The information hidden in the anisotropies of the CMB spectral distortions

Rishi Khatri

$$\begin{split} \bar{y} &= 10^{-6} \pm ? \\ \bar{y} < 2.2 \times 10^{-6}, \text{COBE-FIRAS:} < 15 \times 10^{-6} \\ \mu_{\text{rms}}^{10'} < 6.4 \times 10^{-6}, \text{COBE-FIRAS:} \ \bar{\mu} < 90 \times 10^{-6} \\ D_{\ell}^{\mu T}|_{\ell=2-26} &= 2.6 \pm 2.6 \times 10^{-12} \text{ K} \\ f_{\text{NL}} < 10^5, k_{\text{S}}/k_{\text{L}} = 10^6 \end{split}$$

Bose-Einstein spectrum- Chemical potential (μ)

$$n(x) = \frac{1}{e^{x+\mu} - 1}$$

Given two constraints, energy density (*E*) and number density (*N*) of photons, T, μ uniquely determined.

Idea behind analytic solutions:

If we know rate of production of photons and energy injection rate, we can calculate the

evolution/production of μ (and T)

Creation of CMB Planck spectrum

Creation of CMB Planck spectrum

The last scattering surface

Define by Thomson scattering $\dot{\tau} = n_e \sigma_T c$, $g(z) = \dot{\tau} e^{-\tau}$

Intermediate-type distortions (Khatri and Sunyaev 2012b)

Solve Kompaneets equation with initial condition of *y*-type solution.

25 years ago: Cosmic Background Explorer (COBE) 1989-1993

No deviations from a Planck spectrum at $\sim 10^{-4}$

Fixsen et al. 1996, Fixsen and Mather 2002

y-type (Sunyaev-Zeldovich effect) from cluster Abell 2319 seen by Planck

Image credit: ESA / HFI & LFI Consortia

Each Planck frequency channel contains contribution from many components

Sunyaev-Zeldovich or y-distortion signal is a weak signal $\lesssim 100 \ \mu$ K except in the central part of strong nearby clusters

Combine Planck frequency maps to filter out the desired signal

Planck collaboration/ESA 2015

SZ/y-distortion

y-distortion map

y-distortion map,10 arcmin

6.8 times stronger compared to the COBE-FIRAS upper limit: $\langle y \rangle < 15 \times 10^{-6}$ (*Fixsen et al. 1996*)

Planck is sensitive to only the fluctuations in *y*

Planck is sensitive to only the fluctuations in *y*

- ► In the standard model of cosmology the invariant component is smaller, $\langle y_0 \rangle \ll \langle y \rangle$
- This upper limits rules out models involving preheating of the IGM

Springel et al. 2001, Munshi et al. 2012

- ► Most simulations predict (y) ≪~ 10⁻⁶ 3 × 10⁻⁶ Refregier et al. 2000, Nath & Silk 2001, White et al. 2002, Schaefer et al. 2006
- ► Indications from our analysis of Planck that true value may be closer to $\approx 10^{-6}$ (*Khatri & Sunyaev 2015*).

μ -distortion

(Khatri & Sunyaev 2015)

Upper limit on the μ -distortion fluctuations

- Variance: $\sigma_{map}^2 = \mu_{rms}^2 + \sigma_{noise}^2$
- Remove the noise contribution from map variance using half-ring half difference maps from Planck
- ► Remove mean $\langle \mu \rangle$ to get the central variance, $\mu_{\text{rms}}^{\text{central}} \equiv (\mu_{\text{rms}}^2 - \langle \mu \rangle^2)^{1/2}$

Upper limit on the μ **-distortion fluctuations**

- Variance: $\sigma_{\text{map}}^2 = \mu_{\text{rms}}^2 + \sigma_{\text{noise}}^2$
- Remove the noise contribution from map variance using half-ring half difference maps from Planck
- ► Remove mean $\langle \mu \rangle$ to get the central variance, $\mu_{\text{rms}}^{\text{central}} \equiv (\mu_{\text{rms}}^2 - \langle \mu \rangle^2)^{1/2}$
- ► Limit from Planck data (*Khatri & Sunyaev 2015*): $\mu_{rms}^{central} < 6.4 \times 10^{-6}$ at 10' resolution (2 × 10⁻⁶ at 30') assuming all signal is due to contamination from *y*-distortion and foregrounds

Upper limit on the μ **-distortion fluctuations**

- Variance: $\sigma_{\text{map}}^2 = \mu_{\text{rms}}^2 + \sigma_{\text{noise}}^2$
- Remove the noise contribution from map variance using half-ring half difference maps from Planck
- ► Remove mean $\langle \mu \rangle$ to get the central variance, $\mu_{\text{rms}}^{\text{central}} \equiv (\mu_{\text{rms}}^2 - \langle \mu \rangle^2)^{1/2}$
- ► Limit from Planck data (*Khatri & Sunyaev 2015*): $\mu_{rms}^{central} < 6.4 \times 10^{-6}$ at 10' resolution (2 × 10⁻⁶ at 30') assuming all signal is due to contamination from *y*-distortion and foregrounds
- COBE limit: $\langle \mu \rangle < 90 \times 10^{-6}$ (*Fixsen et al. 1996*)

Power spectrum: $C_{\ell}^{\mu T}|_{\ell=2-26} = (2.6 \pm 2.6) \times 10^{-12} \text{ K}$

Silk damping: 17 e-folds of inflation!

