CMB Balloons (& What Can LiteBIRD Learn)

Shaul Hanany University of Minnesota/Twin Cities (with contributions by B. Jones, A. Kogut, & P. deBernardis)

Observational Cosmology - University of Minnesota

- Access to (near) space
 - Test technologies
 - Train new space scientists
 - Avoid the atmosphere
 - Signal attenuation
 - Noise

- Access to (near) space
 - Test technologies
 - Train new space scientists
 - Avoid the atmosphere
 - Signal attenuation
 - Noise
 - Photon (white) noise
 - Turbulence (correlated noise @ low frequencies)

- Access to (near) space
 - Test technologies
 - Train new space scientists
 - Avoid the atmosphere
 - Signal attenuation
 - Noise
 - Photon (white) noise
 - Turbulence (low f)

v > 250/300 GHz, all angular scales and ell < 20 at all frequencies

Observational Cosmology - University of Minnesota

5

Represented here by: Adrian, Ben, Carlo, Hannes, Jacques, Josquin, Julian, Mathieu, Matt, SH, Radek, Tomo

EBEX in a Nutshell

- Antarctic long duration
- Using ~1000 bolometric TES (+ FDM)
- 3 Frequency bands: 150, 250, 410 GHz
- Resolution: 8' at all frequencies
- Continuously rotating achromatic half wave plate (Separate talk on Monday)

<u>Status</u>

 10 days of data collected in 1/2013 and are being analyzed

Optics

- 1.5 m aperture Gregorian Dragone telescope (ambient temp.)
- Cold aperture stop + 4 polyethylene lenses

- Achromatic Half wave plate + polarizing grid
- Two focal planes for two orthogonal polarization states

Observational Cosmology - University of Minnesota

Focal Plane + Readout

Observational Cosmology - University of Minnesota

Big Picture on Yield:

- 14 wafers x 140 detectors each = 1960 detectors
- We could have operated only 1735 detectors
- UCB fabricated >50 wafers
- We chose 14 wafers, 1043 'known IVs'
- At float, first tune: 955 valid IVs

Yield reduction:

- Bad wafers
- Low yield wafers
- Bad detectors
- Bad squids, bad wiring
- Unusually High noise
- One wafer close to saturation

Big Picture on Yield:

- 14 wafers x 140 detectors each = 1960 detectors
- We could have operated only 1735 detectors
- UCB fabricated >50 wafers
- We chose 14 wafers, 1043 'known IVs'
- At float, first tune: 955 valid IVs

Yield reduction:

- Bad wafers
- Low yield wafers
- Bad detectors
- Bad squids, bad wiring
- Unusually High noise
- One wafer close to saturation

- More lead time
- > Dedicated, high quality fab
- High throughput test + characterization facility

Observational Cosmology - University of Minnesota

Big Picture on Yield:

- 14 wafers x 140 detectors each = 1960 detectors
- We could have operated only 1735 detectors
- UCB fabricated >50 wafers
- We chose 14 wafers, 1043 'known lvs'
- At float, first tune: 955 valid IVs

Yield reduction:

- Bad wafers
- Low yield wafers
- Bad detectors
- Bad squids, bad wiring
- Unusually High noise
- One wafer close to saturation

Multiple end-to-end integrations + testing

Big Picture on Yield:

- 14 wafers x 140 detectors each = 1960 detectors
- We could have operated only 1735 detectors
- UCB fabricated >50 wafers
- We chose 14 wafers, 1043 'known IVs'
- At float, first tune: 955 valid IVs

Yield reduction:

- Bad wafers
- Low yield wafers
- Bad detectors
- Bad squids, bad wiring
- Unusually High noise
- One wafer close to saturation

Multiple end-to-end integrations + testing *In full flight configuration*

Bolometer Array Performance

- In Flight loading:
 - Excess load of ~2 pW@150 GHz (~80% abs. efficiency)
 - Load ~as expected @250 GHz (~75% abs. efficiency)
 - Load ~as expected @410 GHz (~40% abs. efficiency)

Observational Cosmology - University of Minnesota

Readout

- Developed digital FDM
- Running in x16 mode

electronic noise

Ratio of measured to predicted

- ~650 W; x10 lower power compared to analog
- But still required active cooling
- And consumed significant intellectual effort

Readout - Software/Firmware/Visualization

A balloon platform:

- Requires high tuning efficiency
- Must accommodate low- to non- TM rate
- Has limited computing resources

Solutions:

- Executed tuning automatically with fridge cycles
- Stored all tuning parameters on an SQL database on-board
- Moved tuning algorithm execution from computer to individual boards

Readout - Software/Firmware/Visualization

Limited observing time requires rapid data monitoring => data analysis and visualization challenge

<u>Solutions:</u>

- Developed automated flagging for which squids/bolo tunes are successful, or not
- Web based / easy to use accessible over internet to entire team

This, too, consumed quite a bit of intellectual effort and time Each line is a comb. Click for output plots. Green is: "good IV"

Primordial Inflation Polarization Explorer (PIPER)

PI: Al Kogut (Goddard)

