (−i)

J
[l3L̂J0(k) − l0M̂J0(k)]} | i

〉
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The multipole operators are defined by

M̂JM (k) ≡M V
JM + M A

JM ≡
∫

dx[jJ (kx)YJM (Ωx)]Ĵ0(x)

L̂JM (k) ≡LV
JM + LA

JM ≡ i

k

∫

dx[~▽(jJ (kx)YJM (Ωx)].Ĵ (x)

ĴJMe1 (k) ≡TV
JMe1 + TA

JMe1 ≡ 1

k

∫

dx[~▽× (jJ (kx)~YJJ1M ].Ĵ (x)

ĴJMmag (k) ≡TV
JMmag + TA

JMmag ≡
∫

dx[(jJ (kx)~YJJ1M ].Ĵ (x)

Assuming that initial and final states are good states of total angular
momenta |i〉 ≡ |Ji ,Mi〉, |f 〉 ≡ |Jf ,Mf 〉 and applying Wigner-Eckart theorem,

< Jf Mf | ĴJM | JiMi >= (−1)Jf −Mf

(

Jf J Ji

−Mf M Mi

)

< Jf || ĴJ || Ji >
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1

2J + 1

∑

Mi

∑

Mf

|< f | ˆHW | i >|2

=
G2

2

4π

2Ji + 1

{

∞
∑

J≥1

[

1

2
(l.l∗ − l3l∗3 )(|< Jf ||ĴJmag ||Ji >|2

+ | < Jf ||ĴJe1 ||Ji > |2) − i

2
(l × l∗)32Re < Jf ||Ĵ mag||Ji >< Jf ||ĴJe1 ||Ji >∗

]

+

∞
∑

J=0

[

l3l∗3 | < Jf ||L̂||Ji > |2 + l0l∗0 | < Jf ||M̂J ||Ji > |2

− 2Rel3l∗0 < Jf ||L̂J ||Ji >< Jf ||M̂J ||Ji >∗
]}
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This leads to

( dσ

dΩ

)

ν
=

( k

∈

) G2 ∈2

4π2

4π

2Ji + 1
{{

∞
∑

J=0

{(1 + ν̂.~β)| < Jf ||M̂J ||Ji > |
2

+ [1 − ν̂.~β + 2(ν̂.q)(q̂.~β)]| < Jf ||L̂J ||Ji > |
2

− [q̂.(ν̂ + ~β)]2Re < Jf ||L̂J ||Ji >< Jf ||M̂J ||Ji >
∗

}

+

∞
∑

J≥1

{[1 − (ν̂.q̂)(q̂.~β)][| < Jf ||ĴJmag ||Ji > |
2

+ | < Jf ||Ĵ
Je1 ||Ji > |

2
]

± [q̂.(ν − ~β)]2Re < Jf ||ĴJmag ||Ji >< Jf ||Ĵ
Je1 ||Ji >

∗
}}}
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The leptonic factors are

Summed General resulta ERL | ~β |−→ 1

1
2

(l.l∗ − l3l∗3 ) 1 − (v̂.q̂)(~β.q̂)
q2

2q2 cos2 θ
2

+ sin2 θ
2

l0l∗0 1 + v̂.~β 2cos2 θ
2

l3l∗3 1 − v̂.~β + 2(v̂.q̂)(~β.q̂)
q2
0

q2 2cos2 θ
2

−l3l∗0 −q̂.(ν̂ + ~β) −
q0
|q|

2 cos2 θ
2

− i
2

(l × l∗) −S1q̂.(ν̂ − ~β)
2 sin θ

2
|q|

(

q2 cos2 θ
2

+ q2 sin2 θ
2

) 1
2 S1S2

S1 and S1S2 is ±1 and ∓1 for neutrino and antineutrino respectively.
In relativistic case for (mµ −→ 0). This gives

( dσ

dΩ

)

ν
=

G2 ∈2

2π2

4π

2Ji + 1

{

cos
2 θ

2

[

∞
∑

J=0

| < Jf ||M̂J −
q0

|q|
L̂J ||Ji > |

2
]

+
[ q2

2q2
cos

2 θ

2
+ sin

2 θ

2

]

