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!2 were large, a fact that can be verified by looking at Figures 6d
and 6g. However, for the projected x-position of component
S4 with time, the !2 obtained was nearly unity, which gives us
some confidence in the motion of this component, at least in the
x-direction.We conclude then that, on average, the southern jet is
moving away from the two central components to the southwest,
although more slowly than the northern jet.

The results obtained for C2 show no significant motion. The
value obtained for the limit on the motion of this component is
equal to 0:0067 ! 0:0094 mas yr"1, or less than 0.088c.

In Figure 4 we draw arrows showing the direction of motion
found for each component, as well as their relative magnitude.
It is important to note that we placed arrows even for those com-
ponents for which we do not claim significant motion.

3.3. Radio Continuum Spectra

By appropriately tapering our 22 GHz 2005 data, we obtained
an image resolutionmatched to our 8GHz continuum image. These
two images were then combined to generate an image of the spec-
tral index distribution across the source (Fig. 7). In both hotspots
of the source, N2 and S2, a steep spectrumwas found, whereas in
both central components, the spectrum is flat. A plot of flux den-

sity as a function of frequency is included in the image of the
spectral index distribution for both C1 and C2. The values for the
flux densities used in order to make these plots were measured
from matching resolution images. Details of these results are
listed in Table 4.

4. DISCUSSION

Four possible scenarios were proposed byManess et al. (2004)
in order to explain the unusual properties found in 0402+379.
Two of them were ruled out, but the possibility that C1 or C2 is
an unusual jet component in a dense ISM could not be conclu-
sively eliminated.

Our high-resolution observations confirm the compactness of
component C2 and measure a size of 0:124 ! 0:035 pc. Com-
ponent C2 is found to have no significant motion, whereas sig-
nificant flux density variability is found. The spectral peak is
shown to be at #10 GHz. It is possible that C1 and/or C2 could
be a jet component lit up in a collision with a dense interstellar
medium. In this scenario the low observed velocity (<0.088c) is
due to the impact with the ISM, and the spectrum is modified by
local acceleration of particles. There are certian difficulties with
the jet component explanation. (1) It requires a dramatic change

Fig. 7.—Spectral index distribution between 8 and 22 GHz from the 2005 VLBA observations. The contours are taken from the 22 GHz observations and are set at 7 ",
increasing by a factor of 2 thereafter.
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ABSTRACT
The treatment of hierarchical triple configurations has proven to be very useful in
many astrophysical contexts, from planetary to triple star system. In the secular ap-
proximation the orbits may change shape and orientation. In particular, for highly
inclined systems, the Kozai-Lidov mechanism can produce large-amplitude oscilla-
tions of the eccentricities. Here we re-derive the secular evolution equations including
both quadrupole and octupole orders using Hamiltonian perturbation theory. Our new
derivation corrects an error in previous treatments of the secular evolution equations.
Our new derivation agrees with the “usual” treatment only in the limit where the
outer orbit angular momentum is much larger than the inner one is. Assuming, as
done in previous treatments, that the inner z-component angular momentum is con-
served, (

√
1− e2 cos i = const) can produce erroneous results for various astrophysical

systems, such as planetary systems and triple stars, where the inner orbit’s angular
momentum is not negligible. We discuss a few interesting implications of using the
correct formalism.

1 INTRODUCTION

Triple star systems are believed to be very common (e.g.,
Eggleton et al. 2007; Tokovinin 1997). From dynamical sta-
bility arguments there must be hierarchical triples, in which
the (inner) binary is orbited by a third body on a much
wider orbit. Probably more than 50% of bright stars are at
least double (Eggleton et al. 2007; Tokovinin 1997). Given
the selection effects against finding faint and distant com-
panions we can be reasonably confident that the proportion
is actually substantially greater. Tokovinin (1997) showed
that 40% of binary stars with period < 10 d in which the
primary is a dwarf (0.5−1.5M⊙) have at least one additional
companion. He found that the fraction of triples and higher
multiples among binaries with period (10−100 d) is ∼ 10%.
Moreover, Pribulla & Rucinski (2006) have surveyed a sam-
ple of contact binaries, and noted that among 151 contact
binaries brighter than 10 mag., 42±5% are at least triple.

Many close stellar binaries with two compact objects are
likely produced through triple evolution. The secular evolu-
tion (i.e., acting on longer timescale compared to the orbital
periods), and specifically, Kozai cycling (see below), have
been proposed as an important element in the evolution of
triple stars (e.g. Mazeh & Shaham 1979; Kiseleva et al. 1998;
Fabrycky & Tremaine 2007; Perets & Fabrycky 2009). In
addition, Kozai cycling has been suggested to play impor-
tant role in both the growth of black holes at the centers
of dense star clusters and the formation of short-period bi-
nary black holes (Wen 2003; Miller & Hamilton 2002; Blaes
et al. 2002). Moreover, the dense environment in globular
clusters is thought to play an important role in the forma-
tion of bright XRBs. Recently, Ivanova et al. (2010) showed

that the most important formation mechanism for black hole
XRBs in clusters may be triple-induced mass transfer in a
black hole – white dwarf binary.

Secular perturbations in triple system also play an im-
portant role in solar system dynamics. Kozai (1962) studied
the gravitational perturbation on a inclined asteroid arise
form Jupiter in our own solar system. In this hierarchical
configuration the asteroid, a test particle, inclination and
eccentricity fluctuate on time scale larger than the asteroid
orbital time scale. Jupiter carry most of the angular momen-
tum of the system and thus Lz,1, the component of the inner
orbit’s angular momentum along the total angular momen-
tum, is very nearly constant. Recently it was also shown that
considering binary minor planets (both main belt binaries
and trans Neptunein objects), as a triple configuration where
the third object is the sun,can be very useful in understand-
ing the present day observations. Specifically binary minor
planets evolution is effected by the secular gravitational per-
turbation form the sun (Perets & Naoz 2009) which results
on their orbital parameters distribution we see today (Naoz
et al. 2010).

Triple configuration had be shown to be very useful
also in studying extrasolar planets evolution (e.g., Innanen
et al. 1997; Wu & Murray 2003; Fabrycky & Tremaine 2007;
Wu et al. 2007; Naoz et al. 2010). In Naoz et al. (2010) we
showed that a system composed from a star and a Jupiter
like planet (the inner binary) being perturbed by an outer far
away planet can capture (when including tidal friction) the
Jupiter planet to a very close proximity to the star, change
its inclination and even flip its orientation completely. Many
studies of secular perturbations in hierarchical triples con-
sidered a stellar-mass perturber, for which Lz,1 is very nearly

c⃝ 0000 RAS
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1 INTRODUCTION

Triple star systems are believed to be very common (e.g.,
Eggleton et al. 2007; Tokovinin 1997). From dynamical sta-
bility arguments there must be hierarchical triples, in which
the (inner) binary is orbited by a third body on a much
wider orbit. Probably more than 50% of bright stars are at
least double (Eggleton et al. 2007; Tokovinin 1997). Given
the selection effects against finding faint and distant com-
panions we can be reasonably confident that the proportion
is actually substantially greater. Tokovinin (1997) showed
that 40% of binary stars with period < 10 d in which the
primary is a dwarf (0.5−1.5M⊙) have at least one additional
companion. He found that the fraction of triples and higher
multiples among binaries with period (10−100 d) is ∼ 10%.
Moreover, Pribulla & Rucinski (2006) have surveyed a sam-
ple of contact binaries, and noted that among 151 contact
binaries brighter than 10 mag., 42±5% are at least triple.

Many close stellar binaries with two compact objects are
likely produced through triple evolution. The secular evolu-
tion (i.e., acting on longer timescale compared to the orbital
periods), and specifically, Kozai cycling (see below), have
been proposed as an important element in the evolution of
triple stars (e.g. Mazeh & Shaham 1979; Kiseleva et al. 1998;
Fabrycky & Tremaine 2007; Perets & Fabrycky 2009). In
addition, Kozai cycling has been suggested to play impor-
tant role in both the growth of black holes at the centers
of dense star clusters and the formation of short-period bi-
nary black holes (Wen 2003; Miller & Hamilton 2002; Blaes
et al. 2002). Moreover, the dense environment in globular
clusters is thought to play an important role in the forma-
tion of bright XRBs. Recently, Ivanova et al. (2010) showed

that the most important formation mechanism for black hole
XRBs in clusters may be triple-induced mass transfer in a
black hole – white dwarf binary.

