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Structure formation

Planck Cosmic Microwave Background

The nature of dark matter shapes the formation of structures in the Universe

Three complementary approaches exist to decipher the nature of dark matter:

+ produce DM particles in an accelerator
+ direct/indirect detections

+ measure the level of clumpiness of the Universe at the smallest scales
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Substructure in the Milky Way Halo

Cold Dark Matter/ WIMPs, Axions Warm Dark Matter/e.g. sterile neutrinos

The total number of substructure strongly depends on the nature of dark matter



Substructure in the Milky Way Halo

Cold Dark Matter CDM - Stars Warm Dark Matter

There is a degeneracy in the number of observable substructures between dark and
galaxy formation models

Most of the low mass substructure are dark
4



Substructure mass function

Measuring the substructure mass function is a key probe of the nature of dark matter

Predicted abundance of substructure in the Milky Way halo
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Substructure Lensing

- background
- galaxy

observer image 2

) _ _
W7 gravitational lens




Vegetti + 2009, 2010  Dala & Kochanek 2002

Substructure Lensing

—— substructures are detected
as magnification anomalies

—— Compact sources are easy

to model
—— Sensitive to a wide range of
masses
— degenerate in the mass
model

—— substructures are detected
as surface brightness anomalies

——  need to disentangle
structures in the potential from
structures in the source

—— Sensitive to higher masses

——  NOT degenerate in the
7 mass model



Vegetti & Koopmans, 2009

Gravitational Imaging

w(xa n)tot — w(Xa 77) + 5¢(X)

?p (X, 77) Smooth analytic power-law model

) w (X) pixellated potential correction
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Gravitational Imaging

Data Model Residuals Source

0.2

0.1

Density corrections

Convergence

0

0.05

0

Substructures are detected as corrections to an overall smooth potential

-0.05

-0.1

If present, more than one substructure can be detected and quantified




Vegetti + 2014

Modelling Procedure
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Vegetti + 2014

Criteria for detection

—— a positive convergence correction that improves the image residuals is found independently from
the potential regularization, number of source pixels, PSF rotations, and galaxy subtraction procedure;

~|{the mass and the position of the substructure obtained via the Nested Sampling analysis is
consistent with those independently obtained by the potential corrections and the MAP parametric
clumpy model;

— | a clumpy model is preferred over a smooth model with a Bayes factor A log E = log E_smooth —log
E_clumpy >= —50 (to first order equivalent to a 10-0 detection, under the assumption of Gaussian

noise);

—— the results are consistent among the different filters, where available.



Substructure Sensitivity

Rau, Vegetti & White 2013, MNRAS
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Bolton + 2006

J1143-0144 2
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Vegetti + 2010

Very First Detection
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Vegetti + 2010

Very First Detection

Mg = (3.51 £ 0.15) x 10° Mg

r: = 1.1 kpc

Alog& = —128.0

Ly <5x10°Lg

Msp (< 0.3) = 5.83 x 10° M

(M/L) > 120 My /Ly o

V,0 —
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Vegetti + 2010

Mass Error
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——| de-projection is the dominant contribution to the mass error



Vegetti + 2014

Chosen on a s/n basis

Representative sub-sample of the
SLACS lenses

Representative sample of massive
early-type galaxies
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Vegetti + 2014

First measure of the mass function

Derived mass function parameters

Illlllll llllllllllllll
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Results are consistent with Cold Dark Matter
predictions, but due to the low sensitivity they do not
19 rule out Warm Dark Matter models



The quest for the smallest substructure

Lowering the detection threshold by two orders of magnitude and more

Vegetti+2014
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SHARP
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SHARP & FRIENDS

Strong lensing at High Angular Resolution Program

HST Keck Adaptive Optics

Increasing angular resolution

10 systems
HST HST-UV

Increasing level of source structure

30 systems




Projected Results

8
frye= 0-1 %, M,,=0.3-10% Mg
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30 SHARP gravitational lens systems will allow us to set tight constraints on the substructure

mass fraction.
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SHARRP first detection/z=0.9!

Vegetti + 2012

Data Model Image Residual
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With a mass of 1.8x108Mgun this is currently the smallest and farthest substructure currently known
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Vegetti + 2012

SHARRP first detection/z=0.9!
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Vegetti + 2012

SHARRP first detection/z=0.9!
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Schechter & Moore 1993 McKean + 2005 More + 2009

SHARP and Flux Ratio Anomalies

—— 3/6 radio loud systems show evidence of a

KECK-AO K-band . : 1
i luminous satellite within 5 kpc from the host galaxy

—— once these are included in the mass model the
flux ratios can be reproduced along side with the
images positions

—— up to 1% of the host mass is contained in these
systems

—— 5/22 of all CLASS lenses have a luminous
satellite within 5 kpc

(McKean et al. 2007)

Beware of luminous satellites



Hsueh + 2015, submitted

SHARP and Flux Ratio Anomalies

B1555 . NIRCZ N/KP

0.0f S

_0_1_
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MERLIN VLA Model
5 GHz 15 GHz 1-SIE  SIE+expdisk  2-SIE

Beware of edge on disks fa/fs 175 178 1.07 1.66 1.75

falfc 2.05 2.37 2.95 1.33 2.16
fa/fp 13.08 12.86 2.00 5.83 7.96




SHARPER & SHARPER



SHARPER & SHARPER




SHARPER & SHARPER

HST Keck AO
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SHARPER & SHARPER

1.68637 GHz

GVLBI

HST Keck AO
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SHARPER & SHARPER

1.68637 GHz

\

GVLBI

HST Keck AO
ﬁ
106 Msol
ﬁ
107 Msol
'\
g— ? 108 My
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Projected Results

At present there are only two systems with this quality, but this is already enough to set tight
constraints on the substructure mass function.

