Cryogenics overview for LiteBIRD

Kazuhisa Mitsuda ISAS, JAXA

December 15, 2015

Outline

- Requirements to cooling system from the instruments.
- Preliminary thermal analysis
 - Baseline Model
 - Assumptions
 - How many last stage coolers (LSC)?
 - Radiative cooling or mechanical coolers?
 - Heat dissipation from < 4K
 - Spacecraft configuration
 - Thermal analysis results
 - Design margin as a function of $mass(\leq 4K)$
- Phase-AI study

Requirements from instruments

I. To provide ~4 K environment for the telescope system(s)

must be surrounded by ~4 K shield or 3K sky

Requirements for

- temperature upper limit,
- temperature gradient,
- temperature stability,
- and emissivity of inner surface

Requirements from instruments

2. To provide ~100m K heat sink(s) for detectors

Requirements for

- temperature,
- temperature stability,
- If there are intermediate temperature stage(s) T_{i1} T_{i2}
 - temperature stability of them.
- Observation efficiency
- Temperature excursion in non-observation duration
- Magnetic moment
 - during observation
 - non observation

more Requirements

- Hold time of detector stage temperature
- Time efficiency of detector stage temperature
- Maximum excursion temperature of detector and intermediate stages.
- Wire harnesses requirements from room temperature electronics to cold stage(s)
 - impedance and/or length requirements
- Total mass of 4K shell + its interior

Design conditions

- Launch load condition (static and dynamic)
- Orbit and attitude of spacecraft
- Uncertainties
 - Material properties
- Design margins
- •

Requirement: Two or more detector units

Two or more detector units

Two or more detector units

Preliminary thermal analysis Radiative cooling or mechanical cooler?

Preliminary thermal analysis Baseline model cooling chain

High TRL from ASTRO-H heritage

ASTRO-H SXS cooling chain

multi (5)-stage cooling system

ASTRO-H SXS cooling chain

ASTRO-H SXS cooling chain

Preliminary thermal analysis Cooling chain of the model design

To perform preliminary thermal analysis, we need a model cold stage and wire harness requirements from cold to warm stages.

Working assumptions: cold stage

Preliminary thermal analysis Assumptions: Spacecraft configuration

Preliminary thermal analysis Heat flow diagram harness excl. mag ADR current wir support (CFRP) * time average over an ADR cycle **Cryostat HK** Sensor/ADR ADR Joule heating* Mechanical Radiation Aperture harness Sun 234K (224+10) 200K Outer Solar paddle shell Space 330 I 428 92 7.5 72 501 0 1.8W Space 2214mW 100K shield 82K 2ST 0.20x2W 38.4 85.4 87.3 2.2 20.7 82.5 0 303 mW 23.7K 20K shield 2ST ADR magnet* ADR salt pill* 152 mW x2 ADR HS getter* 5.55 00[.] 5.10 ω 0.21 SQUID 0 2sets of USCs 0.08 0.83 8.20 .08 +detector heads 4.43K 23.2 mW 4K shell JT 19 enough margin in 4 K cooling power

CFRP truss

Mechanical analysis model

20G launch load and stiffness requirements (>30Hz lateral, >70Hz axial)

Heat load to 4K JT cooler

The present best estimate is ~3x90 kg. Then cooling power at 4K has a large minus margin.

Preliminary thermal analysis Cooling chain: additional JT

Heat load to 4K JT cooler

• 2x shield coolers (SC)

• 2x SC + 2x (JTx2)

Mass of 4K shell + its interior (in unit of 90 kg)

Preliminary thermal analysis Cooling chain: additional shield cooler

Plus margin at 4K cooling power, for ~ 220kg 4K shell mass.

Heat load to 4K JT cooler

Mass of 4K shell + its interior (in unit of 90 kg)

Heat load to 4K JT cooler

• 2x shield coolers (SC) • 2x SC + 2x (JTx2) • 3x SC • 3x SC + 2x (JTx2)

Mass of 4K shell + its interior (in unit of 90 kg)

Phase-Al study

- Identify and list up (all) top-level requirement items from instrument.
- Fill them with (TBR) values as much as possible.
 - (max) mass of 4K shell and its interior
- Determine sensible interface values between cooling system and the instrument (all other interiors of 4K shell).
- Perform trade-off studies among different options, and select a baseline design.
 - # of LSC and interface temperature
- Then perform more detailed mechanical and thermal designs.

Summary

- We have performed a preliminary thermal analysis of the LiteBIRD cryogenic system, using working models for detector and last-stage cooler heat dissipation.
 - Mechanical coolers are required to have redundancy.
- The solution depends on the total mass supported at 4K.
 Some of the solutions may be beneficial for the last-stage cooler.
- If mass (≤4K) is heavier by a factor of 3 than that of the working model (i.e. 90kg -> 270kg), number of cryocoolers increases by a factor of ~2.

Cooling chain: my personal preference