Secular perturbations in triple system also play an im-
portant role in solar system dynamics. Kozai (1962) studied
the gravitational perturbation on a inclined asteroid arise
form Jupiter in our own solar system. In this hierarchical
configuration the asteroid, a test particle, inclination and
eccentricity fluctuate on time scale larger than the asteroid
orbital time scale. Jupiter carry most of the angular momen-
tum of the system and thus Lz,1, the component of the inner
orbit’s angular momentum along the total angular momen-
tum, is very nearly constant. Recently it was also shown that
considering binary minor planets (both main belt binaries
and trans Neptunein objects), as a triple configuration where
the third object is the sun,can be very useful in understand-
ing the present day observations. Specifically binary minor
planets evolution is effected by the secular gravitational per-
turbation form the sun (Perets & Naoz 2009) which results
on their orbital parameters distribution we see today (Naoz
et al. 2010).

Triple configuration had be shown to be very useful
also in studying extrasolar planets evolution (e.g., Innanen
et al. 1997; Wu & Murray 2003; Fabrycky & Tremaine 2007;
Wu et al. 2007; Naoz et al. 2010). In Naoz et al. (2010) we
showed that a system composed from a star and a Jupiter
like planet (the inner binary) being perturbed by an outer far
away planet can capture (when including tidal friction) the
Jupiter planet to a very close proximity to the star, change
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Our treatment
Allow for the z-component of the 
angular momenta of the inner 
and outer orbit to change - 
already at     the quadrupole level  

Expanding the approximation to 
the octupole level (e.g., Ford et al 
2000, Blaes et al 2002 - already done 
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Katz at al (2011), arXiv:1106.3340 
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Lets...flip the planet
Example system: a1=6AU, a2=100AU, m1=1.Msun M2=1Mj, M3=40Mj i=65 deg secular dynamics + GR

Naoz et al, Nature (2011), 
arXiv:1011.2501

point mass limit

(a) inner orbit inclination

(d) inner orbit z-com.  
angular momentum

(b) inner orbit eccentricity

(c) inner orbit z-com. 
angular momentum
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GR effects: e.g., Ford et al 2000, 
Naoz, Kocsis, Loeb, Yunes 2013
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TO FLIP OR NOT TO FLIP?
EXPLORING THE PARAMETER SPACE OF RETROGRADE PLANETS IN THE SECULAR HIERARCHICAL 3-BODY PROBLEM
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ABSTRACT

Recent observations using the Rossiter-McLaughlin effect have revealed the existence of Hot Jupiters in highly inclined
and even retrograde orbits. At the same time, distant planets have been discovered using direct imaging methods. Moti-
vated by these observations, we explore the possibility of forming retrograde orbits in hierarchical triple configurations
with two giant planets, or one giant planet and a brown-dwarf binary companion. We survey a large set of orbital pa-
rameters, highlighting the range of initial conditions that allow for the formation of retrograde Hot Jupiters. We use the
formalism developed in Naoz et al. (2011b), which gives a correct treatment of the secular evolution of hierarchical triple
systems to octupole order. With this new formalism, a complete numerical study can be done. Based on our new survey,
we show how and when an eccentric planetary or brown-dwarf companion can perturb the inner planet into a retrograde
orbit, as long as the mutual inclination is high. Constraints on the outer body can be used to guide future observations.

MOTIVATIONS
A significant number of Hot-Jupiters

are observed to be misaligned and even

in retrograde motion with respect to

the spin axis of the host star, through

measurement of the spin angle via

the Rossiter-McLaughlin effect (Triaud

et al., 2010). In our model, first pre-

sented in Naoz et al. (2011a), we study

the perturbation of a Jupiter-mass

planet by a far-distant outer body.

SECULAR DYNAMICS

We use the hamiltonian of the hier-

archical three-body problem and de-

velop it to the second order, called

the octupole order. We average over

one period of each orbit and thus,

only remains the secular part of the

hamiltonian.

H = Hquad+ϵMHoct

with

ϵM = α

m0−m1

m0+m1

e2

1− e22
.

We compare with a N-body simulation (Naoz et al., 2011b):
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(red curve) and a direct N-body integration using themercury

package (blue curve). The system has m1 = 1M⊙, m2 = 1MJ,

m3 = 40MJ, a1 = 6AU, a2 = 100AU, e1 = 0.01 and e2 = 0.6,

i tot = 65◦. In both case the evolution of the inclination is very

similar, with flips from prograde to retrograde orbits.

PARAMETER SPACE

For all the following figures, we plot the ratio of time spent in a retrograde orbit, over an integration time of 8Gy. In every run we take all the

parameters to be fixed but two. These two free parameters vary with a regular stepsize, which gives a range of initial conditions regularly spaced

in two directions of the space of parameters, and fixed in all the other directions. For all systems, the central body is a 1M⊙ star. We define

α= a1/a2.
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The system is such as m2 = 1MJ and m3 = 6MJ. The initial mu-

tual inclination is 65◦. α varies from 0.025 to 0.1., and e2 from 0.1

to 0.8. High eccentricities and high α (i.e., high ϵM) produce more

retrograde orbits. The black line give the gravitational instability

limit. Everything above this limit is likely to be unstable.
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The perturber is such as e2 = 0.6. The initial mutual inclination

is 65◦. A close massive perturber (i.e. a strong perturbative po-

tential) produces more flips of the inner planet.

COMPARISON WITH A TEST PARTICLE

Similar Masss Case
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The system is such as m2= 1MJ and m3= 6MJ with e2= 0.5. The

initial mutual inclination varies from 35◦ to 90◦, while α varies

from 0.025 to 0.1. In order to produce a retrograde orbit, the

initial inclination must be in [55◦ : 80◦] for most α. Small α (i.e.

distant companions) do not allow for a flip.

Test Particle Case
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The system has e2 = 0.5. The inner mass is zero, and m3/m1 =

6e−3 The initial mutual inclination varies from 35◦ to 90◦, while

α varies from 0.025 to 0.1. In the test particle case, there is no

decreasing of the ratio for very high initial inclinations (Lithwick

& Naoz, 2011; Katz et al., 2011).
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CONCLUSIONS

• In the test particle limit, the probability distribution for the sys-

tem to be retrograde is different than in the comparable masses

case. Mainly, the gap observed at very high inclinations in the

latter is filled in the first case.

• Results from this work predict various configurations of triple

systems and thus give motivation for direct imaging: : the best

configurations for flipping the orbit would be a1/a2 ∈ [0.1,0.05],

m2/m3< 0.5, e2 > 0.3 (Teyssandier et al., 2011).

• Preliminary studies including tidal friction showed that this

configurations indeed produce retrograde Hot-Jupiters.

Ian Lizarraga

The Astrophysical Journal, 785:116 (8pp), 2014 April 20 Li et al.

0

100

180

de
gr

ee

10
−2

10
0

A
U

0 2 4 6 8 10 12
30

35

40

time (Myr)

a 1(A
U

)

i
ψ

r
p

r
L

Figure 9. Example illustrating a tidal disruption event. The initial condition
is the same as in Figure 7, except a1 = 39 AU. Similar to Figure 7, both
tidal dissipation and general relativity precession effects are included (see text).
During the flip, e1 ∼ 1 and the tidal dissipation forces the orbit to decay (as
shown in the bottom panel). However, the tidal circularization is outrun by the
eccentricity excitation during the flip, and the object is disrupted before reaching
180◦ when rp < rL, where rL is the Roche limit of the object to m1.
(A color version of this figure is available in the online journal.)
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Figure 10. Maximum eccentricity. The maximum eccentricity reached during
the secular evolution in time 3tKozai (upper left panel), 5tKozai (upper right panel),
10 tKozai (lower left panel), and 30 tKozai (lower right panel) as a function of the
initial eccentricity (horizontal axis) and inclination (vertical axis). Tides are not
included in the simulation. The initial conditions of the runs are m1 = 1 M⊙,
m2 = 0.1 M⊙, a1 = 1 AU, a2 = 45.7 AU, e2 = 0.7, ω1 = 0◦, and
Ω1 = 180◦. The typical eccentricity reached at the first flip is ∼1–10−4, and the
eccentricity may increase to ∼1–10−6 after several flips. The HiLe case reaches
the maximum eccentricity later than the LiHe case. The inner orbit flips above
the black solid lines.
(A color version of this figure is available in the online journal.)

A very large eccentricity does not immediately imply a tidal
dissipation event, since this depends on the initial separation of
the orbit. We map the maximum eccentricity that can be reached
during the evolution, which may then be useful to examine the
likelihood of tidal disruption for specific systems.

