Planck Lessons Learned: Simulations, Data Analysis & High Performance Computing

> Julian Borrill, Reijo Keskitalo & Ted Kisner Computational Cosmology Center, Berkeley Lab & Space Sciences Laboratory, UC Berkeley

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada.

Planck is a project of the European Space Agency, with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.

Data Analysis

- Sequence of S/N-increasing data compressions via domain transformations:
 - Time
 - Pixels
 - Multipoles
 - Parameters
- Each domain exposes different systematics
 => iterative looping.
- Must propagate both data and covariance for sufficient statistic.

Analysis Methods

• CMB data volumes:

– Time domain: $\mathcal{N}_{t} \sim \Sigma_{det}$ Sampling Rate (Hz) x Observation Time (s)

- Pixel domain: $\mathcal{N}_{p} \sim \Sigma_{\text{freq, pol}} \ 10^{9} \text{ x Sky Fraction / [Beam (arcmin)]}^{2}$

• CMB data analysis scaling dominated by:

 $-\mathcal{N}_{p}^{3}$ for exact methods with explicit covariance matrices.

– $\mathcal{N}_{mc} \mathcal{N}_{t}$ for approximate methods with MC uncertainty quantification.

• Computational constraints (1% cycles/year on Top 10 system):

 $\begin{aligned} &-2000: \mathcal{N}_{\rm p} < 10^{6} \& \mathcal{N}_{\rm t} < 10^{12} \\ &-2015: \mathcal{N}_{\rm p} < 10^{7} \& \mathcal{N}_{\rm t} < 10^{15} \\ &-2030: \mathcal{N}_{\rm p} < 10^{8} \& \mathcal{N}_{\rm t} < 10^{18} \end{aligned}$

Assumes:

- Moore's Law
- 100% & 1% efficiency
- Except in special cases, exact methods now computationally intractable.

Simulations

- Needed for:
 - Mission design & development
 - Analysis validation& verification
 - Data uncertainty quantification & debiasing (MC)
- From top to bottom, trade-off between:
 - computational cost
 - realism/reliability

SimDA: Top Down, Wrap Around

SimDA: Sub-Domains

1. Forecasting

Key Strength:

Speed-enabled breadth.

Key Challenges:

Validity – capturing complexity in minimal sky & mission models.

2. Sky Modeling

- Key Challenges:
 - Reliability: noisy, confused, band-passed, beam-convolved input data, inc. Planck!
 - Self-consistency: eg. CMB secondaries & extra-Galactic foregrounds
 - Usability: software engineering

3. Time-Ordered Data Processing

Key Challenges:

- Tractability: computational challenges defined by the TOD volume.
- Systematics: real raw data don't match any *a priori* data model.

4. Component Separation

- Key Challenges:
 - Validation: are these the right algorithms for the (as yet unknown) real foregrounds?
 - Verification: are these algorithms right given (as yet flawed) simulated foregrounds?

5. Statistics & Parameters

- Key Challenges:
 - Reliability: sufficiency of real data covariance approximations.
 - Tractability: disk space for many millions of MC maps.

TOD Challenges

- Two bounding challenges:
 - Tractability for massive Monte Carlo sets.
 - Usability for exploratory pre-processing & mission characterization.

Massive Monte Carlos

- Operation count scales with
 - Number of MC realizations: $\mathcal{N}_{\rm mc}$ ~ 10^4
 - Number of map-makings per realization: $\mathcal{N}_{\rm mm}$ ~ 10
 - Number of PCG iterations per map-making: \mathcal{N}_{it} ~ 10
 - Number of operations per PCG iteration: \mathcal{N}_{ops} ~ 10 x \mathcal{N}_{t}
- Required FLOP ~ $10^7 \mathcal{N}_t$ ~ 10^{19} for Planck

High Performance Computing

- 10¹⁹ FLOP ~ 10⁵ CPU-years at 1% efficiency on 1GHz CPU
 ⇒ Massive parallelism + Moore's Law growth
- Whole-data reduction
 - ⇒ Tightly-coupled cores (not grid/cloud/at-home/etc)
- Planck solution:
 - NERSC: Open-access HPC facility with long-term system upgrade plan.
 - New Top 10 system every 2-3 years
 - 6,000 users from 50 countries
 - NASA/DOE MOU guaranteed minimum annual NERSC allocation for mission lifetime:
 - In practice 1% NERSC cycles/year ~ 10⁵ x Peak FLOP/s

Planck MC Efficiency

TOAST framework

- TOD input/output avoidance
 - On-the-fly simulation
 - Caching
- Communication optimization
 - MPI/OpenMP hybridization
 - Pairwise map overlap
- System- and run-specific tuning
 - eg. NUMA vs MPI

Planck 2015 results. XII: Full Focal Plane simulations arXiv:1509.06348

Data & HPC Growth

EPOCH

Next Generation Challenges

- Computational Efficiency
 - Required FLOP ~ 107 \mathcal{N}_{t}
 - Available FLOP ~ 10^5 x Peak
 - Efficiency: ϵ > 10² \mathcal{N}_t / Peak
 - compare suborbital & space!

- Next-generation HPC challenges
 - Energy constraints limiting Watt/FLOP (Tianhe-2 ~ Belize!)
 - More complex architectures will be harder to program efficiently
 - system heterogeneity, deep memory hierarchies, dark silicon, etc
 - End of Moore's Law

Pre-Processing & Mission Characterization

- A limiting factor for Planck has been our ability to easily and quickly
 - simulate detector-level data in full detail
 - prototype pre-processing/mission characterization algorithms.
- Must expand the framework
 - from MC Sim/Map for HPC geeks
 - to full TOD processing for all

pyTOAST

- Competing requirements:
 - Massively parallel & very efficient even on coming HPC architectures
 - Easy for non-HPC experts to adapt, extend & run
- Re-implement entire TOAST framework as open source python modules
 - Expanded developer base
 - Rapid prototyping
 - Split generic and experiment-specific elements
- Efficiency issues:
 - Start-up cost: pre-bundle libraries (eg. pyinstaller)
 - I/O avoidance: pass data between modules in memory
 - Compute efficiency: link to compiled C(++) code at key points
 - Is cython sufficient to exploit new architecture features?

Conclusions

- TOD data volumes present entirely predictable computational challenges
 - Computational efficiency must be a key design driver, and

Moore's Law presents a moving architectural target.
 Efficiency is a journey, not a destination.

- Pure efficiency is sufficient for massive MCs, but must also be made useable for pre-processing & mission characterization.
- All next-generation CMB experiments are facing common simulation and data analysis challenges, in particular in
 - sky modeling
 - TOD processing

and the ways in which these impact the downstream analysis domains.

A Modest Proposal

- A two-tier community-wide program:
 - developing common, generic capabilities in the public domain
 - deploying them for specific analyses within our various collaborations

TOD Processing Birds of a Feather session Wednesday March 9th 2016 following CMB-S4 Meeting at Berkeley Lab

(Any interest in other sessions?)