FOREGROUNDS: TOWARDS AN UNDERSTANDING OF THE DIFFUSE POLARIZED EMISSION IN THE MILKY WAY

Eric Wilcots University of Wisconsin-Madison

Collaborators:

Anna Williams (U. Wisconsin-Madison)

- G. Heald (ASTRON, Kapetyn Institute)
- A. Mao (MPIfR)
- E. Zweibel (U. Wisconsin-Madison)

Planck Collaboration: Galactic plane emission from Planck with ancillary data

1.4 GHz map (polarized)

From Caretti (2011)

Can we do a better job of understanding the small scale structure of the polarized diffuse radio emission in the Milky Way?

- Can we construct meaningful models of the synchrotron ISM in other galaxies?
- Can we use rotation measure surveys of polarized extragalactic sources to accurately measure the Galactic foreground?

Magnetic Fields in Spiral Galaxies

- Large-scale structure
 - Magnetic arms in face-on galaxies
 - Parallel to disk and X-shape in edge-on galaxies
 - Strength: few uG
 - Scale length: 0.1 a few kpc
- Small-scale structure
 - Turbulent
 - Associated with star formation, and in spiral arms
 - Strength: a few to 10s uG
 - Scale Length: sub-pc to 100 pc

60 1

Case Study: Observe nearby spiral galaxy NGC 6946, disentangle the magnetic field structure, and see how the structure relates to other galactic processes.

Subaru Telescope, R. Gendler

NGC 6946: FAQ

Ellipses are HI bubbles by Boomsma et al. (2008)

-Nearby ~6.8Mpc 1.7kpc ~ 1' (Karachentsev et al. 2000) -Nearly face-on *i*=38deg (Boomsma et al. 2008) -Dynamical mass ~1.9x10¹¹ M_{solar} (Crosthwaite & Turner 2007) -Integrated SFR 2.8 M_{solar}/yr (Calzetti et al. 2008) -Mild SB in nucleus (e.g. Ball et al. 1985) -No strong AGN evidence (e.g. Tsai et al. 2006) -Located at low b -Lots of observations available at many different wavelengths!

Use wideband polarimetry to probe magnetic field structure in the galaxy.

Beck 2007

6.2cm 60 13 $P(\lambda^2) = P_0 \frac{1 - exp(-S)}{S}$ $S = 2\lambda^4 \sigma_{RM}^2 - 2i\lambda^2 R$ 10 0.8 Slab ??? ^p(u) 0.6 ₽; ASCENSION (J2000) NGC6946 20cm Pol. ISO 7mu 20cn 60 14 02 u=0·13 12 0 0.5 0.4 0-6 0.8 1-0 14 16 Burn 1966 $p(u)/p_i$ percent polarization at u, u proportional to λ 200 3445 RIGHT ASCENSION (J2000) Beck 2007 04 L

Internal Faraday Dispersion

Peak Polarization

What can cause depolarization and complex Faraday structure?

Beam Depolarization: (mostly) λ-independent

E-vectors

Tangled B

Different sources

Unresolved background – could depend on λ

Faraday Depolarization: λ^2 -dependent

Faraday differential rotation (FDR): Regular field in a medium that is both emitting and rotating Internal Faraday dispersion (IFD): Turbulent *and* regular field in a medium that is both emitting and rotating External Faraday dispersion: Emitting and turbulent rotating regions are separated, and the rotating region may cover all or just part of the emitting region--also known as *inhomogeneous Faraday screen (IFS)*

Interpretation

Prediction: azimuthal asymmetry vanishes at higher frequency

Vertical extent of spiral component is ~30% of radius

Braun+2010

Model Fitting 0.5 P|/Inonthermal 0.4 0.3 0.2 First fit: 0.1 $|\overrightarrow{p}| = p_0 \frac{1 - e^{-S}}{S}$ TT 0.0 -0.1 0.00 0.03 0.04 0.01 0.02 0.05 0.06 λ^2 (cm²) 0.1 0.0 $S = 2\lambda^4 \sigma_{RM}^2 - 2i\lambda^2 R$ $\int_{-0.1}^{-0.1} \frac{1}{0} \int_{-0.2}^{-0.2} \frac{1}{0} \int_{-0.4}^{-0.3} \frac{1}{0} \int_{$ – Q/I – U/I Second fit: $\overrightarrow{p} = p_0 \frac{1 - e^{-S}}{S} e^{2i(\phi_0 + RM)^2)}$ -0.5└__ 0.00 0.01 0.05 0.02 0.03 0.04 0.06 0.5 PI/I nonthermal 0.4 0.3 0.2 $= \cos\left(2\phi_0 + 2RM\lambda^2\right) + i\sin\left(2\phi_0 + 2RM\lambda^2\right)$ 0.1 L The Pr'yng I 0.0 = q + i u-0.1 0.00 λ^{2} (cm²) 0.01 0.02 0.04 0.05 0.06