Specifically, we study the maximum eccentricity reached
during the evolution for ϵ = 0.03. Since this depends on the
time the integration stops, we record the respective maximum
eccentricity of the inner orbit for integration times 3tKozai,
5 tKozai, 10 tKozai, and 30 tKozai. As shown in Figure 10, the
eccentricity of the inner orbit can be very close to 1, with

1 − e1,max ∼ 10−4 during the first flip, and 10−6 over longer
time periods.

This process is relevant for estimating the rates of planet–star
collisions (Hellier et al. 2009; Bear et al. 2011), stellar tidal
disruptions due to black hole binaries (Ivanov et al. 2005; Colpi
& Dotti 2011; Chen et al. 2011; Wegg & Bode 2011; Bode
& Wegg 2013; Stone & Loeb 2012; G. Li et al. 2014b, in
preparation), Type 1a supernovae (Katz & Dong 2012), star–star
collisions (e.g., Perets & Fabrycky 2009; Thompson 2011;
Katz & Dong 2012; Shappee & Thompson 2013; Naoz et al.
2013a; Naoz & Fabrycky 2014), and gravitational wave sources
(O’Leary et al. 2009; Kocsis & Levin 2012).

5. CONCLUSION

We have presented a new mechanism that flips an eccentric
inner orbit by 180◦ starting with a near-coplanar configuration
in a hierarchical three-body system with an eccentric outer per-
turber. We use the secular approximation to study the dynamics,
and show the agreement between the secular treatment and the
N-body simulation in Figure 2.

The HeLi flip is a different mechanism from the LeHi
flip discussed by Naoz et al. (2011, 2013a). The underlying
resonances causing the large oscillation in the inclination and
the flip are different: the LeHi flip is caused by both the
quadrupole and the octupole interactions. However, in the HeLi
case, only octupole resonances are in play (see G. Li et al. 2014a,
in preparation for further discussion). Moreover, for the low
inclination case, the orbital evolution is regular, which admits a
simple analytic flip criterion and timescale (which were shown
to agree with the numerical results in Figure 5). Specifically,
the flip criterion is shown in Equation (14). In addition, the
difference can be seen through the evolution of the orbit: the
eccentricity increases monotonically and the inclination remains
low before the flip, and the flip timescale of the coplanar case
is shorter compared with the high inclination case (see Figure 3
and movies). Finally, we explored the entire e1 and i0 parameter
space, including both the high inclination and low inclination
flips. We studied the flip condition for the initial condition in
Figure 6. The evolution of the near-coplanar systems is distinct
from the exact coplanar systems, because in the exact coplanar
systems the net force normal to the orbital plane is zero and
thus the orbit cannot flip. Therefore, the N-body simulations that
assume exactly zero inclination may miss some of the dynamical
behavior arises, even for small deviations from coplanarity.

Observations of the sky-projected obliquity angle of hot
Jupiters shows that their orbital orientation ranges from almost
perfectly aligned to almost perfectly anti-aligned with respect
to the spin of the star (Albrecht et al. 2012). We showed
in the hierarchal, nearly coplanar, three-body framework an
initial eccentric inner orbit can flip its orientation by almost
180◦ in the presence of an eccentric companion (Figures 5
and 6). During the planet’s evolution, its eccentricity is increased
monotonically, and thus tides are able to shrink and circularize
the orbit. If the planet has flipped by ∼180◦ before the tidal
evolution dominates, a counter-orbiting close-in planet can be
formed.

Figure 7 demonstrated this behavior. Not only does the fi-
nal planet inclination reach 180◦ with respect to the total an-
gular momentum, but also the obliquity. This is because the
timescale to torque the spin of the star is much longer than the
orbital flip timescale, the spin–orbit angle is similar to the incli-
nation at ∼180◦. Therefore, starting with an initially aligned
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During the flip, e1 ∼ 1 and the tidal dissipation forces the orbit to decay (as
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(A color version of this figure is available in the online journal.)

0 0.5 1e
1, 0

−6

−5

−4

−3

−2

−1

0

0

20

40

60

80

i 0

0 0.5 1
0

20

40

60

80

e
1, 0

i 0

t = 3 t
Kozai

t = 10 t
Kozai t = 30 t

Kozai

t = 5 t
Kozai

log[min(1−e
1
)], ω = 0, ε = 0.03
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eccentricity may increase to ∼1–10−6 after several flips. The HiLe case reaches
the maximum eccentricity later than the LiHe case. The inner orbit flips above
the black solid lines.
(A color version of this figure is available in the online journal.)

A very large eccentricity does not immediately imply a tidal
dissipation event, since this depends on the initial separation of
the orbit. We map the maximum eccentricity that can be reached
during the evolution, which may then be useful to examine the
likelihood of tidal disruption for specific systems.

Specifically, we study the maximum eccentricity reached
during the evolution for ϵ = 0.03. Since this depends on the
time the integration stops, we record the respective maximum
eccentricity of the inner orbit for integration times 3tKozai,
5 tKozai, 10 tKozai, and 30 tKozai. As shown in Figure 10, the
eccentricity of the inner orbit can be very close to 1, with

1 − e1,max ∼ 10−4 during the first flip, and 10−6 over longer
time periods.

This process is relevant for estimating the rates of planet–star
collisions (Hellier et al. 2009; Bear et al. 2011), stellar tidal
disruptions due to black hole binaries (Ivanov et al. 2005; Colpi
& Dotti 2011; Chen et al. 2011; Wegg & Bode 2011; Bode
& Wegg 2013; Stone & Loeb 2012; G. Li et al. 2014b, in
preparation), Type 1a supernovae (Katz & Dong 2012), star–star
collisions (e.g., Perets & Fabrycky 2009; Thompson 2011;
Katz & Dong 2012; Shappee & Thompson 2013; Naoz et al.
2013a; Naoz & Fabrycky 2014), and gravitational wave sources
(O’Leary et al. 2009; Kocsis & Levin 2012).

5. CONCLUSION

We have presented a new mechanism that flips an eccentric
inner orbit by 180◦ starting with a near-coplanar configuration
in a hierarchical three-body system with an eccentric outer per-
turber. We use the secular approximation to study the dynamics,
and show the agreement between the secular treatment and the
N-body simulation in Figure 2.

The HeLi flip is a different mechanism from the LeHi
flip discussed by Naoz et al. (2011, 2013a). The underlying
resonances causing the large oscillation in the inclination and
the flip are different: the LeHi flip is caused by both the
quadrupole and the octupole interactions. However, in the HeLi
case, only octupole resonances are in play (see G. Li et al. 2014a,
in preparation for further discussion). Moreover, for the low
inclination case, the orbital evolution is regular, which admits a
simple analytic flip criterion and timescale (which were shown
to agree with the numerical results in Figure 5). Specifically,
the flip criterion is shown in Equation (14). In addition, the
difference can be seen through the evolution of the orbit: the
eccentricity increases monotonically and the inclination remains
low before the flip, and the flip timescale of the coplanar case
is shorter compared with the high inclination case (see Figure 3
and movies). Finally, we explored the entire e1 and i0 parameter
space, including both the high inclination and low inclination
flips. We studied the flip condition for the initial condition in
Figure 6. The evolution of the near-coplanar systems is distinct
from the exact coplanar systems, because in the exact coplanar
systems the net force normal to the orbital plane is zero and
thus the orbit cannot flip. Therefore, the N-body simulations that
assume exactly zero inclination may miss some of the dynamical
behavior arises, even for small deviations from coplanarity.

Observations of the sky-projected obliquity angle of hot
Jupiters shows that their orbital orientation ranges from almost
perfectly aligned to almost perfectly anti-aligned with respect
to the spin of the star (Albrecht et al. 2012). We showed
in the hierarchal, nearly coplanar, three-body framework an
initial eccentric inner orbit can flip its orientation by almost
180◦ in the presence of an eccentric companion (Figures 5
and 6). During the planet’s evolution, its eccentricity is increased
monotonically, and thus tides are able to shrink and circularize
the orbit. If the planet has flipped by ∼180◦ before the tidal
evolution dominates, a counter-orbiting close-in planet can be
formed.