×
[

∞
∑

J≥1

(| < Jf ||ĴJmag ||Ji > |
2

+ | < Jf ||Ĵ
e1
J ||Ji > |

2
]

∓ sin
θ

2

1

|q|

(

q
2

cos
2 θ

2
+ q

2
sin

2 θ

2

) 1
2

×
[

∞
∑

J≥1

2Re < Jf ||ĴJmag ||Ji >< Jf ||Ĵ
e1
J ||Ji >

∗
]}
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The leptonic factors are

Summed General resulta ERL | ~β |−→ 1

1
2

(l.l∗ − l3l∗3 ) 1 − (v̂.q̂)(~β.q̂)
q2

2q2 cos2 θ
2

+ sin2 θ
2

l0l∗0 1 + v̂.~β 2cos2 θ
2

l3l∗3 1 − v̂.~β + 2(v̂.q̂)(~β.q̂)
q2
0

q2 2cos2 θ
2

−l3l∗0 −q̂.(ν̂ + ~β) −
q0
|q|

2 cos2 θ
2

− i
2

(l × l∗) −S1q̂.(ν̂ − ~β)
2 sin θ

2
|q|

(

q2 cos2 θ
2

+ q2 sin2 θ
2

) 1
2 S1S2

S1 and S1S2 is ±1 and ∓1 for neutrino and antineutrino respectively.
In relativistic case for (mµ −→ 0). This gives

( dσ

dΩ

)

ν
=

G2 ∈2

2π2

4π

2Ji + 1

{

cos
2 θ

2

[

∞
∑

J=0

| < Jf ||M̂J −
q0

|q|
L̂J ||Ji > |

2
]

+
[ q2

2q2
cos

2 θ

2
+ sin

2 θ

2

]

×
[

∞
∑

J≥1

(| < Jf ||ĴJmag ||Ji > |
2

+ | < Jf ||Ĵ
e1
J ||Ji > |

2
]

∓ sin
θ

2

1

|q|

(

q
2

cos
2 θ

2
+ q

2
sin

2 θ

2

) 1
2

[

∞
∑

ˆ ˆe1
]}

This form is used for numerical evaluations with J0, ~J : obtained as
nonrelativistic expansion of J CC

µ and J NC
µ and |i > and |f > calculated

with some NN potential.
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The leptonic factors are

Summed General resulta ERL | ~β |−→ 1

1
2

(l.l∗ − l3l∗3 ) 1 − (v̂.q̂)(~β.q̂)
q2

2q2 cos2 θ
2

+ sin2 θ
2

l0l∗0 1 + v̂.~β 2cos2 θ
2

l3l∗3 1 − v̂.~β + 2(v̂.q̂)(~β.q̂)
q2
0

q2 2cos2 θ
2

−l3l∗0 −q̂.(ν̂ + ~β) −
q0
|q|

2 cos2 θ
2

− i
2

(l × l∗) −S1q̂.(ν̂ − ~β)
2 sin θ

2
|q|

(

q2 cos2 θ
2

+ q2 sin2 θ
2

) 1
2 S1S2

S1 and S1S2 is ±1 and ∓1 for neutrino and antineutrino respectively.
In relativistic case for (mµ −→ 0). This gives

( dσ

dΩ

)

ν
=

G2 ∈2

2π2

4π

2Ji + 1

{

cos
2 θ

2

[

∞
∑

J=0

| < Jf ||M̂J −
q0

|q|
L̂J ||Ji > |

2
]

+
[ q2

2q2
cos

2 θ

2
+ sin

2 θ

2

]

×
[

∞
∑

J≥1

(| < Jf ||ĴJmag ||Ji > |
2

+ | < Jf ||Ĵ
e1
J ||Ji > |

2
]

∓ sin
θ

2

1

|q|

(

q
2

cos
2 θ

2
+ q

2
sin

2 θ

2

) 1
2

∑

Intermediate and Higher Energies

As the energy of neutrino increases a large number of states are

excited. It is not easy to calculate all the excited state wave function

from a nuclear Hamiltonian needed to calculate these matrix

elements. Therefore, other models for nuclei calculation of cross

section are used.
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Some of the models are

Fermi Gas Model(with various versions)

Relativistic Mean field

Relativistic Green Function approach

SuSA

Fermi Gas Model

In this model it is assured that the nucleons in a
nucleus (or nuclear matter) occupy one nucleon
per unit cell in phase space so that the total
number of Nucleons N is given by

