Metamaterial Optics and Multichroic Detectors on ACTPol and Beyond

Hannes Hubmayr for

Jeff McMahon

Berkeley

Three Cameras and ACT

The Future: 2016-2019 Advanced ACTPol (AdvACT) a full multichroic upgrade to ACTPol

90/150 GHz Multichroic Polarimeter Design

• operates from 75-165 GHz, setting the bandwidth requirement for the optics

First Deployed Multichroic Polarimeter Array

Metamaterial Coatings

how do we AR coat these lenses to meet the requirements of multichroic polarimeters?

Metamaterial Antireflection Coatings

concept:

cut sub-wavelength features to approximate a multi-layer dielectric coating

See Datta et al. for details (applied optics: <u>arXiv:1307.4715</u>)

Metamaterial Coatings

- precise control over the index of refraction
- ability to create multiple layer coatings
- thermal contraction of coating exactly matches the lens
- extremely low loss
- Design
 - extensive simulations used to determine the geometry
- Fabrication
 - requires a custom silicon dicing saw capable of 3-axis motion with micron accuracy
 - can't buy this off the shelf...

custom micron accurate 3axis dicing saw and temperature controlled room +/- 0.5° C built by Grad Student Charles Munson

0

ACTPol 90/150 Multichroic lenses

33 cm diameter lens

sub-percent reflections from 75-200 GHz'

3 layer AR coated lens RF measurement: configuration1

Centaurus A with our multichroic array

ACTPol PA3: 90 GHz

ACTPol PA3: 146 GHz

Planck 100 GHz

Planck 143 GHz

Centaurus A with our multichroic array

ACTPol PA3: 90 GHz

Planck

8

ACTPol PA3: 146 GHz

٩

3 GHz

Frequency Scaling and Broader Bandwidth

AdvACT 150/220 Detectors

- spline profiled horn
- SiNx dielectric •
- cross-under

- 503 horns per array
- 6 inch fab •

Advanced ACTPol 150/220 GHz lens

Five Layer Prototype

- operates from 75 to greater than 300 GHz
- design based on existing blades, straightforward to improve this proof of principle
- cut a 20 cm prototype one side complete
- defect rate is ~1%, but this was with a broken X-stage, expect near zero defect rate on the second side

highest operating frequency limited by thinnest blades

- 5:1 RBW to about 350
- 3:1 RBW to about 450
- •1.5:1 RBW to 1.5 THz

but we want access to broad-bandwidth up to 600 GHz for the CMB and higher frequency for other applications

Funded Starting January

laser ablated AR coating

5 layer > 4:1 ratio bandwidth

Metamaterial Silicon Half wave plates

Concept: cut anisotropic structures into silicon to engineer a birefringent metamaterial

Advantages:

(1) larger birefringence than sapphire leads to thinner half wave plates with lower loss and emission
(2) easy to AR coat and can make birefringent coatings

150 GHz HWP

predicted performance:

- <0.5 K emission @ 300K
- > 95% modulation efficiency
- <0.3% reflections

fabrication notes:

- dicing saw was damaged during fabrication leading to a 0.5% defect rate
- the wax used to hold the wafer was difficult to clean
- cleaning the wax lead to cracking it when a solvent dissolved the Invar support ring

achieved performance

- <2 K loading @ 300K
 - dominated by defect scattering
 - > 95% modulation efficiency
- <2% reflections —> dominated by tolerances

single frequency prototype

deployed on ACTPol

aside from a crack, loading was less than 2K (dominated by scattering) and we saw modulated signals

deployed on ACTPol

aside from a crack, loading was ~2K (dominated by scattering) and we saw modulated signals

Broad-Band Metamaterial Silicon

Half wave plates

Concept: an achromatic stack of three halfwave plates with

birefringent AR coatings.

90-150 broad

band geometry

Key Design choice

∆ n ~ 0.8

- reduces thickness and loss
- keeps reflections

manageable

Simulation Trick

use a 3x2 lattice to embed the rotated layer into a square

grid Assembly

cut internal rotated HWP first, glue this onto a second wafer, cut the outer layers

Optimization

minimize differential reflection

predicted performance:

- <1.5 K emission @ 300K
- > 95% modulation efficiency
- <2% averaged reflections

Broad-Band Metamaterial Silicon

90-150 broad band geometry

Half wave plates

Concept: an achromatic stack

of three halfwave plates with

birefringent AR coatings.

First 90/150 Multichroic HWP

to be deployed soon

- <1.5 K emission @ 300K
- > 95% modulation efficiency
- <2% averaged reflections

opunnzauon

minimize differential reflection

Conclusions

- A full multichroic camera has been deployed and has achieved a preliminary 10 uK*s^{1/2} array-level sensitivity. Si AR coated lenses are an important part of that success.
- Silicon optics with sub-percent reflections with up to 4:1 bandwidth have been fabricated
- Silicon AR coated lenses are a potential option for the LiteBIRD high frequency telescope optics
- Metamaterial silicon wave plates have been fabricated and are under evaluation on ACTPol