Figure 7 demonstrated this behavior. Not only does the fi-
nal planet inclination reach 180◦ with respect to the total an-
gular momentum, but also the obliquity. This is because the
timescale to torque the spin of the star is much longer than the
orbital flip timescale, the spin–orbit angle is similar to the incli-
nation at ∼180◦. Therefore, starting with an initially aligned
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Figure 9. Example illustrating a tidal disruption event. The initial condition
is the same as in Figure 7, except a1 = 39 AU. Similar to Figure 7, both
tidal dissipation and general relativity precession effects are included (see text).
During the flip, e1 ∼ 1 and the tidal dissipation forces the orbit to decay (as
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eccentricity excitation during the flip, and the object is disrupted before reaching
180◦ when rp < rL, where rL is the Roche limit of the object to m1.
(A color version of this figure is available in the online journal.)
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m2 = 0.1 M⊙, a1 = 1 AU, a2 = 45.7 AU, e2 = 0.7, ω1 = 0◦, and
Ω1 = 180◦. The typical eccentricity reached at the first flip is ∼1–10−4, and the
eccentricity may increase to ∼1–10−6 after several flips. The HiLe case reaches
the maximum eccentricity later than the LiHe case. The inner orbit flips above
the black solid lines.
(A color version of this figure is available in the online journal.)

A very large eccentricity does not immediately imply a tidal
dissipation event, since this depends on the initial separation of
the orbit. We map the maximum eccentricity that can be reached
during the evolution, which may then be useful to examine the
likelihood of tidal disruption for specific systems.

Specifically, we study the maximum eccentricity reached
during the evolution for ϵ = 0.03. Since this depends on the
time the integration stops, we record the respective maximum
eccentricity of the inner orbit for integration times 3tKozai,
5 tKozai, 10 tKozai, and 30 tKozai. As shown in Figure 10, the
eccentricity of the inner orbit can be very close to 1, with

1 − e1,max ∼ 10−4 during the first flip, and 10−6 over longer
time periods.

This process is relevant for estimating the rates of planet–star
collisions (Hellier et al. 2009; Bear et al. 2011), stellar tidal
disruptions due to black hole binaries (Ivanov et al. 2005; Colpi
& Dotti 2011; Chen et al. 2011; Wegg & Bode 2011; Bode
& Wegg 2013; Stone & Loeb 2012; G. Li et al. 2014b, in
preparation), Type 1a supernovae (Katz & Dong 2012), star–star
collisions (e.g., Perets & Fabrycky 2009; Thompson 2011;
Katz & Dong 2012; Shappee & Thompson 2013; Naoz et al.
2013a; Naoz & Fabrycky 2014), and gravitational wave sources
(O’Leary et al. 2009; Kocsis & Levin 2012).

5. CONCLUSION

We have presented a new mechanism that flips an eccentric
inner orbit by 180◦ starting with a near-coplanar configuration
in a hierarchical three-body system with an eccentric outer per-
turber. We use the secular approximation to study the dynamics,
and show the agreement between the secular treatment and the
N-body simulation in Figure 2.

The HeLi flip is a different mechanism from the LeHi
flip discussed by Naoz et al. (2011, 2013a). The underlying
resonances causing the large oscillation in the inclination and
the flip are different: the LeHi flip is caused by both the
quadrupole and the octupole interactions. However, in the HeLi
case, only octupole resonances are in play (see G. Li et al. 2014a,
in preparation for further discussion). Moreover, for the low
inclination case, the orbital evolution is regular, which admits a
simple analytic flip criterion and timescale (which were shown
to agree with the numerical results in Figure 5). Specifically,
the flip criterion is shown in Equation (14). In addition, the
difference can be seen through the evolution of the orbit: the
eccentricity increases monotonically and the inclination remains
low before the flip, and the flip timescale of the coplanar case
is shorter compared with the high inclination case (see Figure 3
and movies). Finally, we explored the entire e1 and i0 parameter
space, including both the high inclination and low inclination
flips. We studied the flip condition for the initial condition in
Figure 6. The evolution of the near-coplanar systems is distinct
from the exact coplanar systems, because in the exact coplanar
systems the net force normal to the orbital plane is zero and
thus the orbit cannot flip. Therefore, the N-body simulations that
assume exactly zero inclination may miss some of the dynamical
behavior arises, even for small deviations from coplanarity.

Observations of the sky-projected obliquity angle of hot
Jupiters shows that their orbital orientation ranges from almost
perfectly aligned to almost perfectly anti-aligned with respect
to the spin of the star (Albrecht et al. 2012). We showed
in the hierarchal, nearly coplanar, three-body framework an
initial eccentric inner orbit can flip its orientation by almost
180◦ in the presence of an eccentric companion (Figures 5
and 6). During the planet’s evolution, its eccentricity is increased
monotonically, and thus tides are able to shrink and circularize
the orbit. If the planet has flipped by ∼180◦ before the tidal
evolution dominates, a counter-orbiting close-in planet can be
formed.

Figure 7 demonstrated this behavior. Not only does the fi-
nal planet inclination reach 180◦ with respect to the total an-
gular momentum, but also the obliquity. This is because the
timescale to torque the spin of the star is much longer than the
orbital flip timescale, the spin–orbit angle is similar to the incli-
nation at ∼180◦. Therefore, starting with an initially aligned
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(A color version of this figure is available in the online journal.)
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Ω1 = 180◦. The typical eccentricity reached at the first flip is ∼1–10−4, and the
eccentricity may increase to ∼1–10−6 after several flips. The HiLe case reaches
the maximum eccentricity later than the LiHe case. The inner orbit flips above
the black solid lines.
(A color version of this figure is available in the online journal.)

A very large eccentricity does not immediately imply a tidal
dissipation event, since this depends on the initial separation of
the orbit. We map the maximum eccentricity that can be reached
during the evolution, which may then be useful to examine the
likelihood of tidal disruption for specific systems.

Specifically, we study the maximum eccentricity reached
during the evolution for ϵ = 0.03. Since this depends on the
time the integration stops, we record the respective maximum
eccentricity of the inner orbit for integration times 3tKozai,
5 tKozai, 10 tKozai, and 30 tKozai. As shown in Figure 10, the
eccentricity of the inner orbit can be very close to 1, with

1 − e1,max ∼ 10−4 during the first flip, and 10−6 over longer
time periods.

This process is relevant for estimating the rates of planet–star
collisions (Hellier et al. 2009; Bear et al. 2011), stellar tidal
disruptions due to black hole binaries (Ivanov et al. 2005; Colpi
& Dotti 2011; Chen et al. 2011; Wegg & Bode 2011; Bode
& Wegg 2013; Stone & Loeb 2012; G. Li et al. 2014b, in
preparation), Type 1a supernovae (Katz & Dong 2012), star–star
collisions (e.g., Perets & Fabrycky 2009; Thompson 2011;
Katz & Dong 2012; Shappee & Thompson 2013; Naoz et al.
2013a; Naoz & Fabrycky 2014), and gravitational wave sources
(O’Leary et al. 2009; Kocsis & Levin 2012).

5. CONCLUSION

We have presented a new mechanism that flips an eccentric
inner orbit by 180◦ starting with a near-coplanar configuration
in a hierarchical three-body system with an eccentric outer per-
turber. We use the secular approximation to study the dynamics,
and show the agreement between the secular treatment and the
N-body simulation in Figure 2.

The HeLi flip is a different mechanism from the LeHi
flip discussed by Naoz et al. (2011, 2013a). The underlying
resonances causing the large oscillation in the inclination and
the flip are different: the LeHi flip is caused by both the
quadrupole and the octupole interactions. However, in the HeLi
case, only octupole resonances are in play (see G. Li et al. 2014a,
in preparation for further discussion). Moreover, for the low
inclination case, the orbital evolution is regular, which admits a
simple analytic flip criterion and timescale (which were shown
to agree with the numerical results in Figure 5). Specifically,
the flip criterion is shown in Equation (14). In addition, the
difference can be seen through the evolution of the orbit: the
eccentricity increases monotonically and the inclination remains
low before the flip, and the flip timescale of the coplanar case
is shorter compared with the high inclination case (see Figure 3
and movies). Finally, we explored the entire e1 and i0 parameter
space, including both the high inclination and low inclination
flips. We studied the flip condition for the initial condition in
Figure 6. The evolution of the near-coplanar systems is distinct
from the exact coplanar systems, because in the exact coplanar
systems the net force normal to the orbital plane is zero and
thus the orbit cannot flip. Therefore, the N-body simulations that
assume exactly zero inclination may miss some of the dynamical
behavior arises, even for small deviations from coplanarity.

Observations of the sky-projected obliquity angle of hot
Jupiters shows that their orbital orientation ranges from almost
perfectly aligned to almost perfectly anti-aligned with respect
to the spin of the star (Albrecht et al. 2012). We showed
in the hierarchal, nearly coplanar, three-body framework an
initial eccentric inner orbit can flip its orientation by almost
180◦ in the presence of an eccentric companion (Figures 5
and 6). During the planet’s evolution, its eccentricity is increased
monotonically, and thus tides are able to shrink and circularize
the orbit. If the planet has flipped by ∼180◦ before the tidal
evolution dominates, a counter-orbiting close-in planet can be
formed.

