Foreground cleaning for LiteBIRD using NILC Soumen Basak SISSA, Trieste, Italy SISS

LiteBIRD configurations

Model of the sky

Sky maps contain foreground signals and instrumental noise superimposed on the true CMB.

Internal Linear Combination (ILC)

Assumptions

- CMB is frequency independent while contaminants are not.
- CMB is uncorrelated to contaminants (foregrounds and noise)

Needlets

$$\begin{split} \Psi_{j,k}\left(\widehat{n}\right) &= \sqrt{\lambda_{jk}} \sum_{l=l_{min}}^{l=l_{max}} h_{j,l} \sum_{m=-l}^{l} Y_{lm}^{*}(\widehat{n}) Y_{lm}(\widehat{\xi}_{jk}) \\ j &= 1, 2, \dots, n_{j} \quad k = 0, 1, \dots, n_{pix}^{j} - 1 \\ \widehat{n} &\equiv (\theta, \phi) \quad \theta \in [0, \pi] \quad \phi \in [0, 2\pi) \\ \lambda_{jk} &= \frac{4\pi}{n_{pix}^{j}} \quad \xi_{jk} \equiv \text{HEALPix Grid Points} \\ h_{j,l} &> 0 \quad \forall \ l \in \left[l_{min}^{j}, l_{max}^{j}\right] \quad \sum_{j} h_{j,l}^{2} = 1 \end{split}$$

The use of spherical needlets makes possible localized filtering both in pixel space and harmonic space, so that the ILC weights are adjusted as a function of location on the sky and of angular scale.

$$h_{j,l} = \begin{cases} \cos\left[\left(\frac{l_{peak}^{j}-l}{l_{peak}^{j}-l_{min}^{j}}\right)\frac{\pi}{2}\right] & \text{for } l_{min}^{j} \leqslant l < l_{peak}^{j}, \\ 1 & \text{for } l = l_{peak}, \\ \cos\left[\left(\frac{l-l_{peak}^{j}}{l_{max}^{j}-l_{peak}^{j}}\right)\frac{\pi}{2}\right] & \text{for } l_{peak}^{j} < l \leqslant l_{max}^{j} \end{cases}$$

Needlet transforms on sphere

Needlet analysis:

- Gives the needlet coefficients from spin-zero square-integrable function on sphere

$$\beta_{j,k} = \int_{S^2} X(\widehat{n}) \Psi_{j,k} d\Omega_{\widehat{n}} = \sum_{l} h_{j,l} \sum_{m=-l}^{l} X_{lm} Y_{lm}(\widehat{\xi}_{jk})$$

$$X \longrightarrow \beta_1 \qquad \beta_2 \qquad \beta_3 \qquad \beta_4 \qquad \bullet \qquad \bullet$$

Needlet synthesis:

- Gives back original spin-zero square-integrable function from needlet coefficients

$$X(\widehat{n}) = \sum_{j,k} \beta_{j,k} \Psi_{j,k}(\widehat{n}) = \sum_{l} \left(\sum_{j} h_{j,l}^2 \right) \sum_{m=-l}^{l} X_{lm} Y_{lm}(\widehat{n})$$

• • β_4 β_3 β_2 β_1 \longrightarrow X

– Condition for perfect reconstruction: $\sum h_{j,l}^2 = 1$

Needlet ILC

Basak & Delabrouille 2102, 2013

Estimation of Covariance Matrix

Needlet bands for LiteBIRD

$$h_{j,l} = \begin{cases} \cos\left[\left(\frac{l_{peak}^{j}-l}{l_{peak}^{j}-l_{min}^{j}}\right)\frac{\pi}{2}\right] & \text{for } l_{min}^{j} \leqslant l < l_{peak}^{j}, \\ 1 & \text{for } l = l_{peak}, \\ \cos\left[\left(\frac{l-l_{peak}^{j}}{l_{max}^{j}-l_{peak}^{j}}\right)\frac{\pi}{2}\right] & \text{for } l_{peak}^{j} < l \leqslant l_{max}^{j} \end{cases}$$

Band	I _{min}		l _{peak}		I _{max}		nside	
	NASA MO	JAXA	NASA MO	JAXA	NASA MO	JAXA	NASA MO	JAXA
1	0	0	0	0	100	100	64	64
2	0	0	100	100	200	200	128	128
3	100	100	200	200	300	300	256	256
4	200	200	300	300	400	400	256	256
5	300	300	400	400	600	500	512	256
6	400		600		800		512	
7	600		800		1000		512	

LiteBIRD Simulation: Gaussian CMB maps (publicly available version of PSM, Delabrouille et al. 2013)

Field: Q Frequency: 140 GHz FWHM: 40.5 arcmin Configuration: JAXA T/S: 0.05

Cosmological parameters $\Omega_{\rm h}h^2$ 0.02230 $\Omega_c h^2$ 0.1188 θ_{MC} 1.04093 0.066 τ In(10¹⁰ A_c) 3.064 0.9667 n_s 0.05 r

Field: U Frequency: 140 GHz FWHM: 40.5 arcmin Configuration: JAXA T/S: 0.05

LiteBIRD Simulation: Inhomogeneous Gaussian noise maps (publicly available version of PSM, Delabrouille et al. 2013)

LiteBIRD Simulation: Inhomogeneous Gaussian noise maps (publicly available version of PSM, Delabrouille et al. 2013)

Field: Q Frequency: 140 GHz FWHM: 40.5 arcmin Configuration: JAXA T/S: 0.05

Field: U Frequency: 140 GHz FWHM: 40.5 arcmin Configuration: JAXA T/S: 0.05

LiteBIRD Simulation: Foreground maps (publicly available version PSM)

Configuration: JAXA T/S: 0.05

Field: Q Frequency: 140 GHz FWHM: 40.5 arcmin

Field: U Frequency: 140 GHz FWHM: 40.5 arcmin Configuration: JAXA T/S: 0.05

Polarized foreground components:

- Synchrotron
- Thermal dust
- Point sources

Estimation of CMB map

LiteBIRD CMB maps

Needlet ILC weights

Needlet ILC weights

Needlet ILC weights

Estimation of CMB spectrum

LiteBIRD CMB spectra

LiteBIRD CMB spectra

Summary

- We have analyzed simulated sky maps for two LiteBIRD configurations (JAXA and NASA-MO), with the main scientific objective of measuring of B-mode of CMB by removing the foreground signals and instrumental noise superimposed on them.
- The method used is an implementation of a constrained linear combination of the channels with minimum error variance on a frame of spherical wavelets called needlets, allowing localized filtering in both pixel space and harmonic space.
- We have obtained a full sky, low foreground, low noise CMB map, which can be used to study the scientific potential of the mission.
- The 60, 100, 140 and 195 GHz channels contributes the most to the final CMB polarization maps for JAXA configuration. However, in case of NASA-MO configuration, the most of the comes from 140, 195 and 235 GHz frequency channels only.
- We have found that the level of the residuals of contaminants is higher in case of JAXA configuration compared to that in case NASA-MO configuration. In case of NASA-MO configuration, our measurement of CMB angular spectra clearly show detection of B-mode with tensor scalar ratio equal to 0.05 on 67.5% of the sky.
- We would like to redo our analysis on more complex simulation with non-Gaussian CMB and error on calibration coefficients.

Thank you