N = 2V

∫

d3p

(2π)3

where a factor of two to account spin degree of
freedom. All states upto a maximum momentum
pF (p < pF) are filled. The momentum states
higher than p > pF are unoccupied.

pF

Unoccupied state

Occupied state
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Fermi Gas Model(with various versions)

Such that the occupation number n(p) is defined as:

n(p) =1,p < pF

=0,p > pF

=⇒ ρ =
N

V
=

p3
f

3π2

∴ pF =(3π2ρ)
1
3

pF

n(p)

Protons and neutrons are supposed to have different Fermi sphere so

ρF
p = (3πρp)

1
3 ρF

n = (3πρn)
1
3

Under a weak interaction induced by ν/ν̄
a nucleon is excited from an occupied
state to an unoccupied state i.e.

pF
W±(Z)

~q
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Creating a hole in the Fermi sea and a particle above the sea. This is
known as 1p1h excitation, with the condition that:

initial momentum: p < pi
F

final momentum: |~p +~q| > pf
F

This condition could be incorporated in the expression for the free nucleon
cross section.

For free nucleon

d2σνl

dΩ(k̂′)dE ′
l

=
M 2

EnEp

|~k′|
|~k |

G2

4π2
LµνJµνδ(q0 + En − Ep)

where Jµν = 1
2 Tr

[

(6 p′ + M )Γµ(6 p + M )Γ̃ν
]

Inside the nucleus

d2σνl

dΩ(k̂′)dE ′
l

∣

∣

∣

∣

∣

Nucleus

=
G2

4π2

∫

M 2

EnEp
2d~p

1

(2π)3
nn(~p)(1 − n(| ~p +~q |) |~k′|

|~k |

× δ(q0 + En − Ep)LµνJµν
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The final nucleon has to be created with a momentum p′ =| ~p +~q |> pFf

Initial nucleon is at rest.

The hadronic tensor Jµν in equation has to be integrated over the
Fermi momentum of initial nucleon subject to the above conditions i.e.
Jµν is replaced by

M 2

EnEp
Jµνδ(q0 + En − Ep) −→

∫

f (q,p)Jµν(p)
d3p

(2π)3

f (q,p) = n(| ~p |)(1 − n(| ~p +~q |) M 2

EnEp
δ(q0 + En − Ep)

n(p) = θ(pi
F − p)

1 − n(p + q) = θ(| p + q | −pf
F

)

Jµν involves terms like gµν ,qµqν ,pµpν and pµpν .

Now
∫

f (q,p)Jµν(p) d3p
(2π)3 can be evaluated explicitly.

These are the main features of Smith and Moniz RgFG model.
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A simpler model is given by Gaisser O’Connel, in which

d2σ

dΩldE ′
l

= R(q,ω)
d2σ0

dΩldE ′
l

d2σ0

dΩldE′
l

is free nucleon cross section and

R(q,ω) is nuclear correction given by

R(q,ω) =
1

4
3 πp3

F

∫

d3p

EnEp
M 2δ(EN + ω′ − EN ′ )θ(pF − p)θ(|p + q| − pF )

with ω′ = ω − EB

Note that in this model ~p is not included in dσ
dΩl

which is still evaluated
for initial nucleus at rest.
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In the local Fermi gas model we replace:

pF −→ pF(r) =(3π2ρ(r))
1
3

ρ(r) =ρn(r) for ν reactions and

=ρp(r) for ν̄ reactions

However, the nuclear densities ρn,p(r) taken from electron scattering
experiments with appropriate corrections where available and the
integration is performed over whole volume as the original normalization
was one nucleon per unit volume i.e.

Inside the nucleus with local density approximation

d2σνl

dΩ(k̂′)dE ′
l

∣

∣

∣

∣

∣

Nucleus

=
G2

4π2

|~k′|
|~k |

∫

M 2

EnEp
2d~rd~p

1

(2π)3
nn(~p,~r)(1 − n(| ~p +~q |,~r)

× δ(q0 + En − Ep)LµνJµν(~p,~r)
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Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

p-h excitation:

Initial Nucleon has a momentum(distribution) such that p < pf
F

Fermi
momentum of initial nucleon.

