The CMB polarization at large scales: Planck 2015 and future prospects

B-modes from space IPMU 10th-16th December 2015

Anna Mangilli Institut d'Astrophysique Spatiale

- ON BEHALF OF THE PLANCK COLLABORATION
- + Matthieu Tristram
- + work in progress: J. Aumont, J. Grain, F. Boulanger

OUTLINE

The CMB polarization at large angular scales

The Planck 2015 release

Current status of the constraints on T and r from large scales

The challenge

Statistical methods [Mangilli, Plaszczynski, Tristram. MNRAS 2015] Preliminary Planck HFI results

Future prospects & conclusions

The CMB polarization at large scales

The CMB polarization at large scales

The major challenges

1) Polarized diffuse emission from our Galaxy: dust, synchrotron ...

2) **Instrumental** systematics projecting on the sky (any instability of the detectors during the observations)

OUTLINE

The CMB polarization at large angular scales

The Planck 2015 release

Current status of the constraints on T and r from large scales

The challenge

Statistical methods [Mangilli, Plaszczynski, Tristram. MNRAS 2015] Preliminary Planck HFI results

Future prospects & conclusions

Polarization at large angular scales status

- Planck detectors are sensitive to one polarization direction
- Polarization reconstruction: detector combinations
- Mismatch between detectors will create spurious polarization signal (Calibration mismatch, bandpass mismatch, etc...)

Major systematics in polarization at large angular scales:

Intensity to Polarization leakage

2015 release:

LFI: negligible residuals with respect to noise, LFI 70GHz released

HFI has higher sensitivity, lower noise: residuals systematics

HFI 100GHz, 143GHz, 217GHz NOT used for the 2015 low-I analysis

Preliminary results (pre-release 2016)

τ from Planck 2015 large scale polarization

The Planck Coll. XI, 2015

✓ WMAP and Planck LFI-70GHz yield consistent estimates

✓ Planck: conservative mask (f_{sky}=0.46)

planck

 $\checkmark\,$ The signal disappears in the null map

Planck 2015: reionization optical depth summary

... Planck results seems to point to lower T.

This has an implication also for the large scales B-modes detection

Planck 2015: Tensor-to-scalar ratio

large scales polarization from Planck

0.2

0.0

0.4

0.8

02

Planck + **Bicep/Keck**

0.6

 $(2 \leq \ell \leq 29)$

PRL 112. 241101 (2014)

TT+TE+EE+BE

1.2 1.4 1.6 1.8

0.4DU

FF+BB

8.(

0.5**I UU**

Multipole

2

From large scales: still far. But significant improvement on the way for 2016

The Planck Coll. XI 2015

From intermediate scales:

Planck 100GHz&143GHz

OUTLINE

The CMB polarization at large angular scales

The Planck 2015 release

Current status of the constraints on T and r from large scales

The challenge

Statistical methods [Mangilli, Plaszczynski, Tristram. MNRAS 2015] Preliminary Planck HFI results

Future prospects & conclusions

The challenge

Data quality

Control of systematics, in particular HFI 100GHz,143GHz,217GHz (See Matthieu's talk) Accurate foreground subtraction/modelling

Data analysis

Statistical method(s) optimized to CMB analysis @ large angular scales

So far (WMAP, Planck 2013, 2015): Gaussian likelihood in map space

$$\mathcal{L} = \frac{1}{2\pi^{n/2}|\mathbf{M}|^{1/2}} \exp\left(-\frac{1}{2}\mathbf{m}^{t}\mathbf{M}^{-1}\mathbf{m}\right) \mathbf{M} = \mathbf{CMB \ signal+noise \ covariance \ matrix}$$

Problem: noise covariance matrix reconstruction accuracy

- Can compromise parameter reconstruction in particular for the high sensitivity of HFI channels
- Difficult handling of noise bias/residual systematics

Cross-spectra likelihood at large scales

[Mangilli, Plaszczynski, Tristram (MNRAS 2015)]

Use cross-spectra likelihood at large scales

Noise bias removed. Exploit cross dataset informations Better handling of residual systematics/foregrounds

Two solutions to solve for the non-Gaussianity of the estimator distributions at low multipoles

- 1. Analytic approximation of the estimators: works for single-field and small mask
- 2. Modified Hamimeche&Lewis (2008) likelihood for cross-spectra (oHL)

Full temperature and polarization analysis

Cross-spectra oHL: τ estimation

[Mangilli, Plaszczynski, Tristram (MNRAS 2015)]

 τ posterior from realistic MC simulations, different noise levels, I=[2,20]

