Why do we need dr < 0.001 -- Lyth bound etc.--

Kazunori Kohri 郡 和範 Theory Center, KEK and Sokendai

면서 (UNADUATE UNIVERSITY FOR ADVANCED STUDIES [SOKENDAL]

Messages to the LiteBIRD collaboration

 A detection of r ~ O(10⁻³) tests the (trans-)Planck-scale physics of the field values in large-field inflation models

 By LiteBIRD, we will be able to test the Starobinsky model, and check a variety of Starobinsky-type models with combining 21cm line observation by SKA

By LiteBIRD, we can measure n_t within a sensitivity of 0.2

Lyth bound (rough estimation)

Boubekeur and Lyth (2005)

• E-folding number

$$\begin{split} N(\phi_{\rm CMB}) &= \int_{0}^{N(\phi_{\rm CMB})} dN &\simeq \int_{\phi_{\rm end}}^{\phi_{\rm CMB}} \frac{3H^2}{V'} d\phi, \\ &= \int_{\phi_{\rm end}}^{\phi_{\rm CMB}} \frac{V}{V'} \frac{d\phi}{M_{\rm P}^2}, \\ &= \int_{\phi_{\rm end}}^{\phi_{\rm CMB}} \frac{1}{\sqrt{\epsilon(\phi)}} \frac{d\phi}{M_{\rm P}} \end{split}$$

Tensor to scalar ratio at the CMB scale
$$\begin{split} r &= 16\varepsilon_{_{CMB}} \lesssim 16\varepsilon(\phi) \qquad \text{Trans-Planckian}? \\ r &\lesssim 2.2 \times 10^{-3} \left(\frac{\Delta N_{\rm slow}}{60}\right)^{-2} \left(\left(\frac{\Delta \phi_{\rm slow}}{M_{\rm P}}\right)^2\right) \end{split}$$

For a bit more specific models

Juan Garcia-Bellido, Diederik Roest, Marco Scalisi, Ivonne Zavala (2014)

Observations

• Planck2015 satellite reported; $\epsilon \equiv \frac{1}{2} \left(\frac{M_G V'}{V} \right)^2 = 2 \left(\frac{M_G}{2} \phi \right)^2$ $\eta \equiv M_G^2 \frac{V''}{V} = 2 \left(\frac{M_G}{\phi} \right)^2$

• Power spectrum of curvature perturbation $M_{g} = M_{p} / \sqrt{8\pi}$ $P = \frac{V}{10^{-10}} \sim (\Delta T / T)^{2}$

$$\zeta = \frac{1}{24\pi^2 m_G \varepsilon} = (3.091 \pm 0.025) \times 10^{-10}$$

Spectral index

$$n = \frac{d \ln P_{\zeta}}{d \ln k} + 1 == 1 + 2\eta - 6\varepsilon = 0.9639 \pm 0.0047$$

$$n - 1 \sim -0.04$$

• Running of n(k)

$$\alpha_{s} = \frac{dn}{d \ln k} = 24\varepsilon^{2} - 16\varepsilon\eta - 2\xi^{(2)} = 0.009 \pm 0.010 (1\sigma)$$

Tensor to scalar ratio Planck and BICEP/Keck + BAO

Planck 2015 results. XX. Constraints on inflation

 $1/2m^2\phi^2$ Chaotic inflation model was excluded at 95%

(February, 2015)

PlanckTT+lowP+lensing+ext. +Bicep2/Keck Array 150Hz+95Hz

Keck Array and BICEP2 Collaborations: P. A. R. Ade, et al, arXiv:1510.09217 [astro-ph.CO]

Specification of LiteBIRD

(1) JAXA baseline

1	Band	Beam	NET	Pixels	$N_{\rm wf}$	$N_{\rm bolo}$	$\operatorname{NET}_{\operatorname{arr}}$	Sens.	Sens. with	Band
	(GHz)	(ar-	$(\mu K\sqrt{s})$	\mathbf{per}			$(\mu K\sqrt{s})$	$(\mu \mathbf{K} \cdot \mathbf{arcmin})$	margin	
		cmin)		wafer					$(\mu K \cdot \operatorname{arcmin})$	
1	60	54.1	94	19	8	304	5.4	9.6	15.7	Х
	78	55.5	59	19	8	304	3.4	6.0	9.9	Х
	100	56.8	42	19	8	304	2.4	4.3	7.1	Y
	140	40.5	37	37	5	370	1.9	3.4	5.6	Y
	195	38.4	31	37	5	370	1.6	2.9	4.7	Z
	280	37.7	38	37	5	370	2.0	3.5	5.7	Z
	total					2022		1.6	2.6	
-										

LiteBIRD + Simons Array

 LiteBIRD single: without lensing for ell<=1500 for TT, TE, EE, BB

 LiteBIRD + Simons Array: with lensing for ell<=3000, + Temp.-fluctuation

Forecast of r v.s. n_s by LiteBIRD

Preliminary

Oyama, Kohri, Hazumi et al, in preparation

Forecast of r v.s. n_t by LiteBIRD

Preliminary

 $n_t = -2\varepsilon$

Oyama, Kohri, Hazumi et al, in preparation

Starobinsky Inflation Model Action

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left(-\frac{1}{2} M_{\rm P}^2 R + \frac{M_{\rm P}^2}{12m^2} R^2 \right)$$

See also K. Maeda, Phys. Rev. D 37, 858 (1988).

$$rac{M_{
m P}^2}{12m^2}\simeq 5 imes 10^8$$
 is a big number

Transformation from Jordan to Einstein frame

• Action $S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} f(R) f(R) = R + F(R)$ • After Legendre transformation $S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} \varphi R - U(\varphi) \right] \quad \varphi \equiv 1 + F_{,\chi}(\chi)$

