Experience from Astro-H

Noriko. Y. Yamasaki (ISAS/JAXA) + Astro-H team

B-mode from Space Part 2 2015/Dec/14-16 @ IMPU

Astro-H mission

Astro-H is an international X-ray observatory which will be launched on 2016 Feb 12th by HII-A rocket. There are 4 instrument, and SXS (Soft X-ray Spectrometer) is a X-ray microcalorimeter operated at 50 mK.

Takahashi+ 2010, Mitsuda+2010 @SPIE²

The sensor is a Si microcalorimeter array of 32 pixel, 3x3 mm².

SXS sensor +ADR are fabricated at GSFC, and installed in the dewar in Japan.

Energy resolution E/ΔE>1000

Pixel size Angular rsolution Effective area Lifetime Counting rate Energy scale accuracy

800 μm 1.7 arcmin (1.3 arcmin goal) HPD 160 / 210 cm² (at 1 / 6 keV) 3 years (5 years goal) 150 cts/s full array with 5% dead time +/- 2 eV (+/- 1 eV goal)

Cryo System Block Diagram

SXS Cryogenic system

30 L of LHe will survive more than 3 years.

3rd ADR is redundant for LHe, or cryogen-free operation is feasible.

2x 2-stage Stirling coolers(2ST) + 4He Joule-Thomson coolers (JT) with 2x2ST pre-coolers are installed.

Performances of cooler

This condition is kept by ~ 300W power input to mechanical coolers.

2STs are connected at OVCS (150K) and IVCS (30K)

4K JT cooling power 18 mW @ 4.5 K

Heat load to the He tank I.23 mW 7

Development History

!! It is not a good example. Please have a schedule margin !!

- We have started the dewar design ~ 2005. There were several design changes.
- We made 3 cryostat for Astro-H, TTM, EM and FM
- TTM :Mock up for TTM heat simulator
- EM : should be identical with FM, practices of assembly
- There were leaks in HS, and could not test the ADR cooling in FM-like sequences.

Lesson : Definition of Requirements

We define 32 requirements for dewar system.

- **XCS-1.1** The SXS-XCS cooling chain shall use the superfluid He as a primary cryogen. The He lifetime shall be longer than the requirement for minimum success criteria (see below for a value), even with a failure in a cryocooler.
- **XCS-1.2** SXS-XCS shall be capable of continuing scientific observations even without the superfluid He, if no failure occurs to cryocoolers.
- Requirements shall be identified by their origin
 - Top level requirements from mission success criteria (life, detector performance, effective area etc.)
 - Requirements from observatory science
 - Practical requirements for ground test and launch operation
 - Boundary condition from S/C and other subsystem
- Requirements shall be clarified which can be evaluated.
 - Verification method of each requirements should be defined.
- Do not confuse the requirements and results of design.

Lesson : Design with margin and redundancy

- Physical parameters at low temperature are not always well-defined to trust. (extrapolation from 4K, small sample ..) Be careful to set margins, and it shall be evaluated constantly.
- "Redundant" system sounds robust and nice. But it causes extra heat-load, extra complexity of the system, extra test resources. Consider cons & pros of redundant system, and identify risks.
 - In case of Astro-H, He tank and JT are redundant, but complicated.
 - Simple examples: un-operated 2ST will be just a heatpath, JT circulation without JT effect will heat up He tank.

Lesson: Development

- Space cryogenic system is still under development phases.
- Tight collaboration between manufacturer and project (engineer and scientists) is useful and essential.
 - Ex. CO2 contamination in operating gas will reduce the mission life. CO2 was measured to be ~ ppb level with API-MS. Careful calibration is required to prove the effect.

Integration

Lesson : Fabrication and Integration

- Clarify the I/F between several manufacturer (GSFC, SRON, JAXA, SHI, MHI, NEC). Mechanical coolers and CSI are modularized, i.e. simple I/F plate. Small parts, like connectors, bolts and non-flight items are often neglected.
- The I/F can not be identified only by CAD.
 - we transfer I/F plate beforehand
- Integration needs time, and human resources.
 - MLI installation, need stitching by hand ~ 4 weeks
 - Gas purification ~ 2 weeks
- Shipping and custom clearance needs time, costs and lots of paper works.

subsystem level test in 2014-2015 winter

SXS subsystem level

SXS dewar at subsystem test

Lesson: Verification

- Define the verification matrix carefully, for each development phase.
 - End-to-end tests and test-as-you-fly style are preferable, but some of them are impossible.
 Combination of analysis/design shall be considered carefully.
- Test for cryogenic system needs time
 - He fill for the SXS dewar : 4 days.
 - Cryogen-free cooling of SXS dewar: 40 days.
 - During the tests, test personnels shall be assigned.

