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Astro-H mission

Configuration on the Spacecraft

Hard X-ray Telescope Soft X-ray Telescope
(Pt/C coating) (Au coating)

SXS
\_(Calorimeter) )

HXI
(Si+CdTe imager)

Focal length = 12 m Focal length = 5.6 m

Astro-H is an international X-ray observatory which will be launched on 2016
Feb 12th by HII-A rocket. There are 4 instrument, and SXS (Soft X-ray
Spectrometer) is a X-ray microcalorimeter operated at 50 mK.

o Takahashi+ 2010, Mitsuda+2010 @SPIE °



The sensor is a Si microcalorimeter array of 32 pixel, 3x3 mm?Z.
SXS sensor +ADR are fabricated at GSFC, and installed in the dewar in Japan.
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Energy resolution E/AE>1000
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SXS dewar
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SXS Cryogenic system

e il nevent  FUjimoto + 2010, Shirron + 2010
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30 L of LHe will survive more than 3 years.

3rd ADR is redundant for LHe, or cryogen-free operation is feasible.
2x 2-stage Stirling coolers(2ST) + 4He Joule-Thomson coolers (JT)
with 2x2ST pre-coolers are installed.



Performances of cooler

This condition is kept
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Development History

IT'It'i1s not a good example. Please have a schedule margin!!
* We have started the dewar design ~ 2005. There were several design changes.

We made 3 cryostat for Astro-H, TTM, EM and FM

TTM :Mock up for TTM heat simulator

EM : should be identical with FM, practices of assembly

There were leaks in HS, and could not test the ADR cooling in FM-like sequences.
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Lesson : Definition of Requirements

We define 32 requirements for dewar system.

XCS-1.1 The SXS-XCS cooling chain shall use the superfluid He as a primary cryogen. The He lifetime shall
be longer than the requirement for minimum success criteria (see below for a value), even with a failure
in a cryocooler.

XCS-1.2 SXS-XCS shall be capable of continuing scientific observations even without the superfluid He, if no
failure occurs to cryocoolers.

 Requirements shall be identified by their origin

* Top level requirements from mission success criteria (life,
detector performance, effective area etc.)

 Requirements from observatory science

e Practical requirements for ground test and launch operation

e Boundary condition from S/C and other subsystem
 Requirements shall be clarified which can be evaluated.

e Verification method of each requirements should be defined.

* Do not confuse the requirements and results of design.
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Lesson : Design with margin and redundancy

* Physical parameters at low temperature are not always
well-defined to trust. (extrapolation from 4K, small
sample ..) Be careful to set margins, and it shall be
evaluated constantly.

* “Redundant” system sounds robust and nice. But it causes
extra heat-load, extra complexity of the system, extra test
resources. Consider cons & pros of redundant system,
and identify risks.

e |[n case of Astro-H, He tank and JT are redundant, but
complicated.

* Simple examples: un-operated 2ST will be just a heat-
path, JT circulation without JT effect will heat up He
tank.
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Lesson: Development

e Space cryogenic system is still under development
phases.

* Tight collaboration between manufacturer and
project (engineer and scientists) is useful and
essential.

e Ex. CO2 contamination in operating gas will
reduce the mission life. CO2 was measured to be
~ ppb level with API-MS. Careful calibration is
required to prove the effect.
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Integration




Lesson :Fabrication and Integration

e Clarify the I/F between several manufacturer (GSFC,
SRON, JAXA, SHI, MHI, NEC). Mechanical coolers and CSI
are modularized, i.e. simple I/F plate. Small parts, like
connectors, bolts and non-flight items are often neglected.

 The |/F can not be identified only by CAD.
 we transfer |/F plate beforehand

* Integration needs time, and human resources.
 MLI installation, need stitching by hand ~ 4 weeks
e Gas purification ~ 2 weeks

e Shipping and custom clearance needs time, costs and lots
of paper works.



subsystem level testin 2014-

winter

SXS subsystem level
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Cooling system thermal performance
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MWE, Dewar mech. env. test

and detector system function test
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Move to Tsukuba = Noise investigation

15/30 Hz noise
“mid-band noise”

2ST gas purification
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Isolator installation

JT gas pu riilcatic

Dewar mech. env. test for isolators

Performance test & calibration [N
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SXS dewar at subsystem test
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Lesson: Verification

* Define the verification matrix carefully, for each
development phase.