Effective Potential

$$U(\varphi) = \frac{(\varphi - 1)\chi(\varphi) - F(\chi(\varphi))}{2\kappa^2}$$

Transformation from Jordan to Einstein frame

Conformal transformation

$$g^E_{\mu\nu} = \varphi g_{\mu\nu}$$

$$S_E = \int d^4x \sqrt{-g_E} \left[\frac{1}{2\kappa^2} R_E - \frac{1}{2} g_E^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right]$$

• Potential

$$V(\phi) = \frac{1}{2\kappa^2 \varphi^2} \left[(\varphi - 1)\chi(\varphi) - F(\chi(\varphi)) \right] \quad \varphi \equiv 1 + F_{\chi}(\chi)$$

$$\varphi = e^{\sqrt{2/3}\kappa\phi}$$

Starobinsky Inflation in Einstein frame Action

$$S_E = \int d^4x \sqrt{-g_E} \left[\frac{1}{2\kappa^2} R_E - \frac{1}{2} g_E^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right]$$

Potential

$$V_{\rm Starobinsky} = \frac{3}{4} m^2 M_{\rm P}^2 \left(1 - e^{-\sqrt{2/3}\phi/M_{\rm P}}\right)^2 \label{eq:VStarobinsky}$$

General potential shapes

$f(R) = R \perp$	R^2	λ_n	R^n
J(n) = n +	$\overline{6M^2}$ $^+$	2n	$(3M^2)^{n-1}$

Q.-G. Huang, 2013

Starobinsky-like model from extra dimensions Asaka, Iso, Kawai, Kohri, Noumi, Terada, 2015

Action in D-dimension

$$S = \Lambda^D \int \mathrm{d}^D x \sqrt{-g} \sum_{n=0} b_n \left(\frac{R}{\Lambda^2}\right)^n \qquad D = 10$$

Action in 4D

$$S = c \int d^4x \sqrt{-g} \sum_{n=0} b_n \Lambda^4 \left(\frac{R}{\Lambda^2}\right)^n$$

$$c \equiv V_{D-4} \Lambda^{D-4} \quad L \equiv V_6^{1/6}$$

• If we take $L=30/\Lambda$

1

$$c=\!\frac{M_{\rm P}^2}{12m^2}\simeq 5\times 10^8$$

 Λ is a cutoff scale

Starobinsky-like Inflation

Asaka, Iso, Kawai, Kohri, Noumi, Terada, 2015

Einstein term

$$cb_1\Lambda^2 = -\frac{M_{\rm P}^2}{2}$$
 $b_1 \sim O(10^{-4})$

Including higher-order terms

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left(-\frac{1}{2} M_{\rm P}^2 R + \frac{M_{\rm P}^2}{12m^2} \left(R^2 + \sum_{n=3}^{\infty} b_n \left(-\frac{6m^2}{b_1} \right)^{2-n} R^n \right) \right)$$

 $b = b_1 b_3$

$$V = \frac{m^2}{9b^2} e^{-2\sqrt{2/3}\phi} \left(\sqrt{1 + 3b\left(e^{\sqrt{2/3}\phi} - 1\right)} - 1 \right) \left(1 + 6b\left(e^{\sqrt{2/3}\phi} - 1\right) - \sqrt{1 + 3b\left(e^{\sqrt{2/3}\phi} - 1\right)} \right)$$

Starobinsky-like Inflation

Asaka, Iso, Kawai, Kohri, Noumi, Terada, 2015

$$V = V_{\text{Starobinsky}} \times \left(1 - \frac{b}{2}e^{\sqrt{2/3}\phi} \left(1 - e^{-\sqrt{2/3}\phi}\right)\right) + \mathcal{O}(b^2)$$

Predictions

Potential

 $b = b_1 b_3$

$$1 - n_{\rm s} \simeq \frac{2}{N} \left(1 + \frac{16}{27} bN^2 \right) = \frac{2}{N} + \frac{32}{27} bN,$$
$$r \simeq \frac{12}{N^2} \left(1 - \frac{16}{27} bN^2 \right) = \frac{12}{N^2} - \frac{64}{9} b,$$
$$\alpha_{\rm s} \simeq -\frac{2}{N^2} \left(1 - \frac{16}{27} bN^2 \right) = -\frac{2}{N^2} + \frac{32}{27} bN,$$
$$\beta_{\rm s} \simeq -\frac{4}{N^3} \left(1 + \frac{4}{9} bN \right) = -\frac{4}{N^3} - \frac{16}{9N^2} bN$$

$$\alpha_s = dn_s \, / \, d \ln k$$

$$\beta_s = d\alpha_s / d\ln k$$

Tensor to scalar ratio

Asaka, Iso, Kawai, Kohri, Noumi, Terada, 2015

Starobinsky Inflation

Running will be observed by future 21cm line with the precison of 3.E-4 (Kohri, Oyama, T.Takahashi, Sekiguchi, 2015)

 $b = b_1 b_3$

Asaka, Iso, Kawai, Kohri, Noumi, Terada, 2015

Cut-off scale of this model

Asaka, Iso, Kawai, Kohri, Noumi, Terada, 2015

Upper bounds on b₁

 $|b_1| \lesssim 2 imes 10^{-4}$

Lower bounds on the cutoff scale

$$\Lambda = m \sqrt{rac{6}{|b_1|}} \gtrsim 5 imes 10^{15} {
m GeV}.$$

Conclusion

 A detection of r ~ O(10⁻³) tests the (trans-)Planck-scale physics of the field values in large-field inflation models

 By LiteBIRD, we will test the Starobinsky model, and check a variety of Starobinskytype models with combining 21cm line observation by SKA

 By LiteBIRD, we can measure n_t within a sensitivity of 0.2