Final Nucleon should be outside the Fermi level so p =| ~p +~q |> pf
F

Fermi momentum of final nucleon

In the interaction (of W or Z) with the nucleon, a hole is created in
Fermi sea and excited to a particular state W + n −→ p

Creation of 1p1h state:Diagrammatically

Wµ

p + q

Jµ

p

p p + q
p p + q

Feynman Diagram 1p1h excitation 1p1h response
matrix element
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Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

Many body theory: language of p-h excitation’s:

Creation of 1∆1h state

Wµ

p + q

Jµ

p

Wµ

p + q

p

p p + n

Feynman Diagram 1∆1h excitation 1∆1h response
matrix element
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Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

Many body theory: language of p-h excitation:

Creation of pion state

π

π
p π

p

52 / 1



NUSTEC

Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

Beyond 1p1h excitation

The nucleons move under a nuclear potential inside the nucleus and
dynamics is described by Hamiltonian(H) :

H =
∑

i

p2
i

2m
+

∑

i<j

Vij(r) +
∑

i,j,k

Vijk(r)
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Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

Beyond 1p1h excitation

The nucleons move under a nuclear potential inside the nucleus and
dynamics is described by Hamiltonian(H) :

H =
∑

i

p2
i

2m
+

∑

i<j

Vij(r) +
∑

i,j,k

Vijk(r)

where Vij and Vijk are two body and three body interaction potentials.

Vij(r) is generally described in terms of π,ρ,ω exchange potential which
generate long range and short range potentials. Also, supplemented by hard
core/soft core central potential.
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Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

Beyond 1p1h excitation

The nucleons move under a nuclear potential inside the nucleus and
dynamics is described by Hamiltonian(H) :

H =
∑

i

p2
i

2m
+

∑

i<j

Vij(r) +
∑

i,j,k

Vijk(r)

where Vij and Vijk are two body and three body interaction potentials.

Vij(r) is generally described in terms of π,ρ,ω exchange potential which
generate long range and short range potentials. Also, supplemented by hard
core/soft core central potential.

In general nucleon-nucleon potential is

Spin dependent

Isospin Independent

Tensor Forces
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Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

Beyond 1p1h excitation

The nucleons move under a nuclear potential inside the nucleus and
dynamics is described by Hamiltonian(H) :

H =
∑

i

p2
i

2m
+

∑

i<j

Vij(r) +
∑

i,j,k

Vijk(r)

where Vij and Vijk are two body and three body interaction potentials.

Vij(r) is generally described in terms of π,ρ,ω exchange potential which
generate long range and short range potentials. Also, supplemented by hard
core/soft core central potential.

These potentials give rise to:

Nucleon-Nucleon Correlations

Meson Exchange(Two body) currents.
π, ρ
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Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

Beyond 1p1h excitation

Continuity Equation

∇.J + i
[

H ,J0
]

= 0
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Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

Beyond 1p1h excitation

Continuity Equation

∇.J + i
[

H ,J0
]

= 0

H has isospin dependent two body potential
[

H ,J0
]

6= 0
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Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

Beyond 1p1h excitation

Continuity Equation

∇.J + i
[

H ,J0
]

= 0

H has isospin dependent two body potential
[

H ,J0
]

6= 0

Two Body Terms
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Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

Beyond 1p1h excitation

Continuity Equation

∇.J + i
[

H ,J0
]

= 0

H has isospin dependent two body potential
[

H ,J0
]

6= 0

Two Body Terms

Jµ =
∑

i
J i

µ +
∑

i>j
J ij

µ
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Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

Beyond 1p1h excitation

Continuity Equation

∇.J + i
[

H ,J0
]

= 0

H has isospin dependent two body potential
[

H ,J0
]

6= 0

Two Body Terms

Jµ =
∑

i
J i

µ +
∑

i>j
J ij

µ

These give rise to 2p-2h and higher order
excitation in nuclear medium
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Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

Examples 2p–2h

Nucleon nucleon correlation

Meson exchange current

55 / 1



NUSTEC

Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

Cross section from p–h excitation response

Consider 1p–1h excitation

Wµ

p + q

Jµ

p

dσ ∝
∑

spins

W
µ

W
ν

Jµν n(p)(1 − n(p + q))