 End-to-end tests and test-as-you-fly style are
preferable, but some of them are impossible.
Combination of analysis/design shall be
considered carefully.

e Test for cryogenic system needs time
e He fill for the SXS dewar : 4 days.
* Cryogen-free cooling of SXS dewar: 40 days.

* During the tests, test personnels shall be
assigned.
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System level test In 2015

e System | /F test

* Integration

* Post-integration detailed function test

* Thermal-vac test (3 weeks)

e Acoustic sine-vibration, and shock test (5 weeks)
* Pre-shipment detailed function test TTUKUba by Nov
* Post-shipment detailed function test l

* Final cool down and check Tanegashima from Dec

* He Top-off and Launch operation
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An example timeline based on S/C EIC test

Night time Day time Night time
Test item 1/2/3|4/5/6|7|8 9 10 11 12 13 14 15 16 17 18 19 20|21/22|23
SXS-DIST, SXS-SWR-A/B A Lunch MD MIC
SXS-FWE, FWM A Lunch
SCD, PCD, JTD (1) A Lunch
SCD, PCD, JTD (2) A Lunch
PSP-A/B A Lunch
SXS-PSU, XBOX, ADRC A Lunch
He transfer A Setup Lunch Setup Y Setup
Cooling (1) A Setup Lunch Cryo-cooling (MD), He transfer
Cooling (2) Cryo-cooling (MD) A Cryo-cooling (MD) Lunch Cryo-cooling (MD)
Cooling (3) Cryo-cooling (MD) A Cryo-cooling (MD) Lunch Cryo-cooling (MD)
SXS (0) by MD Cryo-cooling (MD) A SXS func test via MD AD§281' Tu(;un IV crv| AE (norm) AE];%C Cryo-cooling (MD)
SXS (1) Cryo-cooling (MD) A MDIS g s ON| SXSON |  CC (JT circ) [CC (T drive)] [ TUnin| SXS func test (requiring SMU, |~ gy
A S2 g FWE, etc)
SXS (2) Cryo-cooling (SA)  |A| A0S AE (MTQ) Lunch AE (MTQ) AE (RW) AE (BCCU) AT(((:%Cg%DAE v SAM cc vp)
: i : MD/S . CC (JT drive) ADR S1, | Tunin| SXS func test (requiring SMU,
Func-D (1) Cryo-cooling (MD) A A Bus ON SXS ON CC (JT circ) & others S2 9 FWE, etc) CC (SA)
o o . . [ADR .
FUII\J'LJ \L) \/IyU'bUUIIIIy \QA} A Luricrt Sl SZ] \ g \Q*-
) i [ADR [ADR SA/M :
Func-D (3) Cryo-cooling (SA) A s3] Lunch $1-3] Y D CC (MD) & evacuation
Evacuation (1) CC (MD) & evacuation |A CC (MD) & evacuation Lunch CC (MD) & evacuation Y CC (MD) & evacuation
Evacuation (2) CC (MD) & evacuation | A CC (MD) & evacuation Lunch CC (MD) & evacuation Y CC (MD) & evacuation
SXS (3) Cryo-cooling (MD) A M'X/ S/BusON| SXSON | CC (T circ) [CC (3T drive)] ADgzsL T“;'” IV crv| AE (norm) Ar'iég)c CC (SA)
SXS(4) | Cryo-cooling (sA)  |A| A0S AE (MTQ) Lunch AE (MTQ) AE (RW) AE (BCCU) AT(((:%Cg];f)AE v SAM e vy
Disassemble \ CC (TM) & warm-up A Disassemble Lunch \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

\
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Lesson:Operation and test plan

e Every possible operation modes shall be tested on ground.
No one dare to use un-tested commands in orbit.

* Test schedule shall be planned with all possible (nominal/
emergency/initial) cases.

e At S/C level, the boundary conditions are set for launch
operation, and in-orbit operation. The system and instrument
team should understand both requirements. Careful
negotiation is needed.

LKA 21



Summary: Experience from Astro-H

We will know a lot of lessons from in orbit
operation, which will come soon.

Cooling power and resources are limited,
but scientists’ ambitions are not limited.

Thus, the system shall be delicately balanced.
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