Figure 7 demonstrated this behavior. Not only does the fi-
nal planet inclination reach 180◦ with respect to the total an-
gular momentum, but also the obliquity. This is because the
timescale to torque the spin of the star is much longer than the
orbital flip timescale, the spin–orbit angle is similar to the incli-
nation at ∼180◦. Therefore, starting with an initially aligned
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eccentricity excitation during the flip, and the object is disrupted before reaching
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(A color version of this figure is available in the online journal.)
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eccentricity may increase to ∼1–10−6 after several flips. The HiLe case reaches
the maximum eccentricity later than the LiHe case. The inner orbit flips above
the black solid lines.
(A color version of this figure is available in the online journal.)

A very large eccentricity does not immediately imply a tidal
dissipation event, since this depends on the initial separation of
the orbit. We map the maximum eccentricity that can be reached
during the evolution, which may then be useful to examine the
likelihood of tidal disruption for specific systems.

Specifically, we study the maximum eccentricity reached
during the evolution for ϵ = 0.03. Since this depends on the
time the integration stops, we record the respective maximum
eccentricity of the inner orbit for integration times 3tKozai,
5 tKozai, 10 tKozai, and 30 tKozai. As shown in Figure 10, the
eccentricity of the inner orbit can be very close to 1, with

1 − e1,max ∼ 10−4 during the first flip, and 10−6 over longer
time periods.

This process is relevant for estimating the rates of planet–star
collisions (Hellier et al. 2009; Bear et al. 2011), stellar tidal
disruptions due to black hole binaries (Ivanov et al. 2005; Colpi
& Dotti 2011; Chen et al. 2011; Wegg & Bode 2011; Bode
& Wegg 2013; Stone & Loeb 2012; G. Li et al. 2014b, in
preparation), Type 1a supernovae (Katz & Dong 2012), star–star
collisions (e.g., Perets & Fabrycky 2009; Thompson 2011;
Katz & Dong 2012; Shappee & Thompson 2013; Naoz et al.
2013a; Naoz & Fabrycky 2014), and gravitational wave sources
(O’Leary et al. 2009; Kocsis & Levin 2012).

5. CONCLUSION

We have presented a new mechanism that flips an eccentric
inner orbit by 180◦ starting with a near-coplanar configuration
in a hierarchical three-body system with an eccentric outer per-
turber. We use the secular approximation to study the dynamics,
and show the agreement between the secular treatment and the
N-body simulation in Figure 2.

The HeLi flip is a different mechanism from the LeHi
flip discussed by Naoz et al. (2011, 2013a). The underlying
resonances causing the large oscillation in the inclination and
the flip are different: the LeHi flip is caused by both the
quadrupole and the octupole interactions. However, in the HeLi
case, only octupole resonances are in play (see G. Li et al. 2014a,
in preparation for further discussion). Moreover, for the low
inclination case, the orbital evolution is regular, which admits a
simple analytic flip criterion and timescale (which were shown
to agree with the numerical results in Figure 5). Specifically,
the flip criterion is shown in Equation (14). In addition, the
difference can be seen through the evolution of the orbit: the
eccentricity increases monotonically and the inclination remains
low before the flip, and the flip timescale of the coplanar case
is shorter compared with the high inclination case (see Figure 3
and movies). Finally, we explored the entire e1 and i0 parameter
space, including both the high inclination and low inclination
flips. We studied the flip condition for the initial condition in
Figure 6. The evolution of the near-coplanar systems is distinct
from the exact coplanar systems, because in the exact coplanar
systems the net force normal to the orbital plane is zero and
thus the orbit cannot flip. Therefore, the N-body simulations that
assume exactly zero inclination may miss some of the dynamical
behavior arises, even for small deviations from coplanarity.

Observations of the sky-projected obliquity angle of hot
Jupiters shows that their orbital orientation ranges from almost
perfectly aligned to almost perfectly anti-aligned with respect
to the spin of the star (Albrecht et al. 2012). We showed
in the hierarchal, nearly coplanar, three-body framework an
initial eccentric inner orbit can flip its orientation by almost
180◦ in the presence of an eccentric companion (Figures 5
and 6). During the planet’s evolution, its eccentricity is increased
monotonically, and thus tides are able to shrink and circularize
the orbit. If the planet has flipped by ∼180◦ before the tidal
evolution dominates, a counter-orbiting close-in planet can be
formed.

Figure 7 demonstrated this behavior. Not only does the fi-
nal planet inclination reach 180◦ with respect to the total an-
gular momentum, but also the obliquity. This is because the
timescale to torque the spin of the star is much longer than the
orbital flip timescale, the spin–orbit angle is similar to the incli-
nation at ∼180◦. Therefore, starting with an initially aligned
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We also expanded our study and applied this mechanism
to SMBH binaries, again focusing on the DM distribution
around the less massive member (see Figure 8). We consid-
ered a 107 M⊙–109 M⊙ binary separated at 1 pc and showed
that the near-polar outer parts of the DM sphere around the
107 M⊙ SMBH will be depleted, yielding a torus-like configu-
ration that is diluted further away from the SMBH. Similar to the
MBH–IMBH DM annihilation arguments, if the SMBH spins,
we would expect the DM particles to linger on the ergosphere
allowing for the possible occurrence of enhanced and energetic
(in center-of-mass) self-annihilation processes.

Finally we note that torus-like configurations of dark matter
around an SMBH or an IMBH may be an optional source for
gravitational wave signals (Eda et al. 2013)10 and gravitational
lensing enhancements of the IMBH shadow (Inoue et al. 2013).
Furthermore, we suggest that the DM torus in combination
with the EKL mechanism may have interesting implications for
stellar capture, as well as dynamical friction of stars, which is

10 Note that Eda et al. (2013) proposed the existence of a spike around the
IMBH while we have assumed a core. However, as mentioned above, the
formation of a DM torus does not depend on the initial DM distribution.
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We also expanded our study and applied this mechanism
to SMBH binaries, again focusing on the DM distribution
around the less massive member (see Figure 8). We consid-
ered a 107 M⊙–109 M⊙ binary separated at 1 pc and showed
that the near-polar outer parts of the DM sphere around the
107 M⊙ SMBH will be depleted, yielding a torus-like configu-
ration that is diluted further away from the SMBH. Similar to the
MBH–IMBH DM annihilation arguments, if the SMBH spins,
we would expect the DM particles to linger on the ergosphere
allowing for the possible occurrence of enhanced and energetic
(in center-of-mass) self-annihilation processes.

Finally we note that torus-like configurations of dark matter
around an SMBH or an IMBH may be an optional source for
gravitational wave signals (Eda et al. 2013)10 and gravitational
lensing enhancements of the IMBH shadow (Inoue et al. 2013).
Furthermore, we suggest that the DM torus in combination
with the EKL mechanism may have interesting implications for
stellar capture, as well as dynamical friction of stars, which is

10 Note that Eda et al. (2013) proposed the existence of a spike around the
IMBH while we have assumed a core. However, as mentioned above, the
formation of a DM torus does not depend on the initial DM distribution.

9

The Astrophysical Journal, 795:102 (11pp), 2014 November 10 Naoz & Silk

10

20

30

Final inclination [deg]

N

 

 

0 50 100 150
50

100

150

200

250

300

Final mutual inclination [deg]

a in
 [A

U
]

 

 

0.08 0.16
ρ(a

in
) / ρ

0

Final distribution 
Initial distribution

Initial distribution
Survived particles
Accreted particles

Density distribution 

m
1
=104 M

o
m

2
=4x106 M

o
 

a
out

=0.03pc

Mutual inclination distribution 

BH binary Roche Limit to the
4×106M

o

to the
104M

o

Figure 7. Final DM particle distribution around an IMBH with a growing MBH. Results are shown after the MBH grows by a factor of ∼2. Same line and color
convention as Figure 3, aout = 0.03 pc, with MBH set initially to 106 M⊙. The plot shows the result of 1195 runs.
(A color version of this figure is available in the online journal.)