Cross-spectra oHL: T estimation

[Mangilli, Plaszczynski, Tristram (MNRAS 2015)]

 τ posterior from realistic MC simulations, different noise levels, I=[2,20]

Unbiasedness

Best constraints expected from HFI 100x143GHz

Optimality

oHL

100x143

0.02

0.04

0.06

0.08

0.10

pixel-based

1.0

0.8

0.6

0.4

0.2

0.0

τ

Cross-spectra oHL: τ estimation

[Mangilli, Plaszczynski, Tristram (MNRAS 2015)]

I=[2,20], full temperature and polarization oHL likelihood MC simulations Planck 100x143 with correlated noise

OUTLINE

The CMB polarization at large angular scales

The Planck 2015 release

Current status of the constraints on T and r from large scales

The challenge

Statistical methods [Mangilli, Plaszczynski, Tristram. MNRAS 2015] Preliminary Planck HFI results

Future prospects & conclusions

Planck preliminary HFI results

Preliminary Planck 100GHzx143GHz E-modes at low-I:

- + Example of results from combination of low-I with:
- 1. +Planck TT CMB spectrum (2015)
- 2. +Very High-I ground-based experiments (ACT & SPT)
- 3. +lensing Planck 2015

See more details in Matthieu's talk

Planck at large scales take away message

Preliminary Planck results points to a significantly lower value for the reionization optical depth.

This has important implications:

- CMB consistent with a fully reionized Universe at z ~ 6 (more details in Matthieu's talk)
- in better agreement with recent astrophysical constraints
- More challenging to detect the B-modes at large scales
- Improved preliminary Planck measurements of the B-modes at large scales with 100GHzx143GHz

The Planck collaboration: "Improved large angular scale polarization data and the reionization optical depth", to be submitted A&A

The Planck collaboration: "Reionization history constraints from Planck", to be submitted A&A

OUTLINE

The CMB polarization at large angular scales

The Planck 2015 release

Current status of the constraints on T and r from large scales

The challenge

Statistical methods [Mangilli, Plaszczynski, Tristram. MNRAS 2015] Preliminary Planck HFI results

Future prospects & conclusions

Future prospects: E-modes

- The lower the τ value, the more difficult also for future experiments to detect features in the Emodes reionization bump to constrain e.g. evolution of reionization/non-standard energy injections
- More precision on τ, improved constraints on cosmological parameters (A_s, Σm_v, ...)

Future prospects: E-modes

E-modes MC simulations 100x140 LiteBIRD, 80% of the sky, I=[2,20], τ_{fid} =0.06 oHL likelihood (Mangilli et al. MNRAS 2015)

Band GHz	Bandwidth ∆v/v	NET μK√s	Pixels/wafer	Nwf	N _{bole}	NET _{att} µK√s	Sensitivity with margin µK-arcmin
60	0.23	94	19	8	304	5.4	15.7
78	0.23	59	19	8	304	3.4	9.9
100	0.23	42	19	8	304	2.4	7.1
140	0.30	37	37	5	370	1.9	5.6
195	0.30	31	37	5	370	1.6	4.7
280	0.30	38	37	5	370	2.0	5.7
total					2022		2.6

 $\sigma(\tau) \sim 0.0035$ Further improvements: combination of different cross-spectra and datasets Significant improvement with respect to current constraint

Future prospects: B-modes

Variance MC sims LiteBIRD, 100GHzx140GHz, r=0, fsky=0.8

Including B-modes at large angular scales: better constraints!

Precise modelling of the foreground is crucial Realistic forecasts must include accurate description of the polarized dust contribution

In preparation:

Montier, Aumont, Boulanger et al. to be submitted 2015 Mangilli, Aumont, Tristram, Grain et al., in prep 2016

- MC simulations with polarized dust (turbulent component included)
- Full likelihood analysis including large scales (oHL likelihood, I=[2,300])
- Cross-spectra based analysis for different combinations of datasets

Conclusions

Improved large scales polarization results from Planck out soon!

Cross-spectra based likelihood integrated in Planck analysis

E-modes & reionization history (т):

- New preliminary Planck constraints point to significantly lower value of the reionization optical depth parameter τ
- Better agreement with astrophysical data
- Measurements from B-modes at large angular scales more challenging
- Significant improvement expected from future space missions as LiteBIRD

B-modes & primordial tensor modes (r):

- For the moment preliminary HFI results: good indications that major systematics are under control
- Including the large scales greatly improve the constraints (not from ground: need the full sky)
- Caveat: correct modelling of the dust polarization must be precisely included to have realistic forecasts and correct interpretation

Thank you!

