Feedhorn-Coupled TES Polarimeter Arrays Hannes Hubmayr NIST B-modes from Space Dec 16, 2015

Developed by a large fraction of US CMB community

NIST

J. Austermann J. A. Beall D. Becker S. M. Duff J. Gao

A. Grigorian

G.C. Hilton

J. Hubmayr

C. McKenney

O. Quaranta

J. Ullom

J. Van Lanen

M. Vissers

UC Berkeley

E.M. George N. Harrington W.L. Holtzapfel

Stanford H.M. Cho D. Li K. Irwin K.W. Yoon

UMich

R. Datta J. McMahon C. Munson

UPenn

M.D. Devlin M. Lungu B.L. Schmitt J. Ward

Case Western J. Ruhl

Cornell S. Henderson B.J. Koopman M.D. Niemack

Princeton

S. Choi K. Crowley E. Grace P. Ho L. Page C. Pappas L. Parker S. Simon S.T. Staggs

U of Colorado W. Everett

N. Halverson J.T. Sayre

NASA Goddard

- H. Moseley
- E. Wollack

U Chicago

- L. Bleem
- J. Carlstrom
- J. W. Henning
- T. Natoli

Johns Hopkins J. Appel

T. Essinger-Hileman

ANL C.L. Chang

U Toronto L. Newburgh

FermiLab B. A. Benson

CMB power spectrum summary

Hannes Hubmayr

CMB power spectrum summary

NIST

Hannes Hubmayr

Yoon et al. *AIP* 2009 Hubmayr et al. *JLTP* 2012

Yoon et al. *AIP* 2009 Hubmayr et al. *JLTP* 2012

TES parameters driven by $T_{\rm b}$ and readout

Hannes Hubmayr

TES parameters driven by $T_{\rm b}$ and readout

Hannes Hubmayr

Advantages

- Flexible
 - couples to variety of telescope optics
 - accommodates variety of T_{bath}, multiplexing technologies, & loading conditions
 - band definition
 - waveguide + freespace filter
 - on-chip filtering
- Frequency scalable
 - antenna and waveguide size scales with wavelength, rest of circuit remains the same
 - no fabrication tolerance issues moving above 150 GHz
- Low Systematics
 - near Gaussian shaped beams
 - frequency independent polarization angles
 - natural RF shielding
 - no AR coating required

Preparing for LiteBIRD

Independent development items beneficial for LB

- Fabrication development: 150mm wafers and simplified process flow
- Scaling to higher frequency bands
- Deployment on balloon

Directed efforts

- TES bolometers optimized for space
- radiation tolerance testing

	Band Centers (GHz)	Detector Count	$f Noise \ {f Performance} \ (\mu {f K} \sqrt{ m s})$
HF	280	74	8.1
	337	108	8.1
	402	72	15.3

NIST Boulder Cleanroom

Used to provide readout for 30,000 mm/sub-mm - wave TES channels

Hannes Hubmayr

Fabrication -> make it simpler

- 150mm wafer diameter -> make fewer wafers
- All stepper defined lithography -> higher yield, faster to produce
- AlMn sensors -> uniformity + fewer fabrication process steps
- Removed two fabrication layers
- 70% increase in mapping speed in one ACTPol 90/150 array to one AdvACT 90/150 by increased packing density alone

S.M. Duff et al. JLTP 2015

Spatially uniform AlMn films

2 mK peak-to-peak spread across a 150 mm diameter wafer

Advanced ACTPol 150/230 GHz prototype

1st 150mm array near completion

Scaling to higher frequencies: Multichroics from 70 – 380 GHz

Scaling to higher frequencies: SPIDER 285 GHz arrays

near identical frequency band as 1 of 3 LiteBIRD HFA channels

16 x 16 array (512 TES)

100 mm

Due to 100mK base temperature, bolometer for LiteBIRD has much shorter legs

Scaling to higher frequencies: SPIDER 285 GHz arrays

16 x 16 array (512 TES)

Platelets now being fabricated

100 mm

Balloon-borne demonstration is path to achieve high TRL

Space-optimized TES bolometers

NIST

Hannes Hubmayr

Radiation testing

- work in collaboration with Hirokazu Ishino and Tomotake Matsumura
- HIMAC 160MeV proton beam
- 10 krad dose
- Samples included AlMn films, full detector single pixels, AlMn TES bolometers, SQUID Series Arrays

Conclusions

- Silicon platelet feedhorn-coupled architecture is a mature technology (ie SPTpol, ACTPol)
- 10 monolithic arrays produced and fielded to date, 6 arrays will be fielded in the near term
- Demonstrated 10 uK arcmin array level sensitivity in 90/150 GHz array (~1000 sensors, recall Jeff McMahon's presentation)
- Shown reproducible, near-Gaussian shaped beams
- Frequency scaling via geometric scaling of antenna components demonstrated
- Balloon-borne demonstration upcoming on SPIDER

