Formation of Dark Matter Donuts Around Supermassive Black Hole Binaries

Smadar Naoz UCLA

<u>Collaborators</u>: Will Farr, Yoram Lithwick, Fred Rasio, Jean Teyssandier ,Gongjie Li, Avi Loeb, Bence Kocsis, Matt Holman,Joe Silk

Rennan Barkana, Naokí Yoshída, Níck Gnedín, Ramesh Narayan, Crístína Popa, Mark Vogelsberger

Dark Matter Donuts

m₂

system configuration not to scale!

ark Matter Donuts

Final config. • m₁ •

0000

binary orbit

Formation of Dark Matter Donuts Around Supermassive Black Hole Binaries

Smadar Naoz UCLA

<u>Collaborators</u>: Will Farr, Yoram Lithwick, Fred Rasio, Jean Teyssandier ,Gongjie Li, Avi Loeb, Bence Kocsis, Matt Holman,Joe Silk

Rennan Barkana, Naokí Yoshída, Níck Gnedín, Ramesh Narayan, Crístína Popa, Mark Vogelsberger

Supermassive Black Hole Binaries

Theoretically:

Supermassive Black Hole Binaries Observationally:

and see also: Dotti et al. 2009; Batcheldor et al. 2010; Liu et al. 2014

Supermassive Black Hole Binaries What is happening to What is happening to the dark matter?

Not to scale!

Supermassive Black Hole What is happening to the dark matter? Binaries e.g., Rashkov & Madau 2013

Major mergers

Minor mergers

Not to scale!

 m_1

SMBH binary orbit

m₂

system configuration not to scale!

 m_1

m₂

system configuration not to scale!

Kozai 1962, Lidov 1962

The Kozai-Lidov Formalism Hierarchical triple system

Kozai 1962, Lidov 1962

"inner"

Orbit norma

"outer"

?

The Kozai-Lidov Formalism The eccentricity and inclination oscillate Kozai 1962, Lidov 1962 The Kozai-Lidov Formalism The eccentricity and inclination oscillate Kozai 1962, Lidov 1962 The Kozai-Lidov Formalism The eccentricity and inclination oscillate

Kozaí 1962, Lidov 1962

Conservation of the z component of angular momentum for both the <u>inner</u> outer orbits The orbital elements:

Eccentricity: e $L_z \sim \sqrt{1 - e^2} \cos i = \text{const}$

Inclination: i

Prograde orbit cannot become retrograde

Naoz et al, Nature (2011), arXiv:1011.2501 Naoz et al (2013), MNRAS, arXiv:1107.2414

Is it constant?

Adding vector ...

 $\vec{L}_{tot} = \vec{L}_1 + \vec{L}_2$

inner "1"

ls it constant?

Adding vector ...

 $\vec{L}_{tot} = \vec{L}_1 + \vec{L}_2$) rearrange $\vec{L}_2 = \vec{L}_{tot} - \vec{L}_1$ ^2

 $L_2^2 = L_{tot}^2 + L_1^2 - 2L_{tot}L_1\cos i_1 \checkmark$ $L_{1,z}$

 $L_{tot} \parallel \hat{z}$ $L_1 \sim \sqrt{1 - e_1^2}$ $L_2 \sim \sqrt{1 - e_2^2}$ $L_{2,z} \sim \sqrt{1 - e_2^2} \cos i_2 \qquad L_{1,z} \sim \sqrt{1 - e_1^2} \cos i_1$

outer "2"

inner "1"

ls it constant?

Adding vector ...

 $\vec{L}_{tot} = \vec{L}_1 + \vec{L}_2$ $\vec{L}_2 = \vec{L}_{tot} - \vec{L}_1$

 $L_2^2 = L_{tot}^2 + L_1^2 - 2L_{tot}L_1\cos i_1$

for the quadrupole approx. $\sim (a_1/a_2)^2$:

 $L_{2} = Const.$ $L_{1,z} \not \subset Const.$ $L_{2,z} \not \subset Const.$ $L_{1} \neq Const.$ $\mathcal{H}_{quad}(\boldsymbol{\omega}_{1})$

symmetry for rotation of $\mathcal{H}_{auad}(\omega_1 \ddagger \omega_1 + \omega_2)$ orbit

 $L_{2,z} \sim \sqrt{1 - e_2^2} \cos i_2$ $L_{1,z} \sim \sqrt{1 - e_1^2} \cos i_1$

