2015 Dec 15 B mode from Space @ Kavli IPMU (WPI)

Optics design for LiteBIRD and realization plan

Hajime SUGAI (Kavli IPMU (WPI)), Tomotake MATSUMURA (JAXA), Kimihiro KIMURA, Masanori INOUE, Makoto ITO (Osaka Prefecture Univ), Toshiyuki NISHIBORI (JAXA), Shingo KASHIMA,Yutaro SEKIMOTO (NAOJ), Hirokazu ISHINO (Okayama Univ), LiteBIRD WG

Optics design for LiteBIRD and realization plan

1. Background

- 1.1. Status of LiteBIRD
- 1.2. Joint Study Group

2. Design approach

- 2.1. Ray tracing
- 2.2. Physical optics
- 2.3. Consistency level between ray tracing and physical optics
- 2.4. 1/3 scale model, including baffle/hood testing

3. Basic design

- 4. Recent studies
 - 4.1. Estimates of effects of mirror surface dimpling
 - 4.2. Preliminary design for high frequency telescope
 - 4.3. Feasibility studies of modifying aperture size

5. Realization plan

- JAXA Chamber
- CGH for 10um interferometer
- 6. Summary

1.1. Status of LiteBIRD

2015 June (2015 Feb submission)
Passed initial down-selection 50-320GHz
through Mission Definition Review by JAXA/ISAS,
→ in transition to ISAS phase-A1, targeting SRR

2015 July (2014 Dec submission) 35-450GHz US participation proposal for NASA MO passed initial down-selection → US phase-A

1.2. Joint Study Group

Joint Study Groups (JSD)

- Detailed study/simulation on each key issue.
- Including external collaborators.
- Foreground
- Systematics

→ Face-to-face meeting held on 2015 Dec 12.
 Close interactions on inputs for System Requirements.

2. Design approach

2.1. Ray tracing

- Code V with or without Beam Synthesis Propagation
- LightTools for stray light

2.2. Physical optics

- GRASP

2.3. Consistency level between ray tracing and physical optics2.4. 1/3 scale model, including baffle/hood testing

For physical optics, see:

- Kimura et al.'s talk; P11. Inoue et al.
 - "Characterization of the LiteBIRD telescope using Physical Optics simulation"
- P12. Ito et al.

"Measurement and Evaluation of the 1/3 Scale Model of LiteBIRD Using Phase Retrieval method"

2.3. Consistency level between ray tracing and physical optics

2.4. 1/3 scale model, including baffle/hood testing

Taken from P11. Inoue et al.

"Characterization of the LiteBIRD telescope using Physical Optics simulation"

3. Basic design – Crossed Dragone

- In the ongoing/upcoming CMB experiments, QUIET, ABS, LSPE employ the similar optical system.
- Two 800 mm reflectors are in anamorphic aspherical shape.
- The cryogenically cooled entrance aperture to control the sidelobe of the feed.
- the telecentric field-of-view of 10x20 degrees² with the Strehl ratio above 99% for all the observing bands.
- The chief ray does not cross at 90 degrees to minimize the multi-reflection.
- Fit within a rocket envelop.

Matsumura et al. 36th ESA antenna workshop

Fno=3.5 model foot print

2015/4/27

鹿島

Fno=3.5 model foot print

Differential PSF (pol 0° vs pol 90°)

F/#=3.5

4. Recent studies 4.1. Estimates of effects of mirror surface dimpling

Deformations of Planck off-axis ellipsoid Secondary Reflector measured by using 10um interferometer (Tauber et al.,A&A 520,A2,2010)

Developed to produce honeycomb-type dimpling pattern on Code V

 $\cos^2\theta$ shape (exaggerated) as an example

Differential PSF (with 8um dimpling (30mm pitch))

F/#=3.5

Differential PSF (pol 0° vs pol 90°)

F/#=3.5

4.2. Preliminary design for high frequency telescope

4.3. Feasibility studies of modifying aperture size (&F/#)

5. Realization plan

Validation method candidates	Warm (Room temp)	77K (or 4K)
Surface roughness (PM/SM) ~2um level	 10um CGH interferometer 3D-CMM on small regions 	- 10um CGH interferometer - (No measurements?)
Surface shape error (PM/SM) ~30um level	 10um CGH interferometer Photogrammetry on larger-scale structure 3D-CMM 	 10um CGH interferometer Photogrammetry on larger-scale structure
Alignment	- Photogrammetry	- Photogrammetry
Radio freq. properties (Main)	- Beam map	- Beam map
Radio freq. properties (Side)	- Beam map	- Beam map

Validation method candidates	Warm (Room temp)	77K (or 4K)
Surface roughness (PM/SM) ~2um level	 10um CGH interferometer 3D-CMM on small regions 	- 10um CGH interferometer- (No measurements?)
Surface shape error (PM/SM) ~30um level	 10um CGH interferometer Photogrammetry on larger-scale structure 3D-CMM 	 10um CGH interferometer Photogrammetry on larger-scale structure
Alignment	- Photogrammetry	- Photogrammetry
Radio freq. properties (Main)	- Beam map	- Beam map
Radio freq. properties (Side)	- Beam map	- Beam map

- Develop Computer Generated Hologram (CGH) for 10um interferometer?

cf. CGH for 3.39um interferometer (Miyazaki 2009)

- Use JAXA 13mp (or 8mp) Space Chamber on Alignment & RF prop. at low temperature?

- Down to -170°C
- Small windows
- Parallel beam incident horizontally (or vertically)

Kino (2009: in Japanese) for Okayama 3.8m optical/NIR telescope segment m

Original figure from http://aerospacebiz.jaxa.jp/jp/images/facilities/13m_space_chamber.gif

Optics design for LiteBIRD and realization plan

1. Background

- 1.1. Status of LiteBIRD
- 1.2. Joint Study Group

2. Design approach

- 2.1. Ray tracing
- 2.2. Physical optics
- 2.3. Consistency level between ray tracing and physical optics
- 2.4. 1/3 scale model, including baffle/hood testing

3. Basic design

- 4. Recent studies
 - 4.1. Estimates of effects of mirror surface dimpling
 - 4.2. Preliminary design for high frequency telescope
 - 4.3. Feasibility studies of modifying aperture size

5. Realization plan

- JAXA Chamber
- CGH for 10um interferometer
- 6. Summary