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Gilbert, T. de Haan wowuces), J. Montgomery, G.
SmECher (now Urthecast)

e COM DEV: N. Rowlands, K. Smith, A. Wilson

* With strong collaboration from: UC Berkeley, U.
Chicago, LBNL, NIST, Stanford, Wisconsin.
 See: A. Bender et al., “Digital frequency domain multiplexing

readout electronics for the next generation of millimeter
telescopes”, SPIE 2014 arXiv:1407.3161.




fMUX: Heritage & Staged Development
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DFMUX Readout system
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McGill / COM DEV / CSA Tech Devel.
e (Canadian Space Agency STDP-4 Program: Jan 2012 —Jan 2014

— Canadian Collaboration
* McGill University (Project Lead)
* COM DEV — (prime contractor for JWST, SPIRE, etc. in Canada)

* Overall objective: demonstrate TES readout electronics for
satellite platforms, focus on LiteBIRD.

* Technical goals of the project:

— Reduce power consumption per bolometer by a factor of 5 2 50 mW/

detector
* Increase multiplexing factor by a factor of 4 to 64x (more bolometers per wire)
* Use newer generation low-power FPGAs with new signal processing algorithms

* Reduce dynamic range requirements for the SQUID with Digital Active Nulling.
— Lower load on thermal stages (less wires)

* Reduce restrictions on wire length or maximum operating frequencies with DAN
— Maintain system performance, including noise.

— Produce a flight representative model for environmental testing.
DSP/FPGA not included yet.



representative electronics for the key analog
circuits—the SQUID electronics and the digitizer/
synthesizer (Mezzanine) boards in collab with

experienced satellite builder (COM DEV).

CSA Tech Project Methodology

loying for

~ Design and implementation COTS system (dep
SPT3g/PB2) allows testing and optimization of circuit

. architecture.
ety o =+

=it ==_
r
LRy
.

Environmental testing of the Flight Representative
hardware, and cryogenic end-to-end testing of the

» Flight representative hardware with the 64x DAN
firmware to provide a TRL5 implementation of the

readout system components.
7

Design, implementation, and bench top testing of new Digital
2015-12

Active Nulling firmware with a multiplexing factor of 64
LiteBIRD DfMux Readout
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CSA Project: Environment requirements

e Design for L2: determines the radiation & thermal environments
— Use COM DEV’s JWST studies, assumes thin alum. shielding for electronics.

 The mission life was assumed to be 2.5 years, with factor 2 margin

(5 years)
Environment | Requirement | Relevance
Radiation 50 krad TID Flight qualified / rad hard parts selection

(under Imm Alum)

Thermal Operation -10Cto+50C Parts selection, test temperature range
Thermal Survival -40C to +100C

Thermal Stability 1C/24hr

EMC MIL-STD-461 Susceptibly dependent on configuration — must
be self shielding
Magnetic <400 nT DC Susceptibility to DC fields to be tested
<0.3nTAC
Vibration TBD Dependent on mission / launcher
o =
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Performance Evaluation Criteria

* Detector stability:

— The system must allow for stable and robust operation of the TES
bolometers deep in transition.

 Readout system noise

— The readout system should produce insignificant increase in overall
detector noise (< 10 pA/VHz)

—> achieve 7pA/VH:z typical
* Multiplexing factor
— Target 64 TES readout per SQUID readout module

— Recently (post-project) 128x available for warm system, but cold
components presently support 64x only.

* Power Dissipation
— Target 40-60 mW/detector = achieved 48 mW/det @64x

— With FPGA demo electronics. FPGA board design will change
(improve!?) this.



DfMux Readout: Ground-based System
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DfMux Readout: Ground-based System
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Figure 3. The ICE motherboard, McGill's new FPGA platform. The black heat sink covers the FPGA; the CPU,

DDR3 RAM, and Ethernet PHYSs are visible on the right. The red mezzanines are two FMC-compliant high-speed
< .~ data-acquisition boards.



DfMux Readout: Flight Rep System
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A Warm Electronics Architecture

2x SQUID controller
(4 CH each)
Warm

\ CRYOSTAT

Bolometer array SQUIDs

0
(1 CH=16 bolometers) 0 e Mezzanine CCABoard
@@ @ XCHS\ Analog cable
| e
%
0
:
"
R - ® %ﬁ}\:\ﬁ)\
oy g
0
0
0
0
0

SubKelvin stage ¢ 4K stage
0

FPGA Processor Board

— Signal Processing and
Digital Interface

SQUID Controller board (4 SQUIDs)

Amplifies the SQUID output and
send it to the mezzanine board

Mezzanine Digitizer (2 SQUIDs)

— Generate Carrier bias and nuller and
send it to SQUID controller & cryostat
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Flight Rep. SQUID Controller

Flight qualified PCB design and qualified rad-hard
components.