× d3p

(2π)3
δ(q0 + En − Ep)

W ν

Wµ

Jν

Jµ

p p + q

Response ∝
∑

spins

W
µ

W
ν

Πµν

Πµν ∝
∫

d3p

(2π)3
JµνD(p)D(p + q)n(p)(1 − n(p + q))

Wµ

p + q

Jµ

p

dσ ∝
∑

spins

W
µ

W
ν

Jµν n(p)(1 − n(p + q))

× d3p

(2π)3
δ(q0 + En − Ep)

W ν

Wµ

Jν

Jµ

p p + q

Response ∝
∑

spins

W
µ

W
ν

Πµν

Πµν ∝
∫

d3p

(2π)3
JµνD(p)D(p + q)n(p)(1 − n(p + q))

Consider nonrelativistic case in which

Πµν =

∫

d3p

(2π)3

Jµνn(p)(1 − n(p + q))

q0 + En − Ep + iǫ

Im Πµν = −π

∫

d3p

(2π)3
Jµνn(p)(1 − n(p + q))δ(q0 + En − Ep) = −πWµν

Wµν = − 1
π ImΠµν

Consider nonrelativistic case in which

Πµν =

∫

d3p

(2π)3

Jµνn(p)(1 − n(p + q))

q0 + En − Ep + iǫ

Im Πµν = −π

∫

d3p

(2π)3
Jµνn(p)(1 − n(p + q))δ(q0 + En − Ep) = −πWµν

Wµν = − 1
π ImΠµν

Wµν = − 1

π
ImΠµν

where Πµν is the polarization tensor for p-h excitation.
This is rigorous result in the analytic theory of Feynman propagators.
In general Πµν is obtained using rules of covariant perturbative theory for
any given diagram.
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Cross section from p–h excitation response

Consider 1p–1h excitation
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where Πµν is the polarization tensor for p-h excitation.
This is rigorous result in the analytic theory of Feynman propagators.
In general Πµν is obtained using rules of covariant perturbative theory for
any given diagram.
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where Πµν is the polarization tensor for p-h excitation.
This is rigorous result in the analytic theory of Feynman propagators.
In general Πµν is obtained using rules of covariant perturbative theory for
any given diagram.
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ImΠµν is obtained by putting propagator particle onshell by cutting the
loop diagram using Cutkosky rules.

Main features of Cutkosky rules:

Cut through the diagram in any way that can put all of the cut
propagators on-shell without violating momentum conservation.

For each cut, replace 1
p2−m2+iǫ

→ −2iπδ(p2 − m2)θ(p0).

Sum over all cuts.

The result is the discontinuity of the diagram, where
Disc(iM)= -2 Im M.

Examples
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Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

Main features of Cutkosky rules:

Cut through the diagram in any way that can put all of the cut
propagators on-shell without violating momentum conservation.

For each cut, replace 1
p2−m2+iǫ

→ −2iπδ(p2 − m2)θ(p0).

Sum over all cuts.

The result is the discontinuity of the diagram, where
Disc(iM)= -2 Im M.

Examples

W+n → p

W+n → ∆
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Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

Main features of Cutkosky rules:

Cut through the diagram in any way that can put all of the cut
propagators on-shell without violating momentum conservation.

For each cut, replace 1
p2−m2+iǫ

→ −2iπδ(p2 − m2)θ(p0).

Sum over all cuts.

The result is the discontinuity of the diagram, where
Disc(iM)= -2 Im M.

Examples

W+NN → NN
π

W+N → Nπ
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Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

Main features of Cutkosky rules:

Cut through the diagram in any way that can put all of the cut
propagators on-shell without violating momentum conservation.

For each cut, replace 1
p2−m2+iǫ

→ −2iπδ(p2 − m2)θ(p0).

Sum over all cuts.

The result is the discontinuity of the diagram, where
Disc(iM)= -2 Im M.

Examples

W+NN → NN W+N → Nπ, Nρ

π, ρ

(dressed nucleon)
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RPA Correlations(Treated Nonrelativistically)

The nucleons in a nucleus interact through two body NN potential(simply modeled
with π and ρ exchange. )

Once 1p1h are excited by an external probe, they can interact through the
NN–potential(π and ρ exchange) any number of times. In fact in this interaction
they can also produce ∆ leading to ph–∆h interaction which can be depicted as:

tV tV

tV

tV

tVtV

ρ

ρ k

ρ

ρ k

+    +

+  .....