AAAAAAAAAAAAAAAAAAA
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Modelling the visibilities

Important not to use the image data (unlike for optical/IR observations)

The visibilities (and errors) are the data
The noise in the image plane is correlated
Image plane data dependent on
e Gridding
* Weighting of the visibilities (natural / uniform)
* Tapering
* Deconvolution (clean, MS-Clean, MEM, CS,...)
e Surface brightness is no longer conserved

Instead, fit directly to the visibilities (Fourier plane lens modelling)

The visibilities (and errors) are the data (need a supercomputer).
Better handle on the noise properties.

We use a pixellated source model built within a fully Bayesian
statistical framework — determines best model, given the data.

Based on image plane technique devised by Vegetti & Koopmans
(2009)

See Rybak, Vegetti & McKean (2015) for details.



Atacama Large Millimeter Array (ALMA) .
Altitude: 5058.7. m y

54 x 12 m dishes
12 x 7 m dishes
Frequency range: 85.GHz to 1 THz

 ALMA provides angular resolution (0.5-0.01 arcsec).

* Science Verification LB dataset for SDP.81 released Feb 17!

* Proper analysis requires lens modelling codes that operate

on the visibilities because image plane has,

1.
2.
3.

Deconvolution biases
Correlated noise

Irregular uv-coverage does not conserve surface
brightness.

ESO/C.MALIN

%
X

-

ALMA




A DEC ["]

A DEC ["]

Pixellated source mode|

Image Plane Source Plane

DEC ["]

DEC ["]

A RA["]

* Whole source: y=17.6 +0.4
* Central region: y =252+ 2.6

Source Error

Rybak et al. 2015a




Comparison with image-plane

Swinbank et al. 2015

The compact components are seen to vary between the two methods

2mm continuum

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
kpc kpc

The compact structure varies significantly even within the individual image-plane analyses of the 1, 1.3 and 2 mm continuum
data



Intrinsic properties of the gas

Integrated intensity (Jy km s-1 kpc2)

0.15
HO.]Z
\ 0.09

0.06

I0.03
0.00

0.15

Clear transition dependent structure in the CO.

Rybak et al. 2015b

CO (5-4) has both diffuse and compact
structures that extend of ~3 kpc

CO (8-7) is more compact and only ~1.5 kpc
in size

Results are consistent with the image-plane
zeroth-moment maps of the counter arc as
seen in ALMA partnership paper



Comparison with image-plane
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In summary

We have developed a novel technique to detect dark substructure via their gravitational signature
on gravitationally lensed arcs and Einstein rings:

This is currently the only method to detect dark and distant substructure and measure the
abundance of low mass substructure

We have initiated a new panchromatic observational campaign called SHARP to obtain a large
sample of gravitational lens systems with improved sensitivity to substructures:

This survey has already delivered a sample of ~40 lenses;
Using state of the art radio telescopes we have lowered the detection threshold to 10°Mgun

In the near future radio telescopes such as ALMA and GVLBI will deliver more systems with very
high sensitivity
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Open questions: predictions

Up to now most of the highest resolution
numerical simulations have been focusing on
dark matter only Milky-Way type of haloes

There is indication that the amount of

substructure is a function of host mass and
redshift

The role of baryons on the survivability of the
substructure has yet to be quantifies

We will make use of publicly available numerical simulations as well as an ensemble of WDM and CDM
simulations to quantify the amount of substructure in hosts with properties strictly matching those of the
observed samples. We will also use the latest hydrodynamical simulations to investigate the effect of

baryons. 38
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Open questions: contaminations

Gravitational lensing is sensitive to all the
mass between the observer and the

background source

Substructure detection could be therefore be
contaminated by line-of-sight mass clump
which are not physically associated with the
lens

There is indication that the lensing effect on
Einstein rings and magnified arcs is

different for the two components
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We will make use of numerical simulations to quantify the level of line-of-sight contamination and will
investigate its gravitational effect by and mock realistic observations of gravitational lens systems.
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Open questions: mass density Bias

Different dark matter models predict
different mass density profiles for the

substructure ot
106$
Are the non-detections biased by ;
assumptions on the mass density profile? 10° I
A :
a s
Is the mass within the Einstein radius a Y [
biased free measure for the estimation of \E/_ 10 F
the sensitivity function? '
B
Can we use the measured effect to exclude M1:2/K/ICE.)M :0-90 ’
certain profiles and hence turn both 102 _\l
detections and non detection into a 1 1.0 10.0 0.
constraint of more exotic dark matter
models? r[ kpc ]

We will make use of publicly available numerical simulations and mock realistic observations of
gravitational lens systems to address interesting issues of the profile of substructure.
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In summary

“ Over the next few years we will set a new observational constraints on the properties of dark
matter by measuring the clumpiness of the Universe at the smallest scales.
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Thank you!