Internal Faraday Dispersion

- Slab of magnetoionized medium that contains
 - well-mixed thermal and synchrotron emitting gas,
 - and both regular (R) and $\frac{2}{4}$ random fields (σ_{RM}).

• Typical values R ~ 100 rad m⁻² σ^2_{RM} ~ 1000 rad m⁻² for n~0.03 cm⁻³, B_z~2uG, σ_z ~3uG, I_m~100pc, h_E~1kpc (Sokoloff et al. 1998)

Best Fit Models

Pixels with polarization at 3 or 6cm has S/N > 8.

Pixels with polarization at 13, 18, or 21cm has S/ N > 8, and excluding pixels with high S/N polarization at 3 & 6cm.

Comparing Faraday depth maps

partial inhomogeneous screen model

Best Fit Models—point-by-point

Best Fit Models—point-by-point

Best fit percent polarization and ϕ from partial inhomogeneous screen fit

(H α background map courtesy of A. Ferguson)

New RM map probes different Faraday depths (different layers of ISM!)

Colorbar (rad/m²) and maps are scaled to be equal

Summary

- Using wideband polarization observations at 3-21cm to study magnetic field structure in NGC 6946
- The available data can only be used to rule out models
 - Depolarization cannot be explained with models containing separate emitting and simple, coherent rotating regions
- Most complex models (IFD and PIFS) are better at fitting p₀, φ, and RM
- Need expanded wavelength coverage—possible with today's instruments
- Need to explore more physical models

How to study RM in distant galaxies

- Theories predicted
- (e.g., Parker 1979)
 - µG strength fields to be a relatively recent phenomenon
 - Galactic magnetic fields would be substantially weaker at z~2.0
 - Should see change in RM as function of redshift

$$\phi(r) = 0.81 \int_{there}^{here} n_e(z) B_{\parallel}(z) \frac{1}{(1+z)^2} \frac{dl}{dz} dz$$

Control: RM_{Obs.}=RM_{MW}+RM_{IGM}+RM_{QSO}+σ

How to study RM in distant galaxies

- Theories predicted
- (e.g., Parker 1979)
 - µG strength fields to be a relatively recent phenomenon
 - Galactic magnetic fields would be substantially weaker at z~2.0
 - Should see change in RM as function of redshift
- Observational RM experiments were designed with control and target samples (e.g., Oren & Wolfe 1995, Bernet +2010)

$$\phi(r) = 0.81 \int_{there}^{here} n_e(z) B_{\parallel}(z) \frac{1}{(1+z)^2} \frac{dl}{dz} dz$$

Control: RM_{Obs.}=RM_{MW}+RM_{IGM}+RM_{QSO}+σ

Target: RM_{Obs.}=RM_{MW}+RM_{INT}+RM_{IGM}+RM_{QSO}+σ

VLA Observations taken during 2014 & 2015

- 38 QSO sightlines with single MgII absorption feature AND photometric detection for absorber!
 - Within 70kpc of QSO
 - 0.38 < z_{MgII} < 0.65
 - 0.65 < z_{QSO} < 1.9
- 112 Control sightlines with roughly same distribution in RA and redshift
- S-band (2-4GHz)
 - Mitigate depolarization
 - Broadband for RM synthesis & Q-, U-fitting
- VLA A- & BnA- Configurations
 - Resolve our radio sources!

