Impact on *r* of foreground B-modes : LiteBIRD forecasts with COMMANDER

Mathieu Remazeilles

The University of Manchester

Remazeilles, Dickinson, Eriksen, Wehus arXiv:1509.04714

> B mode from space - IPMU Tokyo 10-16 Dec 2015

CMB B-mode polarization satellite concepts

Concept name	Leading country/ institution	Frequencies [GHz]	Beam size FWHM [arcmin]	Sensitivities $[\mu K deg]$	Reference/notes
EPIC-LC-TES	U.S.A. (NASA)	30,40,60,90 135,200,300	155,116,77,52, 34,23,16	0.460, 0.156, 0.085, 0.037, 0.035, 0.037, 0.062	EPIC Low-Cost option with TES detectors (Bock et al. 2008)
EPIC-CS	U.S.A.	30,45,70,100,	15.5,10.3,6.6,4.6,	0.683,0.367,0.150,0.117	EPIC Comprehensive-Science option
	(NASA)	150,220,340,500	3.1, 2.1, 1.4, 0.9	0.117, 0.183, 0.883, 7.50	(Bock et al. 2008)
EPIC-IM-4K	U.S.A.	30,45,70,100,150	28, 19, 12, 8.4, 5.6	0.147, 0.061, 0.027, 0.018, 0.014,	EPIC Intermediate with
	(NASA)	220,340,500,850	3.8, 2.5, 1.7, 1.0	0.027,0.058,0.014,0.012	4 K mirror (Bock et al. 2009)
LiteBIRD	Japan	60,78,100,	75,58,45,	0.172, 0.108, 0.078,	(Matsumura et al. 2013)
	(JAXA)	140,195,280	32,24,16	0.062, 0.0517, 0.063	
COrE	Europe	45,75,105,135,165,	23.3, 14, 10, 7.8, 6.4,	0.150,0.078,0.077,0.075,0.077	ESA M mission concept
	(ESA)	195, 225, 255, 285, 315,	5.4, 4.7, 4.1, 3.7, 3.3,	0.075, 0.075, 0.173, 0.283, 0.767,	(The COrE Collaboration et al. 2011)
		375, 435, 555, 675, 795	2.8, 2.4, 1.9, 1.6, 1.3	$1.95, \! 4.25, \! 9.82, \! 57.0, \! 348.0$	
COrE+	Europe	60,70,80,90,100,	21.0,18.0,15.8,14.0,12.6,	0.485, 0.467, 0.320, 0.257, 0.197,	ESA M mission concept 3 ¹
Light	(ESA)	115, 130, 145, 160, 175,	11.0, 9.7, 8.7, 7.9, 7.2,	0.138, 0.110, 0.092, 0.092, 0.090,	
		195, 220, 255, 295, 340,	6.5, 5.7, 5.0, 4.3, 3.7,	0.090, 0.135, 0.218, 0.430, 0.817,	
		390, 450, 520, 600	3.2, 2.8, 2.4, 2.1	$1.645, \! 4.205, \! 10.535, \! 15.848$	
COrE+	Europe	60,70,80,90,100,	14.0, 12.0, 10.5, 9.3, 8.4,	0.342, 0.233, 0.160, 0.123, 0.098,	ESA M mission concept 4 ¹
Extended	(ESA)	115, 130, 145, 160, 175,	7.3, 6.5, 5.8, 5.3, 4.8,	0.073, 0.057, 0.057, 0.057, 0.058,	
		195,220,255,295,340,	4.3, 3.8, 3.3, 2.9, 2.5,	0.063, 0.090, 0.152, 0.220, 0.422,	
		390, 450, 520, 600, 700, 800	2.2, 1.9, 1.6, 1.4, 1.2, 1.1	0.790,1.982,5.632,20.05,93.5,203	
PRISM	Europe	30, 36, 43, 51, 62,	17, 14, 12, 10, 8.2,	0.211, 0.141, 0.133, 0.103, 0.098,	ESA L mission concept
	(ESA)	75,90,105,135,160,	6.8, 5.7, 4.8, 3.8, 3.2	0.093, 0.078, 0.068, 0.061, 0.0572	(André et al. 2014)
		185,200,220,265,300,	2.8, 2.5, 2.3, 1.9, 1.7,	0.059, 0.061, 0.064, 0.073, 0.085,	
		320, 395, 460, 555, 660	1.6, 1.3, 1.1, 0.92, 0.77	0.092, 0.135, 0.197, 0.404, 0.953	
PIXIE	U.S.A.	30,60,90,120,150,	96.0 (constant)	5.180, 1.390, 0.691, 0.454, 0.352,	(Kogut et al. 2011)
	(NASA)	180,210,240,270,300,		0.307, 0.292, 0.297, 0.319, 0.358	
		330, 360, 390, 420, 450,		0.418, 0.503, 0.623, 0.790, 1.020,	
		480,510,540,570,600,		1.350, 1.800, 2.440, 3.350, 4.660,	
		630, 660, 690, 720, 750,		6.550, 9.280, 13.30, 19.10, 27.70,	
		780, 810, 840, 870, 900,		40.50, 59.60, 88.20, 131.00, 196.00,	
		930, 960, 990, 1020, 1050,		$294.00,\!444.00,\!672.00,\!1020,\!1560,$	
		1080,1110,1140,1170,1200		2390, 3670, 5660, 8750, 13600	

