Lensing B-mode at low ell

Toshiya Namikawa (Stanford, Kuo group)

B-mode from Space WS (Dec 10-16, 2015) 1

Contents

1) Introduction to lensing B-modes

2) Cosmological information in large-scale lensing B-modes

3) Delensing large-scale B-modes

CMB Lensing

The lensing effect on the CMB is well described by remapping of the CMB anisotropies.

(Reviews : Lewis&Challinor'06; Hanson+'10; Smith'11; TN'14)

CMB Lensing

The lensing effect on the CMB is well described by remapping of the CMB anisotropies.

(Reviews : Lewis&Challinor'06; Hanson+'10; Smith'11; TN'14)

Lensing B-modes

In ongoing and future CMB experiments, the polarization lensing is more important than the temperature lensing because the lensing produces B-modes

Lensing B-modes

In ongoing and future CMB experiments, the polarization lensing is more important than the temperature lensing because the lensing produces B-modes

Which scales in ϕ source the lensing B modes

1) ϕ at $300 \le \ell < 400$ is the most dominant source

2) Flat power spectrum at large scales

Which scales in ϕ source the lensing B modes

1) Contribution from ϕ at high- ℓ is not so significant

2) Flat power spectrum at large scales

Which scales in **E-modes** source the lensing B modes

1) Similar to the case of ϕ (at large scale)

2) Flat power spectrum at large scales

Flatness of the low- ℓ lensing B modes

From the previous figures, changes in the shape of $C \mathcal{U} \uparrow EE$ and $C \mathcal{U} \uparrow \phi \phi$ only affect amplitudes of $C \mathcal{U} \uparrow BB$ at low- ℓ

E-mode has little power at large scale, and only $\sim 2'$ shift can not produce significant correlation in large-scale E-mode pattern.

Uncorrelated random fields in real space correspond to a white spectrum

 $C \downarrow L \uparrow BB \sim 1/4\pi \int \uparrow \hline d\ell / \ell \left[\ell \uparrow 4 C \downarrow \ell \uparrow \phi \phi \right] \left[\ell \uparrow 2 C \downarrow \ell \uparrow EE \right]$

(independent of L)

Changes in CULTEE and CULT $\phi\phi$ can modify only the amplitudes

This feature is important to consider how the large scale Bmodes are sensitive to the cosmology.

Accurate calculation of the large-scale lensing B-modes

• Non-linear growth of the large-scale structure : $\sim 10\%$ (compared to the linear theory) (Challinor & Lewis '05)

In addition, we can measure bispectrum of ϕ using S4, but this is rather relevant to the small-scale B-modes

For future high-sensitivity experiments, we may need to accurately treat the non-linearity in ϕ .

• Multiple lensing / Born appox. : < 1%

(Hagstotz et al 2015; Calabrese et al 2015)

- Time delay (radial displacement) : 0.01% (Hu & Cooray 2000)
- Gravitational faraday rotation : 0.0001% x (r/0.13) (Dai 2014)

Contents

1) Introduction to lensing B-modes

2) Cosmological information in large-scale lensing B-modes

3) Delensing large-scale B-modes

Cosmological information in large-scale lensing B-modes

Sensitivity of $C \downarrow \ell \uparrow BB$ to $\Sigma m \downarrow \nu$ is significant compared to that of E and T

Derivative with respect to w is also flat which leads to strong parameter degeneracies

Cosmological information in the lensing B-modes

If we want to constrain $\Sigma m \downarrow \nu$ and w, the reconstruction of ϕ is more useful than the lensing $C \downarrow \ell f BB$

If ϕ is modified at scales where the reconstruction noise is significant, the large-scale lensing *C* \mathcal{H} *1*BB becomes better than the reconstruction Using large-scale lensing B-modes, we can reconstruct the large-scale ϕ map, and constrain, e.g., fNL by cross-correlating galaxy clustering

Contents

1) Introduction to lensing B-modes

2) Cosmological information in large-scale lensing B-modes

3) Delensing large-scale B-modes

See Blake's talk

Once we measure ϕ (+noise), we can remap observed E-modes to get lensing B-mode template, and subtract it from observed B-modes

(TN, Yamauchi, Sherwin, Nagata 2014)

For LiteBIRD, mass tracers will be useful for delensing.