50

60

90

N
 

 

0 50 100 150
0

0.02

0.04

0.06

Final mutual inclination [deg]

a in
[p

c]

 

 

Final distribution 

Initial distribution  

0.05 0.09 0.13
ρ(a

in
) / ρ

0

Initial distribution
Survived particles
Accreted particles

Mutual inclination distribution

Density distribution 

m
1
=107 M

o
m

2
=109 M

o
a

out
=1pc

SMBH binary Roche Limit 

to the 07M
o

to the 109M
o

Figure 8. Final DM particle distribution around an SMBH after 1 Gyr of evolution. We consider m1 = 107 M⊙ at 1 pc from the m2 = 109 M⊙. Same line and color
convention as Figure 3. The plot shows the result of 1500 runs.
(A color version of this figure is available in the online journal.)

We also expanded our study and applied this mechanism
to SMBH binaries, again focusing on the DM distribution
around the less massive member (see Figure 8). We consid-
ered a 107 M⊙–109 M⊙ binary separated at 1 pc and showed
that the near-polar outer parts of the DM sphere around the
107 M⊙ SMBH will be depleted, yielding a torus-like configu-
ration that is diluted further away from the SMBH. Similar to the
MBH–IMBH DM annihilation arguments, if the SMBH spins,
we would expect the DM particles to linger on the ergosphere
allowing for the possible occurrence of enhanced and energetic
(in center-of-mass) self-annihilation processes.

Finally we note that torus-like configurations of dark matter
around an SMBH or an IMBH may be an optional source for
gravitational wave signals (Eda et al. 2013)10 and gravitational
lensing enhancements of the IMBH shadow (Inoue et al. 2013).
Furthermore, we suggest that the DM torus in combination
with the EKL mechanism may have interesting implications for
stellar capture, as well as dynamical friction of stars, which is

10 Note that Eda et al. (2013) proposed the existence of a spike around the
IMBH while we have assumed a core. However, as mentioned above, the
formation of a DM torus does not depend on the initial DM distribution.
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Figure 6. Example of the effect of adiabatic growth of the MBH on the dynamics
of the DM particles as a function of time, taken from one of the Monte-Carlo runs
shown in Figure 7. We consider from top to bottom the orbit mutual inclination,
the inner orbit eccentricity (shown as 1− e), the outer orbit separation, aout, and
the perturbed mass. The system initial conditions are a 104 M⊙ IMBH with a
DM particle at 97.9 AU. The IMBH is located 0.03 pc from a MBH set initially
on 106 M⊙. The mass of the MBH grows according to Equation (7). The other
parameters considered for the system are eout = 0.7, ein = 0.005, and i = 66.◦8,
and the argument of periapsis of the inner and outer orbits were initially set
to be 90.◦13 and 155.◦09, respectively. For the given inner orbit separation, we
also show the corresponding eccentricity to the rc limit. For the purposes of this
figure we have continued the evolution beyond this limit.
(A color version of this figure is available in the online journal.)

the torus formed around the IMBH in the static MBH case, but
here the torus is confined to smaller angles, with a significant
reduction of the DM density (see right panel in Figure 7).

4. DM PARTICLES AROUND SMBH

The behavior described here is not limited to MBH–IMBH
binaries. As depicted in Figure 2, the mechanism depends on
the mass ratio and the semi-major axes ratio of the two orbits,
as well as the eccentricity of the outer orbit. We therefore
expand our study to the effects of the EKL mechanism on
DM particles distribution in the case of SMBH binaries. As
mentioned previously, these type of binaries are an expected
result of major galaxy mergers, and their formation has been
studied extensively using hydrodynamic simulations (e.g., Di
Matteo et al. 2005; Hopkins et al. 2006; Robertson et al. 2006;
Callegari et al. 2009). Assuming that during a galaxy merger an
SMBH binary is formed with a large mass ratio, we study the
effect of the EKL mechanism on the DM particle distribution
around the less massive SMBH (see Figure 2).

The probability of forming an SMBH binary with a large mass
ratio is hard to estimate. It depends on the dynamical friction
timescale, and thus the mass ratio of the host galaxy will play
an important role. Khan et al. (2012) studied the formation of
BH binaries through galaxy minor mergers and concluded that
such systems on a tight orbit are possible. They looked at a mass
ratio of 1:10 and found relatively efficient SMBH inspiral. Here
we have extrapolated their results to 1:100 ratio. However, the
probability of forming such systems still needs to be quantified.
Furthermore, gravitational wave emission can cause black holes
to recoil at escape speeds and wander around the halo of a galaxy
after the BH merger (e.g., Merritt et al. 2004; Campanelli et al.
2007; Blecha & Loeb 2008). Thus they may not be present at
the center of galaxies to form SMBH binaries in subsequent
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We also expanded our study and applied this mechanism
to SMBH binaries, again focusing on the DM distribution
around the less massive member (see Figure 8). We consid-
ered a 107 M⊙–109 M⊙ binary separated at 1 pc and showed
that the near-polar outer parts of the DM sphere around the
107 M⊙ SMBH will be depleted, yielding a torus-like configu-
ration that is diluted further away from the SMBH. Similar to the
MBH–IMBH DM annihilation arguments, if the SMBH spins,
we would expect the DM particles to linger on the ergosphere
allowing for the possible occurrence of enhanced and energetic
(in center-of-mass) self-annihilation processes.

Finally we note that torus-like configurations of dark matter
around an SMBH or an IMBH may be an optional source for
gravitational wave signals (Eda et al. 2013)10 and gravitational
lensing enhancements of the IMBH shadow (Inoue et al. 2013).
Furthermore, we suggest that the DM torus in combination
with the EKL mechanism may have interesting implications for
stellar capture, as well as dynamical friction of stars, which is

10 Note that Eda et al. (2013) proposed the existence of a spike around the
IMBH while we have assumed a core. However, as mentioned above, the
formation of a DM torus does not depend on the initial DM distribution.
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We may then average Eq. (12) to obtain a globally aver-
aged matter power spectrum.

Intuitively, we expect the relative velocity effect to sup-
press the small-scale power spectrum, since the moving
baryons have pressure !!bv

2
bc in the CDM frame. This

suppression is shown in Fig. 2 where we plot !2
mðkÞ $

½k3=ð2"2Þ&PmðkÞ for the cases with and without the effect
of relative velocity. The power is most strongly suppressed
around the Jeans scale kJ ¼ aH=cs ! 200 Mpc(1, where a
difference of !15% is computed.

The effect of vbc is not limited to the suppression of
power on small scales, but rather has an important impli-
cation for the distribution of the first bound structures with
respect to matter distribution as well as for the number
densities of the first halos. To study these effects we ran a
set of simulations in which the large-scale density and
velocity fields were generated according to linear pertur-
bation theory. We then used analytical (Press-Schechter)
arguments to predict the number of haloes formed in each
cell of our cosmological box. This hybrid approach is
computationally feasible on a single desktop computer
since it does not have to numerically follow the small-scale
modes, and should capture the rough magnitude of the
effect. However, ultimately a simulation that follows the
full nonlinear evolution of the small-scale modes will be
required. The key reason for using approximate methods in
the present study, as opposed to a full hydrodynamic
numerical simulation, is our desire to introduce the concept
of relative velocity effect in the simplest and most intuitive
way while allowing more detailed study to be performed
by other research groups in an unbiased manner.

III. THE ABUNDANCE AND CLUSTERING OF
EARLY HALOES

We now investigate the formation of the first baryonic
objects, taking account of the relative velocity effect. This
is a difficult problem, which we only partially solve in this

paper: one has acoustic oscillations in the photon-baryon
plasma that travel !140 Mpc, and simultaneously one
must resolve the baryon Jeans scale. We provide a compu-
tation based on the formalism described above: we gener-
ate a realization of a Gaussian random primordial
perturbation on a 3D grid, and then to each cell we assign
an overdensity #l (where the ‘‘l’’ refers to long-wavelength
modes) using periodic boundary condition and a relative
velocity vbc derived from the linear density field. Initial
values of #l are obtained using the linear perturbation
theory, as there is no significant difference between the
theory with and without relative motion effect before the
time of recombination when the values of #l are formed.
Then, within each cell, we use the peak-background split to
compute the number density of haloes. The new twist is
that the small-scale power spectrum is modulated by the
large-scale vbc. (In some ways, this is similar to the modi-
fication of the peak-background split used for local
fNL-type non-Gaussianity studies [43,44], except that in
our case the modulation of the small-scale power spectrum
is a result of the advection process and arises even in
standard"CDM cosmology with Gaussian adiabatic initial
conditions.) This of course depends on an analytic model
for the halo mass function; we have used the Press-
Schechter model [16,17]. The validity of Press-Schechter
for any precise calculation is dubious—particularly since it
is being applied here with an anisotropic local power
spectrum—but we expect that the qualitative results (a
scale-dependent enhancement in the bias and stochasticity
at large scales, with acoustic oscillations in each) would
still arise in a more accurate treatment.