Non-Gaussianity: short wavelength modes correlated with long wavelength fluctuations

$$\boldsymbol{\phi}(\mathbf{x}) = \boldsymbol{\phi}_G(\mathbf{x}) + f_{\mathrm{NL}} \boldsymbol{\phi}_G(\mathbf{x})^2$$

Fluctuations in μ if non-Gaussianity (Pajer & Zaldarriaga 2012)

$$k = 46 - 10^4 \,\mathrm{Mpc}^{-1}$$

Khatri& Sunyaev 2015

$$\frac{\ell(\ell+1)}{2\pi} C_{\ell}^{\mu T} \approx 2.4 \times 10^{-17} f_{\rm NL} \text{ K}$$
$$\frac{\ell(\ell+1)}{2\pi} C_{\ell}^{\mu \mu} \approx 1.7 \times 10^{-23} \tau_{\rm NL}$$
$$\tau_{\rm NL} = \frac{9}{25} f_{\rm NL}^2$$

 $k=10^{-3} Mpc^{-1}$

Fluctuations in μ if non-Gaussianity (Pajer & Zaldarriaga 2012)

$$k = 46 - 10^4 \text{ Mpc}^{-1}$$

Khatri& Sunyaev 2015

$$f_{
m NL} < 10^5$$

 $au_{
m NL} < 10^{11}$
 $5 imes 10^4 \lesssim rac{k_S}{k_L} \lesssim 10^7$

 $k=10^{-3} Mpc^{-1}$

Only other comparable constraints from primordial black holes *Byrnes, Copeland, & Green 2012*

Resonant scattering on metals during reionization

$\tau_{\text{LSS}}(v) = \tau_e + \sum_X \tau_X(v)$ Basu, Hernandez-Monteagudo & Sunyaev 2004

Atom/	Wavelength	Oscillator	HFI freq.	Scattering	$\mathcal B$	Opt. depth for	$[X]_{\min}$ for	$\langle [X]_{\min} \rangle$ in
Ion	(in <i>µ</i>)	strength	(GHz)	redshift	factor	10 ⁻² solar abundance	l = 10	l = 10 - 20
CI	609.70	1.33×10^{-9}	143	2.4	0.76	6.4×10^{-6}	$5.3 imes 10^{-3}$	$2.6 imes 10^{-3}$
			217	1.3	0.92	$3.9 imes 10^{-6}$	1.4×10^{-2}	$6.8 imes 10^{-3}$
			353	0.4	0.99	1.6×10^{-6}	$2.1 imes 10^{-1}$	$1.2 imes 10^{-1}$
	370.37	9.08×10^{-10}	143	4.7	0.15	1.2×10^{-6}	$2.8 imes 10^{-2}$	$1.3 imes 10^{-2}$
			217	2.8	0.09	3.7×10^{-7}	$1.6 imes 10^{-1}$	8.1×10^{-2}
СП	157.74	1.71×10^{-9}	143	12.3	0.79	$1.8 imes 10^{-5}$	$2.7 imes 10^{-2}$	$6.2 imes 10^{-3}$
			217	7.9	0.94	1.1×10^{-5}	7.7×10^{-3}	3.0×10^{-3}
			353	4.4	0.99	$5.6 imes 10^{-6}$	7.7×10^{-2}	3.6×10^{-2}
N II	205.30	3.92×10^{-9}	143	9.2	0.76	1.1×10^{-5}	$7.6 imes 10^{-3}$	$2.6 imes 10^{-3}$
			217	5.8	0.92	$6.8 imes 10^{-6}$	8.6×10^{-3}	3.8×10^{-3}
			353	3.1	0.99	$3.5 imes 10^{-6}$	$1.3 imes 10^{-1}$	$6.8 imes 10^{-2}$
	121.80	$2.74 imes 10^{-9}$	143	16.2	0.16	2.1×10^{-6}	$1.3 imes 10^{-1}$	$3.8 imes 10^{-2}$
			217	10.5	0.09	6.4×10^{-7}	$3.4 imes 10^{-1}$	$1.1 imes 10^{-1}$
N III	57.32	4.72×10^{-9}	143	35.6	0.79	$2.5 imes 10^{-5}$	$2.3 imes 10^{-3}$	$7.4 imes 10^{-4}$
			217	23.4	0.94	1.5×10^{-5}	$6.1 imes 10^{-3}$	2.0×10^{-3}
01	63.18	$3.20 imes 10^{-9}$	143	32.2	0.88	$1.0 imes 10^{-4}$	$5.3 imes 10^{-4}$	$1.7 imes 10^{-4}$
			217	21.2	0.96	$6.3 imes 10^{-5}$	$2.0 imes 10^{-3}$	$6.4 imes 10^{-4}$
			353	12.5	1.00	3.1×10^{-5}	2.2×10^{-1}	4.9×10^{-2}

Constraints on metal production from the first stars

Assuming relative calibration between channels of 10^{-5}

LiteBIRD

What is needed to detect the CMB spectrak distortion anisotropies:

- ► No CO contamination, enough channels to separate foregrounds
- Precise interchannel calibration (better than 10^{-5} ?)
- Precise calibration of zero level (limits average y distortion measurement in Planck)
- High sensitivity
- Polarization

(resonant scattering on lines also generates polarization (*Hernandez-Monteagudo,Rubino-Martin & Sunyaev 2007*), second order (transverse) kinetic Sunyaev-Zeldovich effect from clusters ($\propto v_t^2 \tau$) gives polarized y-type distortion (*Sunyaev & Zeldovich 1980*))

High angular resolution not necessary!

CO mask, annotations to second Planck cluster catalog, μ -map and masks publicly available

http://www.mpa-garching.mpg.de/~khatri/szresults/ http://www.mpa-garching.mpg.de/~khatri/muresults/