No foreground : overall sensitivity

~ 1 / σ_{eff}^{2} = \sum_{i} 1 / σ_{i}^{2} inverse variance weighting across frequencies

CMB versus Foreground B-modes

- Spectral information on polarized foregrounds is non-trivial
 - synchrotron curvature ?
 - how many greybodies for thermal dust ?
- How many polarized foregrounds in the sky ?
 - thermal dust
 - synchrotron
 - spinning dust ?
 - magnetic dust ?
 - polarized CO ?

- ... ?

the answer not only depends on physics but also on instrument sensitivity

Bayesian parametric fitting & Gibbs sampling

COMMANDER - Eriksen et al (2008)

Parametric fitting model

$$\boldsymbol{m}(\boldsymbol{p}, \boldsymbol{\nu}) = \boldsymbol{a}(\boldsymbol{\nu}) \, \boldsymbol{s}^{cmb}(\boldsymbol{p}) \\ + \left(\frac{\boldsymbol{\nu}}{\boldsymbol{\nu}_0^s}\right)^{\beta_s(\boldsymbol{p})} \, \boldsymbol{s}^{sync}(\boldsymbol{p}) \\ + \left(\frac{\boldsymbol{\nu}}{\boldsymbol{\nu}_0^d}\right)^{\beta_d(\boldsymbol{p})} B_{\boldsymbol{\nu}}(T_d(\boldsymbol{p})) \, \boldsymbol{s}^{dust}(\boldsymbol{p}) \\ + \boldsymbol{n}(\boldsymbol{p}, \boldsymbol{\nu})$$

MCMC Gibbs sampling $\mathbf{s}^{(i+1)} \leftarrow P(\mathbf{s} | C_{\ell}^{(i)}, \boldsymbol{\beta}^{(i)}, \boldsymbol{d})$ • amplitudes (CMB, dust, synchrotron) $C_{\ell}^{(i+1)} \leftarrow P(C_{\ell}|\mathbf{s}^{(i+1)})$ $\boldsymbol{\beta}^{(i+1)} \leftarrow P\left(\boldsymbol{\beta} | \boldsymbol{s}^{(i+1)}, \boldsymbol{d}\right)$

- CMB power spectra
- Foreground spectral indices

Likelihood distribution of the tensor-to-scalar

<u>After foreground removal</u> :

 $C_{\ell < 12}^{EE} \propto \tau^2$ (optical depth to reionization) $C_{\ell < 12}^{BB} \propto r$ (tensor-to-scalar ratio)

$$\mathcal{L}(C_{\ell}|\tau,r) \propto \frac{e^{-\frac{1}{2}\left[C_{\ell}-C_{\ell}^{th}(\tau,r)\right]\Sigma^{-1}\left[C_{\ell}-C_{\ell}^{th}(\tau,r)\right]}}{\Sigma^{1/2}}$$

Impact of incorrect foreground modelling ?

possible mismatch between the foreground model and the data

н

$$\mathbf{m}(p, v) = \mathbf{a}(v) \, \mathbf{s}^{cmb}(p) \\ + \left(\frac{v}{v_0^s}\right)^{\beta_s(p)} \, \mathbf{s}^{sync}(p) \\ + \left(\frac{v}{v_0^d}\right)^{\beta_d(p)} B_v(T_d(p)) \, \mathbf{s}^{dust}(p) \\ + \mathbf{n}(p, v) \\ \mathbf{m}(p, v) \\ \mathbf{s}^{spinning \, dust}(p) \\ \mathbf{s}^{spinning \, dust}(p)$$

<u>Model</u>

Data

Correct foreground modelling

Correct foreground modelling

LiteBIRD extended

Extra low-frequency channels help in reducing the uncertainty on **r**

No foreground: overall sensitivity

Correct foreground modelling

Incorrect dust modelling : omitting one greybody component

Incorrect synchrotron modelling : neglecting curvature

Incorrect spectral modelling of synchrotron bias the tensor-to-scalar ratio by > 1σ

 $\ell_{max} \sim 12$

χ ²	r	
1.00	0.06756 ± 0.01027	COrE+ Light
1.01	0.06390 ± 0.00946	COrE+ Extended
1.01	0.06074 ± 0.00920	COrE
1.01	0.07988 ± 0.01027	LiteBIRD
1.01	0.07122 ± 0.01027	PIXIE
1.09	0.07769 ± 0.01029	EPIC-LC-TES
0.99	0.06558 ± 0.01004	EPIC-CS
1.30	0.06205 ± 0.00906	EPIC-IM-4K
1.12	0.06386 ± 0.00925	PRISM

low χ^2 but large bias on *r* \rightarrow lack of channels to fit non-trivial synchrotron

