

Development of Kinetic Inductance Detectors in Grenoble

Martino Calvo Institut Néel, CNRS Grenoble

1 – A ground-based KID instrument: NIKA2

2 – KID for higher frequencies (>300GHz)

3 – KID for lower frequencies (<100GHz)

4 – Getting ready for space...

Crutury 10 Hostory

One of the largest single-dish antennas worldwide for the millimetric band

- 30 m aperture
- 17 arcsec @ 2mm
- 12 arcsec @ 1.25mm
- Correct Field Of View up to 6.5 arcmin
- Multi-bands measurements

Thousands of ultrasensitive detectors \rightarrow **KID!**

NIKA: the first KID based camera open to external astronomers!

NIKA2: New IRAM KID Array 2

- Correct FOV: 6.5 arcmin
- Total pixel count: ≈ 3000
- Arrays count: **3 (2mm + <u>2 x</u> 1.25mm)**

The new generation photometric instrument for the 30m telescope

On site since last October! (...and for the coming 10 years...)

K A V L I PMU

A NON-space-like cryostat!

The cryostat :

- 1.3 ton
- 2.3m length
- Full remote operation
- Cryogen free
- Base T ≈ 150mK

A NON-space-like cryostat!

The optics :

• Splitting achieved using quasi-optical elements

The cryostat :

- 1.3 ton
- 2.3m length
- Full remote operation
- Cryogen free
- Base T \approx 150mK

KAVLI PMU

A NON-space-like cryostat!

The cryostat :

- 1.3 ton
- 2.3m length
- Full remote operation
- Cryogen free
- Base T ≈ 150mK

The optics :

- Splitting achieved using quasi-optical elements
- 2 colours, + 2 polarizations at 1mm

NIKA2 KID arrays

- 2mm: 600÷1000 pixels → 4 feedlines
- 1.25mm: 1200÷2000 pixels → 8 feedlines

Single 4" wafer fabrication

NIKELv1 boards: MUX factor 400 over 500MHz band

Current MUX factor: (250) (for safety + Q_i on ground!)

O. Bourrion et al., 2012 JINST 7 P07014

Martino Calvo

MU The 'house specialty': Hilbert LEKID

- Hilbert LEKID: a modified version of the standard LEKID design

Hilbert LEKID design, <mark>2-pol</mark> M. Roesch et al., Proc ISSTT 2011

- Inductive line based on Hilbert fractal pattern
- Inductor = radiation absorber!

PMU The 'house specialty': Hilbert LEKID

- Hilbert LEKID: a modified version of the standard LEKID design

Hilbert LEKID design, 2-pol M. Roesch et al., Proc ISSTT 2011

Martino Calvo

- Inductive line based on Hilbert fractal pattern
- Inductor = radiation absorber!
- Need to match Z_{eff} of meander to Z_{wave}

The 'house specialty': Hilbert LEKID

- Hilbert LEKID: a modified version of the standard LEKID design
- 2mm

Hilbert LEKID design, 2-pol M. Roesch et al., Proc ISSTT 2011

- Inductive line based on Hilbert fractal pattern
- Inductor = radiation absorber!
- Need to match Z_{eff} of meander to Z_{wave}

 $Z_{eff} = R_{\Box} \cdot (s+w)/w$

- High absorption efficiency over large band
- NIKA2 pixels based on thin film Al (<20nm)
- Feedline: CPW or MS

Martino Calvo

Kavli IPMU, Japan, 15/12/2015

λ/4

Available tools allow to fully characterize the arrays:

• Sky simulator

Cold BB load \rightarrow *sky*

- Martin-Pupplet interferometer
 - Solution ⇒ absorption spectra

+ radioactive sources& fast electronics

A planet !

CR impacts!

Sample array: NIKA2 2mm

• NIKA2 'AR11' array: 1020 pixels, CPW feedline, AR layer by dicing

4 x 250 pixels, simultaneous readout

>80% good pixels!

After removal of doubles and bad KID

IPMU

- NIKA2 started observations last October
- For the time being, runs dedicated mainly to commissioning
- Full operation will start next January

- NIKA2 started observations last October
- For the time being, runs dedicated mainly to commissioning
- Full operation will start next January

NIKA2: first light!

• DR21OH star forming region:

Integration time: 12 min

Credit: N. Ponthieu and NIKA2 collaboration

• SZ effect in cluster CLJ1227

Integration time: 1h06min

Credit: F. Ruppin and NIKA2 collaboration

- NIKA2 is up and running...
- Plenty of good news
 - it works very well! Results (& papers...) on their way.
 - experience for detectors in the **100-300GHz** range
 - time to explore something new!