A. Peak-background split

The collapse of the first halos can be conveniently
treated in the framework of the peak-background split
formalism [45], in which the growth of small-scale inho-
mogeneities depends on the large-scale overdensity. One
can split the density field into a long-wavelength piece #l

and a short-wavelength piece #s:

!ðxÞ ¼ #!½1þ #lðxÞ þ #sðxÞ&: (14)

In any region, the number density of haloes of any given
type generally depends on the large-scale overdensity #l,
and on the statistics of the small-scale perturbations #s (in
particular, their local power spectrum). In the usual case
where the small and large-scale perturbations are indepen-
dent, the number density becomes purely a function of the
large-scale overdensity plus a stochastic component $ with
h$ðxÞi ¼ 0; Taylor-expanding in #l gives

nðxÞ ¼ #n½1þ b0#lðxÞ& þ $ðxÞ: (15)

The bias is then

b0 ¼ #n(1 @n

@#l
: (16)

10 50 100 500 1000

0.050

0.020

0.030

0.015

k, Mpc 1

m
2

FIG. 2. Power spectrum of matter distribution in the first order
CDM model (solid line) and with the vbc effect included (dashed
line) at the redshift of z ¼ 40.
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We may then average Eq. (12) to obtain a globally aver-
aged matter power spectrum.

Intuitively, we expect the relative velocity effect to sup-
press the small-scale power spectrum, since the moving
baryons have pressure !!bv

2
bc in the CDM frame. This

suppression is shown in Fig. 2 where we plot !2
mðkÞ $

½k3=ð2"2Þ&PmðkÞ for the cases with and without the effect
of relative velocity. The power is most strongly suppressed
around the Jeans scale kJ ¼ aH=cs ! 200 Mpc(1, where a
difference of !15% is computed.

The effect of vbc is not limited to the suppression of
power on small scales, but rather has an important impli-
cation for the distribution of the first bound structures with
respect to matter distribution as well as for the number
densities of the first halos. To study these effects we ran a
set of simulations in which the large-scale density and
velocity fields were generated according to linear pertur-
bation theory. We then used analytical (Press-Schechter)
arguments to predict the number of haloes formed in each
cell of our cosmological box. This hybrid approach is
computationally feasible on a single desktop computer
since it does not have to numerically follow the small-scale
modes, and should capture the rough magnitude of the
effect. However, ultimately a simulation that follows the
full nonlinear evolution of the small-scale modes will be
required. The key reason for using approximate methods in
the present study, as opposed to a full hydrodynamic
numerical simulation, is our desire to introduce the concept
of relative velocity effect in the simplest and most intuitive
way while allowing more detailed study to be performed
by other research groups in an unbiased manner.

III. THE ABUNDANCE AND CLUSTERING OF
EARLY HALOES

We now investigate the formation of the first baryonic
objects, taking account of the relative velocity effect. This
is a difficult problem, which we only partially solve in this

paper: one has acoustic oscillations in the photon-baryon
plasma that travel !140 Mpc, and simultaneously one
must resolve the baryon Jeans scale. We provide a compu-
tation based on the formalism described above: we gener-
ate a realization of a Gaussian random primordial
perturbation on a 3D grid, and then to each cell we assign
an overdensity #l (where the ‘‘l’’ refers to long-wavelength
modes) using periodic boundary condition and a relative
velocity vbc derived from the linear density field. Initial
values of #l are obtained using the linear perturbation
theory, as there is no significant difference between the
theory with and without relative motion effect before the
time of recombination when the values of #l are formed.
Then, within each cell, we use the peak-background split to
compute the number density of haloes. The new twist is
that the small-scale power spectrum is modulated by the
large-scale vbc. (In some ways, this is similar to the modi-
fication of the peak-background split used for local
fNL-type non-Gaussianity studies [43,44], except that in
our case the modulation of the small-scale power spectrum
is a result of the advection process and arises even in
standard"CDM cosmology with Gaussian adiabatic initial
conditions.) This of course depends on an analytic model
for the halo mass function; we have used the Press-
Schechter model [16,17]. The validity of Press-Schechter
for any precise calculation is dubious—particularly since it
is being applied here with an anisotropic local power
spectrum—but we expect that the qualitative results (a
scale-dependent enhancement in the bias and stochasticity
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The bias is then
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FIG. 2. Power spectrum of matter distribution in the first order
CDM model (solid line) and with the vbc effect included (dashed
line) at the redshift of z ¼ 40.
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where �� is in radians. In Figure 1 middle and top
panels we show the comoving and physical (respectively)
scale separations.

Fig. 1.— The phase, and length di↵erence between the bary-
onic and dark matter fluctuation peaks as a function of redshift
for ✓ = 0. Top panel shows �� as a function of redshift for
k = 20, 40, 100 and 200 Mpc�1. Middle panel shows the co-
moving length between the two peaks (see text). We also show
the comoving virial radius of these modes (dashed lines). Bottom

panel same as middle panel just for physical quantities.
We compare the displacement of between the dark mat-

ter and baryon over density to the virial radius of the
dark matter only nonlinear object. At high redshift the
physical virial radius, following Bryan & Norman (1998),
is approximately :
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where for the actual calculation we took into account the
cosmological constant which produces a slight decrease of
the virial radius. The corresponding co-moving virial ra-
dius is x

vir,dm

= r
vir,dm

⇥(1+z), which is approximately
18⇡2 in an Einstein de Sitter universe.

3. THE LIKELIHOOD OF BARYONIC CLUMPS
FORMATION

An important di↵erence between a collapse of a baryon
only perturbation in a baryon only universe and our case
is that a former hypothesis will need a large amplitude
over density very early (such as the one started at z =
1000 which was considered in Peebles & Dicke 1968). In
our case the baryons do feel the dark matter presence in
spite of the mechanically decoupling due to the relative
velocity. These over densities have a preferred direction
(toward the direction of the dark matter over density)
which may enable a nonlinear collapse. The criterion for
non-linear collapse is complicated since the collapse will
be non spherical, and it is the subject of future studies.
An important question is to understand how rare these

baryonic clumps are. To estimate that we calculate the
first variance (calculated from the power spectrum)

S
b

(M, z) =< |�
b

(M, z)|2 > (7)

for a top-hat window function. The rarity of the fluc-
tuations that produce haloes, measured as a number of
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Figure 3. Top left panel: spatial separation between baryon and DM clumps at the redshift of collapse, normalized by the virial radius of the DM halo, for 2σ (solid
line) and 3σ (dashed line) fluctuations, plotted against the baryon clump mass Mb. Collapse is defined by the condition δc/

√
Sb(Mb) = 2, 3, for 2σ and 3σ . Note that

clumps with baryon mass larger than a few×106 M⊙ are separated from their DM halos by less than the virial radius (they are “inside” the DM halo) and vice versa
for clumps with smaller masses (“outside”). Calculations are for vbc = 1σvbc, θ = 0. Bottom left panel: estimated survival time of baryon clumps against spiral-in
and merger through dynamical friction (“inside” the DM halo) and loss of stars through evaporation (“outside” the halo). Baryon clumps with masses in the range
∼105–4 × 106 M⊙ are potentially long-lived, especially if tidal forces from other nearby clumps unbind them from their DM halos. Right panels: similar to left panels,
except that collapse is defined by 1/

√
k3Pb(k)/(2π2) = 2, 3. The results are generally similar.

(A color version of this figure is available in the online journal.)

(Note a 2σ fluctuation of Mb = 106 M⊙ has a physical
separation of 0.59 kpc from its DM host.) The actual timescale is
a little longer since the baryon clump will begin with an outward
velocity (Hubble flow). However, this changes the result by less
than a factor of two.