System level test in 2015

- System I /F test
- Integration
- Post-integration detailed function test
- Thermal-vac test (3 weeks)
- Acoustic sine-vibration, and shock test (5 weeks)
- Pre-shipment detailed function test
- Post-shipment detailed function test
- Final cool down and check Tanegashima from Dec
- He Top-off and Launch operation

▲Tukuba by Nov

An example timeline based on S/C EIC test

	Night time	Day time					Night time	
Test item	0 1 2 3 4 5 6 7 8	3 9	10 11	12	13 1	4 15 16	17 18	19 20 21 22 23
SXS-DIST, SXS-SWR-A/B		A		Lunch			MD M	
SXS-FWE, FWM		A		Lunch				
SCD, PCD, JTD (1)		A		Lunch				
SCD, PCD, JTD (2)		A		Lunch				
PSP-A/B		A		Lunch				
SXS-PSU, XBOX, ADRC		A		Lunch				
He transfer		Α	Setup	Lunch	Setup Y Setup			
Cooling (1)		A	Setup	Lunch	Cryo-cooling (MD), He transfer			
Cooling (2)	Cryo-cooling (MD)	A Cryo-	cooling (MD)	Lunch	ch Cryo-cooling (MD)			
Cooling (3)	Cryo-cooling (MD)	A Cryo-	Cryo-cooling (MD) Lunch Cryo-cooling (MD)					
SXS (0) by MD	Cryo-cooling (MD)	А	A SXS func test via MD ADR S1, Tunin S2 g IV crv ΔE (norm) ΔE (CC max) Cryo-cooling (MI					Cryo-cooling (MD)
SXS (1)	Cryo-cooling	(MD)	A A A Bus ON	SXS ON	CC (JT circ)	[CC (JT drive)] ADR S	51, Tunin SXS func test g FW	t (requiring SMU, 'E, etc) CC (SA)
SXS (2)	Cryo-cooling (SA)	A AOCS ON	ΔΕ (ΜΤQ)	Lunch	ΔE (MTQ)	ΔΕ (RW) ΔΕ	(BCCU) AT (CC)	off) Y SA/M CC (MD)
Func-D (1)	Cryo-cooling (MD)	A MD/S Bus	ON SXS ON	СС	C (JT circ)	CC (JT drive) ADR S & others S2	S1, Tunin SXS func test g FW	t (requiring SMU, 'E, etc)
Euror=D (2)	Cryo-cooling (SA)			- t mark				IADR CO (SA)
				Lunch				S1, S2]
Func-D (3)	Cryo-cooling (SA)	A [ADR S3]		Lunch	[ADR S1-3]		Y SA/N	M CC (MD) & evacuation
Evacuation (1)	CC (MD) & evacuation	A CC (MD) & evacuation	Lunch	CC (MD) & evacuation		Y	CC (MD) & evacuation
Evacuation (2)	CC (MD) & evacuation	A CC (MD	A CC (MD) & evacuation		CC (MD) & evacuation		Y	CC (MD) & evacuation
SXS (3)	Cryo-cooling	(MD)	A A A Bus ON	SXS ON	CC (JT circ)	[CC (JT drive)] ADR S	51, Tunin g IV crv ΔΕ (no	orm) AE (CC max) CC (SA)
SXS (4)	Cryo-cooling (SA)	A AOCS ON	ΔΕ (ΜΤQ)	Lunch	ΔE (MTQ)	ΔΕ (RW) ΔΕ	(BCCU) AT (CC)	off) Y SA/M CC (MD)
Disassemble	CC (TM) & warm-up	A Dis	assemble	Lunch				

Lesson:Operation and test plan

- Every possible operation modes shall be tested on ground.
 No one dare to use un-tested commands in orbit.
 - Test schedule shall be planned with all possible (nominal/ emergency/initial) cases.
- At S/C level, the boundary conditions are set for launch operation, and in-orbit operation. The system and instrument team should understand both requirements. Careful negotiation is needed.

We will know a lot of lessons from in orbit operation, which will come soon.

Cooling power and resources are limited, but scientists' ambitions are not limited. Thus, the system shall be delicately balanced.

