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PIPER’s strategy
•  High	frequency	coverage	for	dust	foregrounds.				
(200,	270,	350,	600	GHz)	

•  Cryogenic	VPM	modulator	and	scan	support	
measurement	of	85%	of	the	sky;	goal:	reioniza1on	
signature.	

•  Con1nuous	ADR	provides	cooling	to	100	mK,	colder	
than	~300	mK	in	adsorp=on	coolers.	

•  No	windows,	cold	op=cs	→	high	sensi=vity.		

•  One-day	flights	from	Ft.	Sumner	and	Alice	Springs	
(simpler	logis=cs).	One	flight	per	band.	

•  Single	detector	array	for	all	bands.	
•  r	<	0.007	for	8	flights,	r	<	0.03	for	single	flight.	

Instrument	in	a	bucket	dewar	of	LHe:	
4.3	K	on	the	ground	
1.6	K	at	float	



PIPER Op+cs frame



PIPER Op+cs frame

Silicon	lenses,	U.	Michigan	AR	metamaterial		



Test systems

Too	large	to	test	

Rapid	turnaround	detector	
and	CADR	system.	
	
LHe	with	LN2	backing.	
	
Can	be	pumped.	Flight	camera	tes=ng	in	an	

intermediate	dewar.	



ADR thermodynamic cycle

0	T	

1	T	

2	T	

3	T	

Accept	ΔS	isothermally	at	opera=ng	point	
Reject	ΔS	isothermally	to	the	bath,	or	upper	stage	

Entropy	of	GGG		

ΔQ	=	T	ΔS	
hea=ng	

ΔQ	=	T	ΔS	
cooling	
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Power	=	Energy	per	cycle	/	=me	per	cycle.	
Want:	fast	cycle	turn-around,	high	heat	transfer	rates,	low	gradients		
(Even	at	the	expense	of	switch-off	conductances,	and	larger	thermal	bus	in	salt	volume.)		

ΔQ	=	T	ΔS	
hea=ng	

ΔQ	=	T	ΔS	
cooling	

Stage	4	
Stage	3	

Stage	2	

Stage	1	

1.  Con=nuous	opera=on	
2.  Smaller	ΔT’s	
3.  Mul=ple	pill	materials	



4-stage Con+nuous ADR (CADR)
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GROUND:	4	K	
FLOAT:	1.5	K	

Con1nuous	opera1on	is	not	just	about	stability!:	
Single-shot:	want	~24	hr	hold	=mes	
Con=nuous:	hold	only	needed	as	long	as	upper	
stages	recycle	(~20	min)	



4-stage Con+nuous ADR (CADR)
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Stage 4 (S4)
Connec=on	to	stage	3	through	ac=ve	gas-gap	heat	
switch	
	
Stainless	bellows	compliantly	connect	cold	finger	to	
the	axis	of	the	coil	w/	low	conduc=vity,	and	seal	the	
gas	in	the	heat	switch.	
	
Integrated	ac=ve/passive	HS,	geRer	inside/outside	
Serpen=ne	fins	to	maximize	conduc=vity	
	
85g	Gadolinium	Gallium	Garnet	(>	0.5	K	opera=on)	
	
4%	Si-Fe	shield,	0.45”	thick	
	
NbTi	windings	(1.3	T/A),	3	A	maximum	current	
60	H	inductance,	6	K	maximum	temperature	
	
Kevlar	suspension	
Cavity	and	port	to	fill/external	geRer	
	
Connec=on	to	LHe	bath	(4.3	K	–	1.6	K)	

Shield	

Coil	

GGG	

Stage	4	in	cross-sec1on	

G(cond)	~	50	mW/K	



Stage 3 (S3) Connec=on	to	stage	4	through	
ac=ve	gas-gap	heat	switch	
	
Kevlar	suspension	
	
100g	Chromium	Potassium	Alum	
(CPA).	Opera=on	>	10	mK.	
Encapsulated.	
	
4%	Si-Fe	shield,	0.3”	thick	
	
NbTi	windings	(0.4	T/A),	4	A	
maximum	current.	
14	H	inductance,	6	K	maximum	
temperature.	
	
Connec=on	between	stages	2	and	3	
(passive	gas-gap	switch)	
	

~30%	of	pill	volume	is	high-purity	copper	
thermal	bus	to	achieve	high	heat	transfer	
rates	at	low	temperature.	
	
CPA	is	not	corrosive	to	copper	(vs.	FAA)	

Stage	2	is	nearly	iden=cal	to	stage	3	



Heat Switches

Passive	gas-gap	heat	switch.	3He:	high	conductance	
below	10	K.	Ti	15-3-3-3	for	shell	body:	becomes	
superconduc=ng	at	3.8	K.	Wall	~0.1	mm,	EDM.	
	
P	~	exp(-To/T),	To	is	3He	binding	energy	~2.6	K.		
PIPER	switch	is	145	mK,	with	abrupt	transi=on.	
	
G(nc)	~	17	uW/K	
G(cond)	~	2	mw/K	(~10	mW/K	expected)	

Shirron	et	al.	2004	
DiPirro,	Shirron	2014		

Gas	gaps	cannot	be	used	below	0.2	K	(saturated	vapor	
pressure	of	3He	is	too	low	to	provide	conduc=on).	
	