SDSS Image of one target

J2000 Right Ascension

	÷								
00a OOb 00c			00a 00b 00c 00b 00c						
	S-banc	l Pol		Pol.	SDSS	r i i i i i i i i i i i i i i i i i i i	NVSS	S-band α	NVSS
Obj	SDSSz	α	Pol.	S/N	% Pol	RM _{obs}	Pol.	Pol	RM _{obs}
			(mJy/ beam)			(rad/ m²)	(mJy/ beam)		(rad/ m²)
00a	1.5	-0.98	0.88	49	19.5%	+33 ±2.5	3.88 ±0.24	4.01%	+44.1 ±13.1
00b	1.5	-0.82	0.36	20	12.2%	+30 ±5.5	3.88 ±0.24	4.01%	+44.1 ±13.1
00c	1.5	-1.05	0.19	10	19.5%	+40 ±10.6	3.88 ±0.24	4.01%	+44.1 ±13.1
01	0.678 (?)	-1.12	0.12	6.8	0.6%	+141 ±16.3	-	-	-
02	(?)	+0.13	0.12	6.7	1.0%	+7 ±16.5	_	-	-
03	0.317	-0.64	0.08	4.6	6.3%	+44 ±25.0	-	-	-

RMS~20uJy

Teaser of what is to come

Example target QSOs \leftarrow RM~21.1 rad/m² RM~4.2 rad/m² \rightarrow t113603+58 SDSS g-filter with polarization contours

Summary

Current best estimates for magnetic fields in and around young, disk-like galaxies is1.8±0.4um (Farnes + 2014) using a broadly sampled data set (599 QSOs with N_{MgII}≥1, z(MgII)_{median}~0.8)

Our Study	Observations	Goals
+38 MgII absorbers (W≥0.3Å, z _{MgII} ~0.5),	+S-band (2-4GHz)	+Determine RMs, compare target vs. control samples
+112 Control (similar z _{QSO} as MgII sample)	+VLA A, BnA configurations (1-2" resolution)	+RM vs Impact Parameter +RM vs MgII Eq. width (W) +RM vs z _{MgII} +RM vs other photometric properties

 +This is still small-scale, future surveys will improve statistics for sample comparison and our understanding of foreground (Milky Way) effects – 200 sources per square degree.
 +Wideband observations are vital for us to understand source of polarization and magnetic field structure

Remaining challenges:

RM_{MW} estimates, k-corrections, understanding polarized beam-shape, managing and accessing data locally...

Next steps?

- VLA All-Sky Survey getting underway soon (2016)
 - Full polarization all-sky survey at a few GHz
 - Precursor to the EMU survey that will be carried out on ASKAP
- Next Generation radio telescopes
 - RM surveys using ASKAP, MeerKAT
 - Ultimately, SKA
- ngVLA (Next Generation Very Large Array)
 - In proposal stage
 - Fill the gap in frequency coverage between ALMA and the VLA

Increase polarized counts: Evolution of the "RM Grid"

10

Courtesy: L. Rudnick (Minnesota)

Increase polarized counts: Evolution of the "RM Grid"

137 refs to date, including

- · First determination of local "halo" field component
- Local nature of structures on 10s degree scales
- First estimate of extragalactic intrinsic RM magnitude

11

Increase polarized counts: **Evolution of the "RM Grid"**

End QII: NVSS density comparison.

137 refs to date, including

- VLASS · First determination of local "halo" field component
- · Local nature of structures on 10s degree scales
- First estimate of extragalactic intrinsic RM magnitude

12

VLASS Polarization

- Goal: a unique, game-changing, polarization survey
 - High frequency: probe depolarized population
 - High spatial resolution: Faraday maps for most sources
 - Large bandwidth: characterize Faraday complexity in beam and along line of sight; provide k-corrections
 - High sensitivity: [All-sky] increase background probes
 x6; [Deep] detect new galaxy population
 - Complementary to SKA-precursors

Proposed frequency coverage for the ngVLA

Figure 6: A model spectrum illustrating the various emission processes (nonthermal synchrotron, free-free, spinning dust, thermal dust) that contribute to the observed microwave frequency range to be covered by the ngVLA. Only in the proposed ngVLA frequency range (1.2 - 116 GHz, highlighted) do all major continuum emission mechanisms contribute at similar levels, making this range uniquely well-suited to next-generation continuum studies.

Summary

- Using wideband polarization observations at 3-21cm to study magnetic field structure in nearby spiral galaxies – we're learning a lot about the complexity of the ISM in disks.
- RM surveys will soon be delivering estimates of the Galactic foreground contribution to RM on scales of a few hundred sources deg⁻².
- The next generation radio facilities and surveys are coming!