Control and Analog Signals for 4 SQUIDs.
— 1 nV/VHz first stage amplifier noise.
— 10 MHz bandwidth
Flux locked loop:
— low frequency: flux locked loop integrator
— High frequency: DAN
Power: 170 mA at 5.5V (single rail)
— 246 mW/SQUID
Size: 18.1x18.6x1.7cm, 220 g.
Location: inside cryostat RF cage, mated directly to
cryostat.
Interface:
— Simplified, space-friendly SPI interface.
— DB37f to cryostat, DB37 to Mezz.
— Compatible with ground based “ICE” electronics

TMCeIL
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Flight Rep. Digitizer/

Synthesizer Mezzanine

Flight qualified PCB design and qualified rad-hard %
components. k
Control and Analog Signals for 2 SQUIDs Modules

— Nuller/Carrier synthesis at 16 bits, 20 MHz < drive
system performance.

— Demodulator at 12 bits, 20 MHz.
Power: 3.2W
— 1.6 W/SQUID

— Could reduce power further by qualifying lower
power DAC.

Size: 26.6 x17.8x1.9cm, 310 g.

Location: anywhere within few meters of SQUID
controller, within thin aluminum shielding.
Interface:

— Connects directly to FPGA/DSP motherboard.

— DB37 to SQUID Controller

— Compatible with ground based “ICE” electronics

Matt.Dobbs@McGill.ca LiteBIRD DfMux Readout 2015-12
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Mezzanine

NEXT: FPGA/DSP it

Motherboard

"
et e

oL = ¢ :"II
e : I T PR
Handles DSP, system setup, and data offload. [EEreeaEs
(Backplane)
Interfaces to Synth/Digitizer Mezz e T e e T T Lo

data-acquisition boards.

DSP takes about half of system power. o /o /“
Candidate technology: Lt
— Xiphos Q7 ot
* FPGA with radiation hardness by design >
* Size:7.8x4.3x19cm, 24 g. A A\ }
— Custom ASIC on custom board. ST
* Mission-agnostic investigation underway with APC.
Location: anywhere within few meters of e
SQUID controller, within thin aluminum -
shielding. e s
Interface: Xiph ec li s ‘ ht I #PGA
. iphos specializes in flight-qua S.
B Connec.ts directly to Mezz.. ] * Q5 operated continuously in orbit
— fast serial duplex communications since 2006.
— 10 MHz clock, timestamp. « Q6 flown in 2011.
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System-level Test Results
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Noise decreases by about 10%
going from40Cto-20C

Power consumption
decreases by about 10% going
from40Cto-20C

Bias current DC changes are
very small with temperature
and do not affect system
operation.

low and high frequency roll-
offs change by a few percent
and do not affect system
operation.

Overall, the system performs
well across full temperature
range and minor
improvements can be realized
by operating the electronics
below 0 C.
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Power Consumption with 64-ch firmware

Top-Level Structure
New, low power, DSP Architecture:

* Uses Polyphase filter Banks (PFB) | o [ vessme [ e L3 VG0 10
followed by a inverse FFT to R = e [
generate multiple carriers/nullers e e—
at once. Oscliator | Modulate [ ] :jadé(if‘ 77777 el
Design Analog Digital Digital Total

(Fixed) (Scaling)
Current Design Total 6.6 W 5.7W 3.4W 158 W
(M=16, N=4) PerBolo 100 mwW 89 mW 53 mW 240 mW
Higher Mux Factor Total 6.6 W 5.7W 6.5W 19.1W
(M=64, N=4) Per Bolo 26 mW 22 mW 25 mW 73 mW
With recent FPGA  Total 6.6 W 2.8 W 3.2W 126 W
(Estimated) Per Bolo 26 mW 11 mW 13 mW 50 mW
With KC705 and Total 6.35 W 6.17 W 125W
flight-rep mezz Per Bolo 24.8 mW 24.1 mW 48.9 mW
© ngIL Matt.Dobbs@McGill.ca LiteBIRD DfMux Readout 2015-12 21



Flight Representative Mezzanine

Test set-up =
e

KO7 Evaluation
Board

=]
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Cold Component Characterization

44 bolometers/resistors readout using a single SQUID.
Results are identical to COTS.

4t CoTS

Normalized Amplitude
= N

0 1 2 3 4 5

ar FLIGHT REPRESENTATIVE

Normalized Amplitude
N

0 1 2 3 1 5
Frequency (MHz)
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Bolometer
Operation

Bolometers are operated in the

superconducting transition.