Once we measure ϕ (+noise), we can remap observed E-modes to get lensing B-mode template, and subtract it from observed B-modes

Combining, e.g., Simons Array and AdvACT will also help delensing

Power Spectrum Covariance

The typical values are <1% at ℓ <100 and 6-8% at ℓ = 200 – 300

Power Spectrum Covariance

The values are smaller than those of the lensing B-modes The non-Gaussian covariance degrades $\sigma(r)$ by only few percent But the results depend on the precision of ϕ measurement

Summary

• Large scale lensing B-modes are mostly sourced from E-modes and ϕ at $300 \le \ell < 400$

• Using large-scale lensing B-modes to parameter constraints suffer from the strong parameter degeneracy, but useful to reconstruct the large-scale ϕ

 Delensing is now important and mass tracers are useful for LiteBIRD, if S4 data will be not available

BACKUP

Cosmological information in the lensing B-modes

Moreover, the lensing B-modes are non-Gaussian (especially at small scales) which degrades parameter constraints

Delensing 1.0 $CMB+SKA1(5\mu Jy)$ $/C_{\ell}^{\rm BB, lens}$ $CMB+SKA1(10\mu Jy)$ CMB alone 0.8 Noise limit Delensing efficiency: $C_\ell^{ m BB, res}$ 0.6 0.4 0.2 0.0 50 100 150 200 l

Using BICEP/Keck + SPT and other mass tracers, the lensing Bmodes are significantly suppressed.

Measuring lensing potential

Primordial CMB is statistically isotropic, and different multipoles are uncorrelated:

 $\begin{array}{ll} \langle T \downarrow L \ \downarrow 1 \ T \downarrow L \ \downarrow 2 \ \rangle {=} 0 & (L \downarrow 1 \neq L \downarrow 2 \) \\ L \downarrow 2 \) \end{array}$

A lensing potential leads to statistical anisotropy in the primordial CMB, generating mode couplings:

 $(T \downarrow L \downarrow 1 \text{ flens } T \downarrow L \downarrow 2 \text{ flens }) \propto \phi \downarrow L \downarrow 1 - L \downarrow 2$ $(L \downarrow 1 \neq L \downarrow 2)$

The lensing potential is estimated from the off-diagonal elements $\phi \downarrow L \uparrow obs = \int \uparrow m d \uparrow 2 \ell F \downarrow \ell, L T \downarrow L - \ell \uparrow obs$ (Hu & Okamoto, 2002) $T \downarrow \ell \uparrow obs$

though some non-lensing anisotropies cause non-negligible biases (e.g., TN, Hanson & Takahashi 2013)

Measuring lensing potential

though some non-lensing anisotropies cause non-negligible biases (e.g., TN, Hanson & Takahashi 2013) Using the lensing B-modes, the lensing potential can be measured without small scale anisotropies

Planck provides phi at 40 <= L <= 400 (8 <= L <= 2048) as a conservative (aggressive) range

LiteBIRD will be able to measure nearly fullsky lensing potential, and has possibility to measure the phi map at the largest scales Using the lensing B-modes, the lensing potential can be measured without small scale anisotropies

Lensing Cosmology with LiteBIRD

Using "large-scale" lensing mass map, we can probe

Primordial non-gaussianity

CMB lensing x galaxy clustering

Dark energy sound speed Modified gravity CMB lensing

CMB lensing x ISW

CMB lensing x galaxy

Other possibilities

CMB Lensing x E-modes Reionization

Lensing at reionization epoch causes correlations between E-mode and lensing potential at very large scale

CMB Lensing Curl-Mode

Cosmic String, Magnetic field, post recombination GWs, etc

Curl mode of the lensing potential has large amplitudes at large scales

Polarization Lensing Bispectrum

Primordial non-gaussianity Parity violation

BBE, BB ϕ , etc can be generated by non-Gaussianity, and BBB, \cdots are generated by further violating parity.

Power Spectrum Covariance

The analytic formula including up to trispectrum well capture the behaviors of the simulation results

Power Spectrum Covariance

The analytic formula including up to trispectrum well capture the behaviors of the simulation results