+ ✲

Where the dotted line
shows the N-N potential
V.
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In general we have a N-N potential whose structure is

V (~r1, ~r2) = C0

{

f0 + f ′
0~τ1.~τ2 + g0~σ1.~σ2 + g′

0~σ1.~σ2~τ1.~τ2

}

f0 & g0 is strength of the NN-potential in isoscalar spin-dependent and
spin-independent channel.

f ′
0 & g′

0 is strength of the NN-potential in isovector spin-independent and
spin-dependent channel.

CC interaction in non-relativistic case is dominated by ~σ.~τ term which is
most affected by NN-potential in the spin-isospin channel. We calculate
NN-potential in π and ρ exchange model i.e.

V =Vπ + Vρ

Vπ =
f 2
π

m2
π

~σ1.~q~σ2.~q

q2
0 − ~q2 − m2

π + i ∈
fπ =

Λ2
π − m2

π

Λ2
π − q2

Vρ =
f 2
ρ

m2
ρ

~σ1 ×~q ~σ2 ×~q

q2
0 −~q2 − m2

ρ + i ∈
~τ.~τ fρ =

Λ2
ρ − m2

ρ

Λ2
ρ − q2

Λπ = 1.1GeV Λρ = 2.5GeV
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We express V in terms of longitudinal
and transverse components as

Vij = Vl + Vt

Vl =
f 2
π

m2
π

~σ1i~σ2j q̂1i q̂2j

q2
0 − ~q2 − m2

π

q2

Vt =
f 2
ρ

m2
ρ

~σ1i~σ2j(δij − q̂1i q̂2j)

q2
0 − ~q2 − m2

π

q2

We sum the series in ladder

approximation

+ + + .................

W

W

W

W

W

W

V
V

V

W
+

+

W
+

+

+

+ +

+
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The ladder diagram may be represented as

Ul(q) = U (q)[1 + VlU (q) + VlU (q)VlU (q) + · · ··]q̂i q̂jσiσjτ1 · τ2

This is an geometric series which can be summed over separately in
longitudinal and transverse channel giving rise to

U (q) −→ Uq̂i q̂j

1 − VlU
+

U (δij − q̂i q̂j)

1 − VtU

and the imaginary part may be expressed as

ImU −→ ImUq̂i q̂j

| 1 − VlU |2 +
ImU (δij − q̂i q̂j)

| 1 − VtU |2

61 / 1



NUSTEC

Quasi Elastic Neutrino nucleus scattering in Fermi Gas Model

Now consider a term like F2
A

In nonrelativistic limit F2
A term comes after squaring FA~σ term ∝ F2

Aσiσj

write F2
A −→ 1

6 F2
Aδij Tr(σiσj)

Replace

F2
Aδij −→F2

A

[

(q̂i q̂j) + (δij − ~qi ~qj)
]

F2
A −→1

6
F2

A

[

(q̂i q̂j) + (δij − q̂i q̂j)
]

F2
A −→1

6
F2

AImU

[

2q̂i q̂jδij

|1 − VlU |2 +
2δij(δij − q̂i q̂j)

|1 − UVt |2

]

F2
A −→1

6
F2

AImU

[

1

3

1

|1 − VlU |2 +
2

3

1

|1 − VtU |2

]

With these modifications in the leading terms of Wµν , the cross section is
calculated.
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Results

Pauli+Q RPA SM SM CRPA Exp

LSND’95 LSND’97

σ (νµ, µ−) 20.7 11.9 13.2 15.2 19.2 8.3 ± 0.7 ± 1.6 11.2 ± 0.3 ± 1.8 10

KARMEN LSND

σ (νe, e−) 0.19 0.14 0.12 0.16 0.15 0.15 ± 0.01 ± 0.01 0.15 ± 0.01 ± 0.01

Table : Experimental and theoretical flux averaged 12C(νµ,µ−)X and 12C(νe,e−)X

cross sections in 10−40 cm2 units.

Phys. Rev. C 70, 055503 (2004) [Phys. Rev. C 72, 019902 (2005)]
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