LiteBIRD

Curvature flattens the synchrotron spectrum

Curvature makes synchrotron and CMB components less "orthogonal"

- Over the frequency range of LiteBIRD, curvature prevents any component separation method (COMMANDER, NILC) from distinguishing between the CMB spectrum and the synchrotron spectrum flattened by curvature
- \rightarrow the fit of the total sky will be correct ($\chi^2 \sim 1$) but the synchrotron and the CMB will not be correctly separated
- LiteBIRD extended can distinguish between synchrotron curvature and CMB through extra low-frequency channels (< 60 GHz)</p>

Incorrect synchrotron modelling : neglecting curvature

Incorrect spectral modelling of synchrotron bias the tensor-to-scalar ratio by > 1σ $\ell_{max} \sim 12$

Incorrect synchrotron modelling : neglecting curvature

Incorrect spectral modelling of synchrotron bias the tensor-to-scalar ratio by > 1σ $\ell_{max} \sim 12$

LiteBIRD extended

Summary

Full Bayesian framework: sky component fitting & likelihood estimation of \boldsymbol{r}

- End-to-end propagation of foreground uncertainties to cosmological parameters

 next step: systematics and lensing uncertainties
- Feedback on foreground modelling through the χ^2 output map
- > 2 criteria : χ^2 statistics of the fit & tensor-to-scalar ratio r
 - Taken together, they indicate wether a false detection of *I* is due to incorrect foreground modelling or lack of low frequency channels
- Because of unprecedented sensitivity, next-generation CMB satellites are much more sensitive to incorrect assumptions about Galactic foregrounds
 - Omitting one extra greybody dust component \rightarrow **/** biased by more than 3σ
 - Neglecting synchrotron curvature (C=0.3) \rightarrow **/** biased by more than 1σ
 - Neglecting 1% spinning dust polarization \rightarrow r non-negligible bias

"LiteBIRD extended" better controls foreground uncertainties than "LiteBIRD original"

 LiteBIRD extended can distinguish between CMB and synchrotron curvature through extra-low frequency channels

LiteBIRD extended

Frequencies (GHz)

40 50 60 68.4 78.0 88.5 100.0 118.9 140.0 166.0 195 234.9 280 337.4 402.1

Missing polarized foreground : spinning dust

Remazeilles, Dickinson, Eriksen, Wehus, in prep. (2015)

Correct foreground modelling

Incorrect dust modelling : omitting one greybody component

High-frequency channels very useful to highlight failure in dust model

Incorrect foreground modelling : minor impact on Planck

Because of lower sensitivity, <u>Planck is less impacted</u> by incorrect spectral assumptions on the Galactic foregrounds

Incorrect dust modelling : impact of high frequency channels

Incorrect dust modelling : impact of Galactic masking

MCMC Gibbs sampling

$$oldsymbol{s}^{(i+1)} \leftarrow P\left(oldsymbol{s} ig| C_{\ell}^{(i)}, oldsymbol{d}
ight)$$

 $C_{\ell}^{(i+1)} \leftarrow P\left(C_{\ell} ig| oldsymbol{s}^{(i+1)}, oldsymbol{d}
ight)$

C_e sampling

$$P(C_{\ell}|\boldsymbol{s}, \boldsymbol{d}) = P(C_{\ell}|\boldsymbol{s}) \propto \frac{e^{-\frac{(2\ell+1)}{2C_{\ell}} \left(\frac{1}{2l+1}\sum_{m=-\ell}^{\ell}|\boldsymbol{s}_{\ell m}|^{2}\right)}}{C_{\ell}^{(2\ell+1)/2}}$$

- Inverse-Gamma distribution
- Simple textbook sampling algorithm $\rightarrow C_{\ell}^{(i+1)}$

Amplitude sampling

$$P(\mathbf{s}|C_{\ell}, \mathbf{d}) \propto P(\mathbf{d}|\mathbf{s}, C_{\ell}) P(\mathbf{s}|C_{\ell})$$

$$\propto e^{(-1/2)(\mathbf{d}-\mathbf{s})^{T} \mathbf{N}^{-1} (\mathbf{d}-\mathbf{s})} e^{(-1/2)\mathbf{s}^{T} \mathbf{S}^{-1} \mathbf{s}}$$

$$\propto e^{(-1/2)(\mathbf{s}-\widehat{\mathbf{s}})^{T} (\mathbf{S}^{-1} + \mathbf{N}^{-1})(\mathbf{s}-\widehat{\mathbf{s}})}$$

- Gaussian distribution where $\widehat{s} = (S^{-1} + N^{-1})^{-1} N^{-1} d$ is the Wiener
- $\mathbf{s}^{(i+1)}$ is solution (conjugate gradients) of

$$\left({old S}^{-1} + {old N}^{-1}
ight) {old s} = {old N}^{-1} {old d} + {old S}^{-1/2} w_0 + {old N}^{-1/2} w_1$$

where w_0 , $w_1 \sim \mathcal{N}(0, 1)$