- NIKA2 is up and running...
- Plenty of good news
 - it works very well! Results (& papers...) on their way.
 - experience for detectors in the 100-300GHz range
 - time to explore something new!

(luckily enough, choosing ramen is much harder!)

R A V L I PMU

- Relatively easy to modify LEKID to cover the $300 \rightarrow 600$ GHz range
- Can keep same technology (eg, materials!)
- In theory, just need to change the geometry a bit: w, s << λ

First te

- First test mask already made
- 4 different sub-arrays of 60 pixels each
- Goal is just a first iteration of the loop design/fabrication/test/feedback!

Teaser: pixel size and meander type are **not** chosen at random!

PMU

Note #1: must increase stray-light rejection (as of now likely the limiting factor to our sensitivity!)

Note #2: optical path not yet in final configuration so power per pixel is a rough estimate

Note #1: must increase stray-light rejection (as of now likely the limiting factor to our sensitivity!)

Note #2: optical path not yet in final configuration so power per pixel is a rough estimate

First results

- Current design is not yet optimized to maximize absorption...
- ...but already achieved a *very* large band!
- More data needed for an 'absolute' value of absorption efficiency (need to consider HDPE lenses, BB power, atmosphere...)

New mask design

• Already designed a second generation pixel (denser meander)

Increase absorption by a factor ≈3 (if we believe in simulations!)

Resonances are at very low frequencies (a pro?)

Denser meander means longer lines \rightarrow need to check *yield*!

Next steps:

• Improve baffling and optics of dedicated test cryostat

Show sensitivity under representative background load

• Test new materials (eg lower ε_{eff} wafer)

• Not as straightforward... KID are pair-breaking detectors!

$$E_{cp} = 3.5k_{b}T_{c}$$

$$E_{\gamma} = hv$$

$$V_{gap} \approx T_{c} \cdot 73 \text{ GHz}$$

• Thin Aluminum ok only above \approx 100GHz!

ΚΑΥΙ

PN

Thin Aluminum ok only above ≈100GHz!

PMU

Plenty of other materials available, but beware of their properties!

19

- Example: Ti_xN_{1-x}, Nb_xSi_{1-x}...
- Ti_vN_{1-v}: NEP worse under lower background!
- Maybe Ti/TiN? •

Martino Calvo

Going to lower frequencies...

- Not as straightforward... KID are pair-breaking detectors!
- $v_{gap} \approx T_c \cdot 73 \text{ GHz}$

IPMU Bi-layer LEKID for low v applications

- Bi-layers have been widely used (for example for TES!)
- Proximity effect gived T_c intermediate between 2 materials
- Example : Ti/Al!
- Different tests made, best results for Ti_{10nm}/Al_{25nm}

IPMU Bi-layer LEKID for low v applications

- Bi-layers have been widely used (for example for TES!)
- Proximity effect gived T_c intermediate between 2 materials
- Example : Ti/Al!
- Different tests made, best results for Ti_{10nm}/Al_{25nm}

- So far so good... But are KID really ready for space?
- Try to ask ESA! (And I guess JAXA/NASA...)
- Basically, no technology can be flown if it didn't fly before (??)

- So far so good... But are KID really ready for space?
- Try to ask ESA! (And I guess JAXA/NASA...)
- Basically, no technology can be flown if it didn't fly before (??)
- Is there a workaround?
- Demonstrate the technology using a balloon!

- PlanB: a French KID-based balloon experiment
- Follow-up of the PILOT project
- Main goal is to measure the *polarized emission of foregrounds*

PlanB / B-SIDE overview

• Field of view : 3°

KAVLI

IPMU

- Dual-polarization (cold 45° polarizer)
- Rotating HWP at 4K

- Field of view : 3°
- Dual-polarization (cold 45° polarizer)
- Rotating HWP at 4K
- Resolution @ 550GHz: between 3' and 6'
- 2x 500-1000 pixels
- MUX ratio of 250
- Flight: 24hrs in April 2018 from Australia

- Accurate measurements of foreground polarization
- Allow clean-up of existing datasets
- Demonstrate performance of KID in space-like conditions!
 - KID NEP in-flight under low optical load

- Effect of CR (glitches!)

- Low-consumption readout electronics

- Any unexpected surprises?

- and a bonus: Closed Cycle Dilution Refrigerator!

- Lots of experience gained thanks to the NIKA2 project
- Work has already started to widen the band of operation of our detectors
- The situation looks promising for both high (>300GHz) and low (<100GHz) frequencies
- The PlanB/B-SIDE balloon project can be a key step to demonstrate the suitability (and 'readiness'!) of KID arrays for space-based missions
- Happy to collaborate!

Thank you!