Delensing LiteBIRD's B-modes

Blake SherwinMiller Fellow, UC Berkeley

(work with T. Namikawa, M. Schmittfull and others)

Outline

- Delensing the B-mode polarization: motivation and methods
- Forecasted LiteBIRD Delensing Performance with:
 - Lensing reconstruction from CMB S₄ or S₃
 - CIB and Large Scale Structure
- Subtleties, Challenges and Open Questions for LiteBIRD Delensing

CMB temperature with no r

CMB temperature with very small r

CMB B polarization* with r = 0

CMB B polarization* with small r

See r clearly as there is no background variance from scalar density perturbations

B-modes are a "null channel"

A Challenge: Gravitational Lensing

Image Credit: ESA

- CMB photons are gravitationally lensed by the large scale mass distribution
- Many small deflections remap the observed CMB

Unlensed CMB B-Polarization

Lensed CMB B-Polarization

$$B^{\mathrm{lens}}(\mathbf{l}) = \int rac{d^2\mathbf{l'}}{(2\pi)^2} W(\mathbf{l},\mathbf{l'}) E(\mathbf{l'}) \kappa(\mathbf{l}-\mathbf{l'})$$
 κ : lensing convergence

The Need for Delensing

- Lensing B lies on top of any primordial signal
 B = B_{primordial} + B_{lensing}
- Hence lensing B-mode cosmic variance adds to error,
 σ~(C_I^{BB} + N_I^{BB})/n_{modes}^{0.5}
- Note: assume mean lensing-C_l^{BB} is known, so can just "de-bias"

The Need for Delensing

- Lensing B lies on top of any primordial signal
 B = B_{primordial} + B_{lensing}
- Hence lensing B-mode cosmic variance adds to error,
 σ~(C_I^{BB} + N_I^{BB})/n_{modes}^{0.5}
- When N_I^{BB} < C_I^{BB} ~5UK', lensing B is limiting noise!

LiteBIRD Error Budget for r: Instrumental Noise vs. Lensing

 $\sigma_0(r) \sim 4 \times 10^{-4} \times$

LiteBIRD Error Budget for r: Instrumental Noise vs. Lensing

 $\sigma_0(r) \sim 4 \times 10^{-4} \times$

Delensing The CMB

How to reduce lensing noise?

$$B^{\mathrm{lens}}(\mathbf{l}) = \int \frac{d^2\mathbf{l}'}{(2\pi)^2} W(\mathbf{l}, \mathbf{l}') E(\mathbf{l}') \kappa(\mathbf{l} - \mathbf{l}')$$

Delensing: construct
 B_{lensing}~Eκ map from
 measured κ and E and
 subtract: B - B_{lensing}

subtract

estimate of lensing B (from d+E)

Outline

- Delensing the B-mode polarization: motivation and methods
- Forecasted Delensing Performance with:
 - Lensing reconstruction from CMB S₄ or S₃
 - CIB and Large Scale Structure
- Subtleties, Challenges and Open Questions for LiteBIRD Delensing

Delensing: Forecasting Performance

 Error reduction depends on residual lensing Bmode

$$\sigma(r) \sim \langle C_l^{BB, lens} + N_l^{BB} \rangle_{l < 100}$$

• Find that delensing reduces B-mode power by a factor $(1-\rho^2)$

$$C_l^{BB,res} = \int \frac{d^2 \mathbf{l'}}{(2\pi)^2} W^2 C_l^{EE} C_{l-l'}^{\kappa\kappa} (1 - \rho_{l-l'}^2)$$

[ρ : correlation coefficient of delensing map with true lensing field]

 Need good tracers! (but: not v. sensitive to E noise)

On what scales do we need lensing information?

- Lenses at
 L~200-800
 contribute
 most to B power
- So: L~200-800 lenses most important for delensing, but higher L also matter

How much does each lensing scale contribute to lensing B?

To Delens LiteBIRD, Need To Measure Good Maps of CMB Lensing - How?

CMB lensing is a probe of the projected mass distribution

$$\kappa = \int dz W(z) \delta(z)$$

Reconstruct lensing from changes in high-res background CMB,
 e.g., CMB Stage 4 + Stage 3 (NB: LiteBIRD too low-res)

2) Estimate lensing from Large Scale Structure tracers of lensing, e.g. CIB, SKA

LiteBIRD Error on r: Stage-III and CMB Stage-IV Delensing

The Cosmic Infrared Background: An Excellent Lensing Tracer

- ~80% correlated with lensing! (Planck CIB)
- Due to similar highredshift origin as CMB lensing, from z~2
- Weight and scale CIB map to give lensing

Redshift origin of CMB Lensing

LiteBIRD Error on r: CIB Delensing

[CIB: Sherwin & Schmittfull 2015; SKA: Namikawa, Yamauchi, Sherwin, Nagata 2015]

LiteBIRD Error on r: CIB + CMB Stage-III Delensing

[CIB: Sherwin & Schmittfull 2015; SKA: Namikawa, Yamauchi, Sherwin, Nagata 2015]

Outline

- Delensing the B-mode polarization: motivation and methods
- Forecasted Delensing Performance with:
 - Lensing reconstruction from CMB S₄ or S₃
 - CIB and Large Scale Structure
- Subtleties, Challenges and Open Questions for LiteBIRD Delensing

Challenge I: Analysis Choices

- Default analysis would probably just measure the power spectrum of the template-subtracted B-mode map, B-Ek
- Other options:
 - don't delens a B $m\alpha p$: jointly analyze all cross/auto-spectra of B and the B-mode template (Eκ) [i.e. BxB, Bx(Eκ), (Eκ)²]
 - sampling (both lensing and primordial sky)
- Question: What is the best analysis method for LiteBIRD?

Challenge II: Extra "Noise" in Delensing Maps

- Delensing performance reduced by
 - remaining dust (CIB), systematics or noise in the delensing maps (will decorrelate them from the true lensing)
 - noise and missing modes in E
- Questions: to what extent can dust be cleaned from CIB? How many modes are missing or noisy from E?

Challenge III: Knowing the "Noise" in Delensing Maps!

 Need to know how much lensing B-mode power is left to constrain r! We need to know the mean residual B power very well (~1%) to "de-bias"!

$$C_l^{BB,\text{del}}(r,a_i,b_i) = C_l^{BB,r}(r) + C_l^{BB,\text{res}}$$

 Question: will we know the correlation / noise well enough to know the residual B power to ~1%?

N.B. For CIB, Stage-III cross-correlations will be very useful.

Challenge IV: Correlated Systematics Propagation

• Lensing foregrounds correlated with B foregrounds can give biases, e.g., <(B-E κ) \times (B-E κ) \times , cross terms involving <BE κ >

- Foregrounds in B, E, and κ all could matter
- Similar concerns for instrumental systematics
- Question: biases probably small, but can we demonstrate these are negligible?

Full B Mode Map

Perfectly (?) Delensed B Map

Summary

- Delensing can greatly improve LiteBIRD constraints on r
- CMB Stage-IV is ideal;
 CIB/SKA + Stage-III is fine
- Lots of work required on delensing analysis: foregrounds, systematics, pipelines...