Lead	Tc	7.2	K,	Hc	=	80.3	mT.		
Tmax	<	0.5	K	(above	which	ra=o	of	off/on	conductance	>	1%)	
Vespel-22	body,	currently	no	shield.			
	
G(nc)	~	20	uW/K	
measured	G(cond)	~	1	mW/K	(~10	mW/K	expected)	



Con+nuous stage  Stage	1	proper1es:	
40	g	CPA	
	
L=3.9	H,	0.2	T/A	
1/16”	shield	
	
No	suspension,	
integral	coil,	shield	 Stage	2	

Stage	1	

SCHS	

Link	to	passive	
switch	between	
S3	and	S2	

1.  Stage	2	demagne=zes	from	its	
exchange	(~370mK)	and	servos	at	
90	mK.	

2.  SCHS	becomes	conduc=ng.	
3.  Stage	1	servos	at	100	mK,	

magne=zes	(now	cooling)	un=l	
Stage	2	is	out	of	current.	

4.  SCHS	becomes	non-conduc=ng.	
5.  Stage	1	servos	at	100	mK,	

demagne=zes	(now	hea=ng).	
6.  Stage	2	magne=zes	and	returns	to	

exchange	at	370	mK.	



Con+nuous stage 
1.  Stage	2	demagne=zes	from	its	

exchange	(~370mK)	and	servos	at	
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exchange	at	370	mK.	



Control electronics
DSPID:	One	card	per	ADR	stage	(and	SC	HS).	Read	
stage	thermometer	and	PID	control	coil	voltage.	
Read	the	coil	voltage	tap	sense	and	currents.	
	
Boost:	take	voltage	signal	and	provide	high-current,	
constant	voltage	to	coil.	Constant	voltage	~	L	dI/dt,	
or	a	current	ramp	at	constant	rate.	
	
TREAD:	12	diode	or	RuOx	per	card	
Analog	In/Out:	32	voltages		
	
PMASTER:	synchronous	with	detector	readout	
through	the	UBC	“sync	box”,	fiber	op=cs	transmit	
to	USB.	Each	board	reports	to,	accepts	commands	
from	master	at	1	Hz.	
	
Compact	and	robust	for	balloon	flight.	

PIPER	readout	
electronics:	CADR	
control	mini-rack	



Control soKware

A	single-process	procedure	for	running	all	4	
stages	would	require	a	large	number	of	
condi=onals	on	the	status	of	each	stage.	
	
Strategy:	use	one	python	process	per	stage.	Each	
process	robustly	recycles	and	cools	to	the	
opera=ng	temperature.	
	
Communica=on	between	processes	and	the	
backplane	through	a	redis	database	(publish/
subscribe	model).	
	
Sotware	started	automa=cally	using	the	Linux	
upstart	system.	

Ini1al:	
Intercept	
Ready?	

Magne=ze	to	Texchange	
Set	heat	switch	cond.	

Set	heat	switch	cond.	
Cool	to	Texchange	

Stage	hot	 Stage	cold	

If	coil	not	fully	magne=zed,	
Magne=ze	against	intercept	

Set	heat	switch	non-cond.	
Adiaba=cally	demagne=ze	to	Topera=on	
Servo	at	Topera=on	
Report	that	the	intercept	is	ready.	

Topera=on	=	max(cold	exchange	temp,	Tnext	–	ΔT)	

Is	coil	demagne=zed,	or	no	longer	needed?	
Report	intercept	done	and	return	to	ini=al	



Ratchet opera+on
All	components	start	at	the	bath	temperature.		
	
Ratchet	opera=on	to	use	stage	4	to	cool	lower	stages.		
Star=ng	state:	magne=ze	all	stages,	cool	against	bath	
	
1.  Disconnect	S4-bath	and	demagne=ze	S4.	
2.  Connect	S4	to	S3	through	ac=ve	switch.	
3.  Set	TS4	to	~90%	of	TS3	so	that	heat	flows	out	of	S3,	S2	and	S1.	
4.  Disconnect	S4	and	S3,	recycle	S4	against	the	bath.	
	
Once	ratchet	reaches	S3,	S2	~	1K,	demage=ze	to	put	S2,	S1	below	the	
temperature	of	the	passive	switch	(145	mK).	Then	begin	cyclic	
opera=on.	
	
Considera1on:	when	using	passive	switches,	the	heat	capaci=es	must	
be	low	enough	that	the	stages	can	be	cooled	below	the	switch	
ac=va=on	temperature.	



Entropy models

Unknown	parameter:	number	of	moles	of	spins.	
Apply	known	power	at	controlled	temperature,	measure	
entropy	rate	→	effec=ve	crystal	mass.	
Effec1ve	crystal	mass	typ.	85%	of	physical	mass.	

Gadolinium	compounds	have	a	poorer	fit	(see	right).	
GGG	model:	empirical	fit	to	magne=za=on	and	heat	capacity	
from	Gallagher	1986.	

