

Office of Science

Polarization Modulator

B Mode From Space December 14, 2015

Akito Kusaka Lawrence Berkeley National Laboratory

- What modulators do? (Why do we need it, or not?)
- Review of modulators for CMB polarization
- Requirements for next generation instruments?
- What modulators do not do? Systematics Residuals?

What modulators do?

- "Systematics Rejection"
- Those of statistical nature: correlated noise
 - Correlated: low frequency and/or among detectors
 - (Atmosphere)
 - Cryo temperatures: focal plane, mirrors, filters, baffles
 - Readout electronics: DAC, SQUID, ADC, amplifier, ...
 - Cosmic ray hits
- Those of systematic nature: beam
 - Main beam systematics, $T \rightarrow P$ leakage
 - Readout and optical cross talk
 - Sidelobe response

What modulators do?

- Without a modulator
 - Differencing of x vs. y
 - Explicitly or implicitly
- Differences in
 - Optical path
 - Detector
 - Readout electronics (noise, cross-talk)
- Leading to
 - Differential response to T
 - Residual noise (1/f noise)

What modulators do?

- Common path for x vs. y
 - Modulator: first element
 - Common path: optics, detector, readout
 - "Nulling" of systematics (stat. and syst.)
 - "Identical beams" (Eric Hivon's talk)
- Asymmetric subtraction
 - Modulator can create differential response and differential noise.
- My view: a modulator does more good than bad!

"Fast" Polarization Modulators for CMB

- Fast: $f_{\rm mod} > v_{\rm scan}/\theta_{\rm beam}$
- Modulation of each pixel
 - Phase switches: WMAP, CAPMAP, QUIET, DASI, CBI, ...
 - Faraday Rotation Modulator: BICEP1
- Modulation of the entire focal plane
 - HWP: MAXIPOL, EBEX, ABS, POLARBEAR1, ACTPOI, NIKA
 - Variable-delay Polarization Modulator: PIPER, CLASS
 - Fourier Transform Spectrometer: PIXIE

Contribution from B. Keating BICEP Faraday Rotation Modulator

- Modulator at 4K
- No moving component.
- Individual pixel modulation
- Successfully demonstrated on BICEP1, @100 and 150GHz.

240 241 242 243 244 245 246 247 RA [Deg]

ABS: Continuously rotating warm half-wave plate

A-cut sapphire (D=330 mm) *f*~2.5 Hz rotation

 \rightarrow f~10 Hz modulation Air-bearing \rightarrow Stable rotation No need for pair differencing

ABS: Continuously rotating warm half-wave plate

- Optics and HWP
 - Cryogenic cross Dragone
 - HWP near aperture, beam waist
 - HWP: first optical element
- LiteBIRD design resembles ABS

Stability achieved

Knee frequency is typically 1-2mHz

ABS collaboration,

Kusaka, Essinger-Hileman, et. al. (2014)

Systematics

ABS collaboration, Essinger-Hileman, Kusaka, et. al. in prep.

- Scalar leakage: ~0.01%.
- Unpolarized source (Jupiter) observed
 - No signature in the polarization map \rightarrow limit on leakage
 - Higher order leakages <~ 0.06%.

Variable-Delay Polarization Modulator (VPM): Principles of Operation

Variable phase delay is introduced between orthogonal linear polarizations by moving mirror relative to stationary polarizing wire grid.

Modulates between Q and V (linear and circular) polarizations.

Time spent on Q vs. V can be tuned by changing endpoints of mirror throw.

Contribution from T. Essinger-Hileman, E. Switzer, D. Chuss, J. Eimer

VPMs: Upcoming Suborbital Technology Demonstration

PIPER

Balloon, 200, 270, 350, 600 GHz

Cryogenic, 1.5K

Voice-coil drive, 3 Hz operation

39 cm grid diam, 117 µm spacing, 40 µm diameter

Dual VPMs with grids rotated 45° simultaneous Q/U,

Mirror throw tuned for each band, 1 mm throw maximum.

CLASS

- Ground-based
- Atacama Desert, Chile
- Four frequencies: 40, 90, 150, 220 GHz
- Dual-frequency operation at 150/220 GHz
- 60 cm mirror, ambient-temperature
- Voice-coil drive, 10 Hz operation

Contribution from T. Essinger-Hileman, E. Switzer, D. Chuss, J. Eimer

Considerations for a Space Mission

- 1. Small linear motions can be accomplished using simple frictionless bearings.
- 2. The VPM does not require dielectrics, which are subject to damage via deep dielectric charging in the space environment.
- 3. Cross-polarization is mapped into (null) V-channel and does not mix $Q \leftrightarrow U (E \leftrightarrow B)$.
- 4. Polarization basis is fixed to spacecraft, so Q, U basis is fixed across all frequencies and detectors.