 $L_{tot} \parallel \hat{z}$

 $L_1 \sim \sqrt{1 - e_1^2}$

df(x=2)

dx

Naoz et al, Nature (2011), arXiv:1011.2501 dx x=2

 $L_2 \sim \sqrt{1 - e_2^2}$

The Kozai-Lidov Formalism The eccentricity and inclination oscillate Conservation of the z component of Kozaí 1962, Lídov 1962 angular momentum for both the inner outer orbits 🐗 The orbital elements: Eccentricity: e $L_z \sim \sqrt{1 - e^2} \cos i = \text{const}$ Inclination: i L_{z1} conserved only to lowest order Prograde orbit cannot become (quadrupole) ance forgradest particle (massless planet)! Naoz et al, Nature (2011), arXiv:1011.2501

Naoz et al (2013), MNRAS, arXiv:1107.2414

Our treatment The eccentric Kozaí-Lidov mechanism EKL

- Allow for the z-component of the angular momenta of the inner and outer orbit to change already at the quadrupole level
- Expanding the approximation to the octupole level (e.g., Ford et al 2000, Blaes et al 2002 - <u>already done</u> <u>before us</u>!!!)
- Soth the magnitude and orientation of the angular momentum can change

larger parts of the parameter space

Naoz et al, Nature (2011), arXiv:1011.2501 Naoz et al (2013), MNRAS, arXiv:1107.2414 Naoz (2016) review

i<90 deg - prograde

for test particle approx. see: Lithwick & **Naoz** (2011), ApJ, arXiv: 1106.3329

i>90 deg - retrograde

Katz at al (2011), arXiv:1106.3340

Lets...flip the planet

point mass limit

Lets...flip the planet

Example system: a=6AU, a=100AU, m=1.Msun M2=1Mj, M3=40Mj i=65 deg secular dynamics + GR

GR effects: e.g., Ford et al 2000, Naoz, Kocsís, Loeb, Yunes 2013

(a) inner orbit inclination

(b) inner orbit eccentricity

(c) inner orbit z-com. angular momentum

(d) inner orbit z-com. angular momentum **Naoz** et al, Nature (2011), arXiv:1011.2501

point mass limit

Lets...flip the planet

Example system: a=6AU, a=100AU, m=1.Msun M=1Mj, M3=40Mj i=65 deg secular dynamics + GR

180

GR effects: e.g., Ford et al 2000, Naoz, Kocsís, Loeb, Yunes 2013

(a) inner orbit inclination

(b) inner orbit eccentricity

(c) inner orbit z-com. angular momentum

(d) inner orbit z-com. angular momentum **Naoz** et al, Nature (2011), arXiv:1011.2501

DM in SMBH binary

Eccentricity spikes

Maximum eccentricity at the test particle regime

Li, **Naoz** et al, (2014), ApJ 785, 116 + ApJ 791, 86

Gongjie Li

Maximum eccentricity outside the test particle regime

Teyssandier, **Naoz**, Lizarraga Rasio (2013), ApJ 779, 166

DM in SMBH binary High eccentricity spike can drive the DM particle all the way to the BH

IMBH at the Galactic Center

What happens if the BH eats? High eccentricity spike can drive the DM particle all the way to the BH

150 Crossing ~ $\frac{Gm_{BH}}{c^2}$ [deg] 100 50 Growing massive black 0.1 hole (Gondolo & Silk 1999) 0.01 -e_{in} 10-3 10^{-4} $4m_1 G/c^2$ 10^{-5} [bc] 0.03 1.8 1.6 $M_{\odot}/10^{6}$ 2×107 107 1.5×10⁷ 0 5×10⁶ Naoz & Silk (2014) ApJ t[yr]

What happens if the BH eats? High eccentricity spike can drive the DM particle all the way to the BH

Speculation:

In the case of rotating BH, may linger in the ergosphere, e.g., Banados et al. 2011; Zaslavskii 2012

DM Bagel (or Donuts)

New developments in triple dynamics Richer behavior, over larger part of the parameter space

Question: why would an IMBH keep its DM? Minor mergers

Answer: (yet another cool effect from DM) Have the first galaxies involve

First Galaxies - Gas rich or gas poor? DM baryon interactions

Suppressing the baryons

The stream velocity (vbc) • |vb-vdm|≈30 km/sec at Recombination time = Mach 5

scales as 1/a

e.g.,effects on structure formation Greif et al 2011, Stacy et al 2011, Naoz et al 2012,2013, Visbal et al 2012....

And what about the gas?

Growth of Perturbations

Different stages of collapse (represent different times)

Gas rich-dominated objects

Gas rich-dominated objects

Cristina Popa

Popa, Naoz et al in prep. Naoz & Narayan (2014) ApJ-Lett

Gas rich-dominated objects

Gas rich and gas poor

The gas that didn't accrete onto the DM halos gone nonlinear

Exciting dynamics