Sensitivity

- 5120 TES bolometers:
 943@200 GHz; 1550@270 GHz
 2270@350 GHz; 3760@600 GHz
- 1.5 K optics with no windows
- NEQ < 2 μ K s^{1/2} at 200, 270 GHz

Systematics

- Continuously moving Front-End polarization modulator
- Twin telescopes in bucket dewar

Foregrounds

• Clearly separate dust from CMB

Goal: Detect Primordial B-Modes with r < 0.01

PIPER Sky Coverage and Sensitivity

Sensitivity r < $0.007 (2\sigma)$

PIPER Sky Coverage: 2 short duration flights/year Northern + Southern =~ 80% sky

LSPE (PI: Paolo deBernardis)

Two Instruments

- STRIP: 44/90 GHz (49/7 horns)
- SWIPE: 140/220/240 GHz (110 TES bolometers/frequency band)

Angular resolution: 1.4 deg

Target sensitivity: 10 muK*arcmin

Systematics

- OMT (STRIP)
- Stepped Polarization Modulator
- Twin telescopes in bucket dewar

Sky Coverage: 20-25%/flight

Figure 1 - The Gondola of the LSPE Experiment

Goal: reionization peak at r ~ 0.01

SWIPE (PI: P. deBernardis)

(Frequency Domain Multiplexing)

Target ~25% of sky/Flight 1st Flight: 12/2017

Launch from Svalbard (Norway) Or Kiruna (Sweden) December: Polar night flight Power = lots of batteries

SPIDER: Suborbital Polarimeter for Inflation, Dust and the Epoch of Reionization (PI: B. Jones, Princeton)

London

Spider: Overview

Frequencies (GHz)	94	150
Telescopes	3	3
Bandwidth [GHz]	22	36
Optical efficiency	30-45%	30-50%
Angular resolution [*] [arcmin]	42	28
Number of detectors ⁺	601 (816)	863 (1488)
Optical background [‡] [pW]	≤ 0.25	≤ 0.35
Instrument NET⁺ [µK∙rts]	6.0	5.7

*FWHM. [†]Only counting those currently used in analysis [‡]Including sleeve, window, and baffle

Sky coverage	About 10 %
Scan rate (az, sinusoid)	3.6 deg/s at peak
Polarization modulation	Stepped cryogenic HWP
Detector type	Antenna-coupled TES
Multipole range	10 < l < 300
Observation time	16 days at 36 km
Limits on r ⁺	0.03

Pivot Aperture Sun shield Top dome Vacuum vessel Hermetic feedthrough Gondola Reaction wheel SIP

[†] Ignoring all foregrounds, at 99% confidence

SPIDER Design

Future plans

- Payload has been recovered!
- 3 new NIST 285 GHz cameras
- Second flight: 2017/18

Frequency and \ell coverage

Observational Cosmology - University of Minnesota

EBEX10K

- 4 bands: 150, 220, 280, 350
 GHz
- 2% of sky (~800 sq. deg)
- Sinuous Antenna Dual Frequency Pixels (150,220), (280,350) GHz (PB2, SPTPol, LiteBIRD)

- 11,160 detectors
 - 46% at 150-220 GHz
 - 54% at 280-350 GHz

EBEX10K

SPI

Summary

- Balloons are essential for probing high frequencies on all angular scales.
- They have strong benefits at the largest angular scales for all frequencies
- By mid-next decade limits will push r=~0.01 + more information on polarization of galactic dust.
- Balloons = 'single shot': no evolutionary improvements => different approach for hardware implementation
- New technologies consume intellectual effort and require time to mature – choose essentials, and leave ample time
- Complex receivers require more time for end-to-end integration and testing.

Extra Material

Instrument

Instrument

Achromatic HWP

- 5 stack achromatic HWP
 Modulation Efficiency > 0.98
- 6 Hz rotation

Warm measurement (Savini + Ade) Dash = data; Solid = model Black = 0°; Red = 45°; Blue = 90°

Predicted Efficiency >0.98

Magnetic Bearing

Timelines

2013 Flight

- 10 days of data in January 2013
- ~6000 sq. deg. constant Dec
 - Overheating of az motor controller
 - Free rotations + az oscillations
 - Continuous pointing solutions; receiver worked well
 - Analysis in progress

- ~\$1M/year; ~8 years to first dataset
- · Compared to 20 years ago, complexity has increased (much) more than funding

- ~\$1M/year; ~8 years to first dataset
- Compared to 20 years ago, complexity has increased (much) more than funding

- Access to (near) space
 - Avoid the atmosphere

- Increase TRL
 - Boomerang, MAXIMA, Archeops -> Planck
 - EBEX (TES, Frequency Domain MUX, Modulator) -> LiteBIRD
- Train next generation space scientists

Pair sum Access to (near) space BICEP2-150 GHz Pair diff Fig22 of 1403.4302 Avoid the atmosphere ٠ Average noise $[\mu K\sqrt{s}]$ 10^{3} Signal attenuation $305.6 \,\mu K \sqrt{s}$ Noise • • Photon (white) noise • Turbulence (1/f) 10^{2} 0.1 🔽 f [Hz]

ell=~25