DARK MATTER IN DWARF SPHEROIDAL GALAXIES

Kohei Hayashi (Kavli IPMU)

collaboration with Prof. M. Chiba (Tohoku Univ.)

Galactic dSphs as a probe of DM

Mass to Light ratio (M/L) within stellar extent in dSphs

The Outstanding issues in ΛCDM

- Too-big-to-fail problem (Boylan-Kolchin+ 2012)
- Missing satellites problem (Moore+ 1999, Klypin+ 1999)
- + several other issues (core-cusp, global shape of dark halo, disk-like structure of satellite distribution)

The Outstanding issues in ΛCDM

- Too-big-to-fail problem (Boylan-Kolchin+ 2012)
- Missing satellites problem (Moore+ 1999, Klypin+ 1999)
- + several other issues (core-cusp, global shape of dark halo, disk-like

Candidate to solve these issues:

- Baryon feedbacks?
- Alternative dark matter models, such as WDM?
- Incomplete observational data and dynamical analysis?

Deriving DM profiles from spherical mass models

Spherical mass models

Dark halo model :

$$\rho(r) = \rho_0 \left(\frac{r}{r_0}\right)^{-\gamma} \left[1 + \left(\frac{r}{r_0}\right)^{\alpha}\right]^{\frac{\gamma-3}{\alpha}}$$

Plummer model for stellar density :

$$u \propto [1 + r^2 / r_{
m half}^2]^{-5/2}$$

Spherical Jeans equation

$$\nu \bar{v_r^2} = Gr^{-2\beta} \int_r^\infty s^{2\beta - 2} \nu(s) M(s) ds$$

Velocity anisotropy β= *constant*

It is too simple, isn't it?

"Spherical averaged" I-o-s velocity dispersion profiles

2015/10/13

Workshop on Astrophysics of Dark Matter

Walker+ 2009

Stellar distributions of dSphs are actually not spherical

typical projected axial ratio: 0.6 - 0.7

Sculptor

Fornax

✓ CDM models predict non-spherical virialized halos

Springel et al.2008

Stellar distributions of dSphs are actually not spherical

typical projected axial ratio: 0.6 - 0.7

Construction of axisymmetric mass models for dSphs to obtain plausible limits on their density profiles and shapes of their DM halos (KH & Chiba 2012, 2015a, b).

Springel et al.2008

Mass within a radius of 300 pc

Mass within a radius of 300 pc

It is clear that our axisymmetric mass models provide a different picture of this issue, namely, the mass constancy within the inner 300 pc as argued by spherical models is not necessarily the case.

New universality for the DM halos

KH & Chiba(2015a,b) based on axisymmetric mass models

Maximum circular velocity

We suppose that a test particle perform circular motion in a DM halo potential.

$$V_{
m circ}(r) = \sqrt{rac{GM(< r)}{r}}$$

 $r_{\rm max}$ indicates the radius of the maximum value of circular velocity, $V_{\rm max}.$

✓ DM surface density within r_{max}

$$\Sigma_{V_{
m max}} \propto
ho_s r_s$$

for NEW profiles $ho(r)=
ho_s(r/r_s)^{-1}(1+r/r_s)^{-2}$

A common surface density scale for dark halos

A common surface density scale for dark halos

Galaxy type	Assumed DM profile				
spirals (THINGS & GHASP)	pseudo-isothermal profile				
dwarf irregulars	Burkert profile				
spirals and ellipticals	Burkert profile				
MW and M31 dSph	double power law profile		dSphs (c	ore) [This work]	
		•	111	•	

Dark matter surface density within r_{max} is sufficiently constant across a wide range of galaxies, irrespective of dark halo density profiles.

Comparison with dark matter scenario

- At higher halo-mass range, this constancy for real galaxies can be naturally reproduced by both CDM & WDM, even though do not perform any fitting to the data!
 - Mean surface density derived

2015/10/13

Comparison with dark matter scenario

2015/10/13

Summary

- We have constructed axisymmetric mass models for dSphs in the MW and M31 to obtain plausible limits on the structure of their dark halos.
- 2. The global shapes of dark halos have largely effects on the limitation of particle mass and cross section of dark matter.
- 3. We find that the total mass of the dSphs enclosed within 300 pc varies from $10^6 M_{\odot}$ to $10^7 M_{\odot}$. This is quit different from the conclusion based on spherical models.
- 4. It is found that dark matter surface density within a radius of Vmax is nearly constant across a wide range of galaxies, and this universality is enable us to obtain the limits on particle masses of WDM scenario.