Polarizer is broadband- multiple frequencies can be accommodated by

- 1. Setting frequency bands to match the VPM efficiency (in "switching mode")
- 2. Continuously stroking the VPM (FTS mode)
- 3. Changing the modulation band \leftrightarrow changing the mirror stroke.

Residual systematics (variable emission) can be greatly reduced in a space environment, ideally: T(VPM)=T(CMB)

Contribution from T. Essinger-Hileman, E. Switzer, D. Chuss, J. Eimer

Modulator for next generation

- Simultaneous modulation of multiple frequency
- Simultaneous modulation of multiple pixels
 - Possible downside: correlated systematics
 - Large aperture required
- Low levels of systematics
 - High modulation efficiency
 - Low spurious modulated signal
 - In particular those that are time variable
- Possible technologies:
 - Achromatic HWP (sapphire, metamaterial, metal meash)
 - Reflective HWP
 - VPM, TRP
 - 30-60 cm aperture size available now

Do we need fast modulator for LiteBIRD?

- LiteBIRD $f_{scan} \sim 1.6 \text{ mHz}$
 - What is the "TRL" of achieving $f_{\rm knee} \sim 1 \ {\rm mHz}$?
 - Examples from the past:
 - ABS: ~1-2 mHz w/ fast HWP
 - QUIET: 5-10 mHz w/ fast phase switching
 - POLARBEAR1: 2-10 mHz w/ fast HWP (~2 mHz after PCA)
 - EBEX: ?? mHz w/ fast HWP
 - Planck, BICEP, SPT, PB1 (w/o HWP), ACTPol: ??
- Beam systematics mitigation
 - Detector and optics have intrinsic differential response

Systematics from HWP

- Optically expected systematics
 - Monopole leakage ~0.01%
 - Higher order terms is even smaller
 - Small and stable
- Non-uniformity (to be specified)
 - Emissivity
 - 2.725 K would be great.
 - Axis misalignment
 - Anti-reflection coating
 - Constant polarization signal (+ non-linearity.)
- Temperature stability
 - How to maintain the constant temperature?
- Scattering

Constant "polarization" signal

- "2f" is dominant
 - Differential emissivity
 - ~200mK for ABS
- "4f" is ~1/100: ~2mK
 - Depends on optics.
 - Depends on T_{HWP}
 - ABS configuration minimizes the "4f"
 - Possible sources
 - Multiple reflection
 - Non-uniformity
 - Scattering
 - Baffle polarization
- Harmless, in principle

ABS example (Kusaka, Essinger-Hileman, et. al. 2014)

Constant "polarization" signal

• Constant signal + detector non-linearity

 $Q(t) = g(t)Q_0$ Satoru Takakura $g(t) = 1 + aT_{FP} + bT_{sky}$

- Leakage: $bQ_0 \sim 0.001\%$ (but less stable)
- "Constant" signal variation due to T_{HWP} change
 - Upper limit: $Q_0 \cdot \Delta T_{HWP} / T_{HWP}$
 - This naïve analysis would imply $\Delta T_{HWP} \leq 1 \text{mK}$, but
 - Emissive component should reduce as $T_{HWP} \rightarrow T_{CMB}$
 - Non-emissive component scales better than $\Delta T_{HWP}/T_{HWP}$
- Analysis to be made for each implementation

Non-uniformity, beam walking

- Advantage of fast modulation: effective beam
- "Beam walking" effect can be expressed as higher order T→P leakage
 - Origin highly dependent on optical configuration.
 - HWP at Aperture: non-uniform transmission.

And more...

- Time constant:
 - Variable polarization angle
- Clocking and encoding:
- Satoru Takakura, and others... Excess noise leaking from constant polarization
- Localized non-linearity:
- QUIET collaboration, Bischoff et. al. (2013) • ADC non-linearity \rightarrow non-stationary noise and leakage

ABS collaboration, Simon et. al. (2014)

 Polarization angle vs. frequency of AHWP → Shaul's talk

We should to compile the "knowledge of the field"

Summary

- Polarization modulators help to reject "systematics"
 - Those of statistical nature: e.g., 1/f noise
 - Those of systematic nature: e.g., beam systematics
- Fast polarization modulation already demonstrated.
- Modulators for next generation instruments
 - Multi-frequency modulation
 - Multi-pixel modulation
 - Low levels of systematics
- Possible systematic sources
 - We need to create a complete list.