Bolometers operate stably
after characteristic
turnaround in IV curves.

Bias points range from

0.75-0.9R

total.

Matt.Dobbs@McGill
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Bolometer & Readout Noise

32 bolometers + 28
Oﬁ_resonance e e Off Resonance Noise

e e Bolometer Noise
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TRL Evaluation

TRL-3 TRL-4 TRL-5 TRL-6
SQUID Controller | Proof of concept
Board (incorporating | test (modified EBEX 3) quated bo_ar-d a) Update board
DAN board with cryo- design for digital Sastene Wil
bolometers) active nulling flight
components '9 :
- e representative
! tes?cj: withoalr : components
bolometers b) Boards tested System
Analog Mezzanine a) Updated board Rl @Rl Demonstration with
Board design for digital (S flight like boards,
(incorporating DAN) Boards tested _
active nulling c) el harnessing and
components with ' ﬂlght like detector
b) Phase 1 boards representative array & SQUIDs
tested with cryo bolometers Temperature testing
FPGA Board * FPGA flight like design | Flight like boards| required by TRL-5
(SEU mitigation in | tested with above. results).

FPGA VHDL Code *

SQUIDs & Cryogenic

Board

Bolometer Array

Cryogenic

Harnessing

place)

VHDL code modified
for DAN

Partner Contributions

Other environmental
testing as required.

This proposal

| Leiend: |

Future Development

Partner Contribution

TMCEIL,
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LiteBIRD block diagram ver.3 (in TES option)
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Warm Electronics Architecture
/é—éf // 250U contaler

\ CRYOSTAT

Bolometer array
(1 CH=16 bolometers) S A FPGA Board

®® - @ [Fpt

Warm

22222

ZZZZZ

®® ® [
= = n TES per | n wafer type n TESs per | nSQUIDs | nSQUIDs per | optical mux
__________________ Type wafer ininstrument | wafer type | per wafer | wafer type factor

. LF-1 114 4 456 2 8 57

SiibKelvin stag g 4Kstage LF-2 114 4 456 2 8 57
MF-1 222 3 666 4 12 55.5
MF-2 222 2 444 4 8 55.5
HF 254 1 254 4 4 63.5

2276 40

TES TES-LC LC-SQUID SQUID-
Wires Wires warm wires
2276 4552 40 80 40 250 10 20 125.4W
(55-64x) 0.25-4K 4K->300K
2276 4552 20 40 20 250 5 10 ~75W

(11‘1-\127x) subKelvin  Cold! subK—=>300K

N High, because wafer
TMCglH, Aggressive = not i Readowt 2015 UMerology does not
suitable as baseline. allow full use of 64x.



Next Steps

* Develop FPGA or ASIC motherboard for DSP
— Still too early? This technology changes very fast.
— Early stages of investigation in collaboration with APC Paris for EBEX.
— Commercial solution, Xiphos X7 has ISS demonstration, could be suitable baseline.

* Is abetter DAC rad hard?
— Minor power savings possible by switching to LT1668 DAC (drives system performance)
— Tested in beam at KEK November 2015 — will test performance at McGill.

* Warm electronics supports 128x or higher.
— High mux factor puts heavy constraints on LC components, wiring strays.
— Requires high bolometer uniformity.
— =2 Joint bolometer/cold readout study needed.
* SQUID and Wiring:
— Moving SQUID to sub-Kelvin renders problematic wiring strays negligible.
— Requires 6-wires per SQUID (but they can be long).
— Minor gains to be made by achieving higher SQUID transimpedance (>500 ohms)

— Need to determine specification / constraints on SQUID-out wiring and SQUID dynamic
impedance.

— =2 joint SQUID/cryogenic study needed.
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Interface and Packaging

* |nterface:

— Each board requires:

1. communications (fast-serial duplex, such as ethernet)
2. 10 MHz clock
3. timestamp.

— Bolo interface: 2 wires, see Cold MUX.
— Cryostat interface: see Cold MUX.
* Packaging
— Each board requires thin aluminum shielding.

— Electronics boards are modular, and can be distributed
across payload thermal regions payload for good radiative
coupling and thermal performance.



Conclusions

* Flight representative models key readout
electronics exist. Tested for performance and

environment.
— Further power improvements possible.
 FPGA/DSP motherboard is next development.
— Candidate FPGA solution needs testing.
— ASIC solution, but R&D expensive.
* Need also to invest politically for CSA role.
— (Canadian astronomy long range plan draft
emphasizes CMBpol as mid-scale priority for Canada)