Newly formed baryon and DM clumps will certainly free-fall
and merge if they evolve in isolation. More often, however, we
expect the two objects to participate in the hierarchical growth
of structure in the universe. At least some baryon clumps that
collapse outside the virial radius of their DM parent halos will
experience strong tidal forces from neighboring objects and will
become gravitationally unbound from their DM halos. It remains
to be seen if a sufficient number can survive by this mechanism
to explain the GCs we observe in the current universe.5

5. DISCUSSION

We have used linear theory to study the growth of baryonic
and DM density fluctuations in the universe in the presence of
a stream velocity vbc between the two components. We focused
on the fact that a non-zero stream velocity causes a phase
shift ∆φ between the complex amplitudes of the baryonic and
DM density fluctuations, which results in a spatial separation

5 Note that a previous study by O’Leary & McQuinn (2012) focused on 1σ
fluctuations, which collapse at redshifts well below 10 (according to our
analysis), whereas their numerical simulation was limited to z > 10.
Furthermore, because of low statistical sampling, they were unable to follow
the evolution of 2σ and 3σ fluctuations. This may explain why they did not see
any baryon-only clumps such as we predict.

between the two density peaks. When the perturbations go
nonlinear and collapse, the baryon clump forms at a different
spatial location than its DM counterpart. For baryon clump
masses less than about few ×106 M⊙, the separation is larger
than the virial radius of the DM halo. Assuming tidal forces from
other nearby objects are able to unbind the baryon clump from
its DM halo, the clump could survive to the present day as a DM-
free gravitationally self-bound object. We suggest that this may
be how GCs formed in the universe. The corresponding baryon-
deficient DM halos would similarly survive as dark satellite
galaxies or ultra-faint galaxies, as suggested previously by Naoz
et al. (2013).

Note that in this picture, the collapse of a baryon clump is not
driven purely by the self-gravity of the baryons. The primary
driving agent is still the DM perturbation, whose effect on the
baryons is nearly the same as in the standard (vbc = 0) model
of structure formation, so long as the phase shift ∆φ is less
than about a radian. For perturbations that satisfy this condition,
baryonic collapse is almost as effective as in the standard model,
and gravity is able to overcome gas pressure; the only difference
is that the baryon and DM clumps form in spatially distinct
locations.

In Figure 1 we showed phase and spatial offsets between the
baryon and DM perturbations for linear modes with different
wavenumbers k. As an example, at z ≈ 11.4, a mode with
k ≈ 100 Mpc−1 (which corresponds to a baryonic mass
Mb = 106 M⊙), has a phase shift ∼39◦, which translates to
a comoving distance between the baryon and DM density peaks
of 7.3 kpc. A 2σ fluctuation with this k collapses at z ≈ 11.4

4
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Figure 1. The gas content of two Gas-Primary objects in our high stream velocity, 2.8Mpc simulation at redshift 20. Many of the Gas-
Primary structures identified have a filamentary shape and, in studying their properties, spherical symmetry is not a valid assumption

anymore. The red surfaces represent the tightly fitting ellipsoids which we use in order to define the boundaries of these gas abundant

structures. Because we fit these surfaces to mold closely to the gas dominated region, the gas fraction inside the ellipsoids will be biased
high.

Finally, we identify Gas - Primary structures centered
on the gas overdensities in our simulations. Unlike the halos
identified based on the dark matter particle information in
our simulations, these objects can often have fillamentary
shapes, as shown in figure 1. Therefore, in studying their
properties we relax the assumption of spherical symmetry
to ellipsoidal symmetry. Using all of the gas particles in the
FOF group, we identify an ellipsoidal surface enclosing the
object. However, since these structures can be potentially
very sparse, we proceed to identifying a ”tightly fitting el-
lipsoid” by progressively shrinking the original ellipsoid until
we either eliminate 20% of the particles in the FOF group
or by shrinking the ellipsoid by an additional fraction f ,
we eliminate more than a fraction f of the enclosed parti-
cles. In our analysis below, it is the matter content of this
tightly fitting ellipsoid that we study when analyzing Gas-
Primary objects. We want to note that even thought the
Gas-Primary objects are defined by running the FOF halo
finding algorithm only using the gas particles, the ellipsoidal
surfaces will generally contain both dark matter and gas
particles. Also, many of the Gas-Primary structures are, in
fact, simply the gas components of the DM - Primary, Gas -
Secondary halos. However, since in one case we analyze the
matter content of the object using tightly fitting ellipsoids
centered on the center of mass of the gas and in the other
case we use a sphere of viral radius centered on the center
of mass of the dark matter + gas object, the gas fraction
found for the former will naturally be biased higher than
the latter.

For all the di↵erent structure definitions mentioned
above: DM-Primary, Gas-Primary and DM-Primary, Gas-
Secondary , we only consider FOF groups that contain more
than 300 dark matter particles and/or 300 gas particles.
This, criterion, on the one hand excludes objects that aren’t
very massive, and, on the other hand, ensures that the gas

and dark matter mass computations have an accuracy on
the order of 10� 20% (Naoz et al. (2009)).

3 RESULTS

As discussed in previous works, accounting for the non-zero
stream velocity e↵ect has profound implications on both the
formation of dark matter halos, as well as their ability to
accrete and retain gas.

The purpose of this work is to investigate the impact of
a non-zero stream velocity on structure formation at inter-
mediate redshifts between z = 20 and z = 10. Our analysis,
therefore, follows three distinct lines of reasoning elaborated
below. In section 3.1, we study the impact of a non-zero
stream velocity on the intrinsic properties of dark matter
halos. We continue by investigating the impact of the rel-
ative velocity on the gas content of the dark matter halos,
in section 3.2. And, finally we analyze the formation and
evolution of baryon abundant structures regardless of their
position with respect to dark matter halos in section 3.3.

3.1 Suppression of halo mass function

Regardless of the resolution or size of the simulation box
used, we find that a higher stream velocity correlates with
a suppressed halo mass function. This is true for the DM-
primary objects, as well as the DM-primary, Gas-secondary
objects, in agreement with previous studies which have
shown that a non-zero stream velocity has a deep impact
on the formation and evolution of dark matter halos. Tseli-
akhovich & Hirata (2010), using an argument based on the
Press-Schecter formalism, showed that the number density
of halos with mass M ⇠ 106M� is suppressed by 60% in re-
gions with vbc ⇠ �vbc , compared to regions with no stream
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Figure 7. Top: Gas fraction as a function of the distance to the closest dark matter halo for the Gas-primary objects identified in

the 700kpc/h simulations. All quantities are computed inside of the optimal ellipsoid, as defined in section 2.3. Bottom: Halo mass

function for the gas abundant gas-primary structures sitting outside the virial radius of the closest dark matter halo. The dashed lines
are computed from the high-stream velocity runs, while the solid lines, from the zero-vbc simulations.

clearly correlates with a larger number of gas-abundant ob-
jects located outside of the virial radius of the closest dark
matter halo. However, with decreasing redshift, the results
from the di↵erent stream velocities considered converge to
a common distribution of Gas-primary objects.

The bottom panels of figure 7 show the number den-
sity distribution of gas-abundant Gas-primary objects sit-
ting outside of the virial radius of the closest dark matter
halo for the 700kpc/h (left) and the 2.8Mpc/h (right) runs.
The dashed lines represent the number densities for the sim-
ulations with vbc = 2 ⇥ �vbc , and the solid lines, the data
from the zero-stream velocity runs. Similar to the narrative
we infer from the scatter plots in figure 7, we can see from the
redshift evolution of these halo mass functions that, with de-
creasing redshift the number density of gas abundant objects
decreases in the high stream velocity case and it increases
in the zero-stream velocity runs.

Similar to the observations we made regarding the prop-
erties of the dark matter halos in our simulations, the dif-
ferences in the distribution of the gas-abundant objects in
our zero-vbc and high-stream velocity runs seem to vanish by
redshift 10. Yet, there is a qualitative di↵erence between the
gas-primary objects identified in these two scenarios. All of
the gas abundant objects identified in the zero-stream veloc-

ity runs, regardless of the resolution of the simulation, are
short lived. They generally have been ripped out of larger
halos by dynamical processes and will fall back into another
DM halo shortly after. Therefore, while there may be, at any
given time, a handful of gas-abundant objects in the zero-
stream velocity simulations, they do not survive for very
long. In the vbc = 2 ⇥ �vbc runs, the evolution of the gas
primary objects is slightly more complex. While virtually
all of the gas-abundant objects found in these simulations
at redshift 10 have also been torn out of larger halos by dy-
namical processes and we expect them to have a similar fate
as the objects found in the zero-vbc simulations, at inter-
mediate and large redshifts we do find a handful of objects
which have survived and evolved outside dark halos for a
significant period of time.

Table 2 shows an example of the history of such an
object. We first identify the Gas-primary object at redshift
20, where it is living outside of a dark matter halo 30 times
its mass. As it evolves towards lower redshifts. it is slowly
approaching the dark matter halo and, while the mass of
the DM halo is steadily increasing, that of the Gas-primary
object exhibits some stochasticity. This is partly due to fact
that, being a smaller object, the Gas-primary halo has a
harder time accreting or even holding on to the gas it already
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