Entropy	from	the	Brillouin	func=on	for	free	spins:	

Effec=ve	field	includes	lavce	field:	

Offset	and	values	for	common	salts:	Shirron	2014	

Gallagher	(MIT	thesis	1986)	
Brillouin	func=on	vs.	GGG	magne=za=on	
Reports	fivng	func=on	from	detailed	measurements	



Entropy model applied to Stage 2

ΔQ	=	T	ΔS		
Hot	side:	~0.4	K	*	0.4	J/K=	0.16	J	released	
Cold	side:	~0.12	K	*	0.4	J/K	=	0.05	J	accepted	
Or	~15	μW	when	spread	over	interval	
P	=	T	dS/dt	

Plug	in	to	S(B,T)	
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Magne+c Shielding
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To-date:	TES	tes=ng	in	single-shot	mode	(low	field	excursion),	fully	shielded	box	
CADR	demonstrated	Nov.	12	2015,	next	test	in	this	system:	8x2	TES	array	with	CADR.	

Separa=on	from	probe	and	pill:	2.5”	radial,	0”	ver=cal	
0.3"	thick,	2.7"	OD,	4%	Si-Fe	
Ater	satura=on:	shield	degrades	by	80x	

Earth’s	field	



Stability in the CADR
Current	firmware	PID	can	achieve	5	x	10-5	frac=onal	
stability	in	stable	demagne=za=on	condi=ons.	
	
Essen1al	problem:	Slew	from	rapid	magne=za=on	
against	S2	to	free	demagne=za=on	to	cool	the	detectors.	
	
Approach:	
Power	→	dI/dt	→	voltage	=	L	dI/dt.	
	
Apply	a	feed-forward	fixed	voltage,	calculated	from	the	
known	temperatures,	parasi=cs	and	switch	conductance.	
	
Let	the	PID	stabilize	addi=onal	fluctua=ons,	e.g.	release	
of	heat	in	going	from	normal	to	superconduc=ng.	

SCHS	
Cond.	

SCHS	
Open	

Three	states:	
1.  Stage	2	~370	mK,	charging	against	Stage	3	
2.  Stage	2	~110	mK	to	start	charging	Stage	1	
3.  Stage	1	connected	to	Stage	2	

1

2
3

2

Con=nuous	stage	1	through	Stage	2	cycle	

preliminary	



Summary
•  GGG,	CPA	and	a	combina=on	of	heat	
switch	types.	

•  Rela=ve	to	single-shot:	high	heat	transfer	
rates	are	the	premium.	Higher	on	and	off	
switch	conductance,	coupling	to	salt.	

•  Compact	control	electronics	and	modular	
python	sotware	for	robust	control.	

Future	work:	
•  Op=mize	
•  Cycle	envelopes	defined	by	shielding.	Open	
detector	box	in	flight	geometry,	CADR	
opera=on.	

•  Feed-forward	model	to	stabilize	
con=nuous	opera=on.	

•  Target	spring	engineering	flight,	fall	
science.	
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Thank you!



PIPER Variable-delay polariza+on 
modulator (VPM)

Voice	coil	and	counter-weight	
Read	with	capaci=ve	distance	sensors	

36 µm diameter wire 
110 µm pitch 
40 cm clear aperture 



Detectors and Integrated SQUID 
readoutDiagram of Bump Bonding 

HAWC+Science Meeting, Caltech, June 10, 2014 

TES	array	is	hybridized	to	a	2D	MUX	
wafer	through	superconduc=ng	indium	
bump	bonds.	
	
The	series	array	is	off-chip.	

Pixel Pitch 1135 µm 

Base Temperature 100 mK 

Absorber Temperature 140 mK 

Power Loading 0.5 pW 

Thermal Conductance 29 pW/K 

Time Constant 21 ms 

NEP 3.8 x 10-18 W Hz-0.5 

GSFC	/	HAWC+		32x40Array	

NIST	/	2D-Mul1plexer	

PIPER	detector	parameters:	



Stage proper+es
S4b:	
•  G(nc)	~	10	uW/K	
•  G(cond)	~	40	mK/K		
S34:	
•  G(nc)	~	70	uW/K	(~20	uW/K	expected)	
•  G(cond)	~	5	mw/K	(~2	mW/K	expected)	
S23:	
•  G(nc)	~	17	uW/K	
•  G(cond)	~	2	mw/K	(~10	mW/K	expected)	
S12:	
•  G(nc)	~	20	uW/K	
•  measured	G(cond)	~	1	mW/K	(~10	mW/K	expected)	
From	2.2K	bath:	
•  S1	and	S2	loading	~5	uW	(2.2K	bath),	~20	uW	(4.3K	bath)	
•  S4,	S3	loading	is	~50	uW	(4.3K	bath)	
	



ADR thermodynamic cycle

0	T	

1	T	
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ΔQ	=	T	ΔS	
	
Accept	ΔS	isothermally	at	opera=ng	point	
Reject	ΔS	isothermally	to	the	bath,	or	upper	stage	 Entropy	of	GGG		

wikipedia	

ΔQ	=	T	ΔS	
hea=ng	

ΔQ	=	T	ΔS	
cooling	


