Halo assembly bias on cluster scales

Surhud More (Kavli-IPMU)

Collaborators: Hironao Miyatake (JPL), Masahiro Takada (Kavli IPMU), David Spergel (Princeton), Rachel Mandelbaum (CMU), Eduardo Rozo (Arizona), Eli Rykoff(Stanford), Benedikt Diemer & Andrey Kravtsov (UChicago)

- The spatial distribution of halos is biased with respect to the matter distribution
- The bias of halos changes with their mass, more massive halos are more strongly clustered : b(M)
- This dependence is used to infer halo masses of objects such as galaxies by measuring their clustering

Halo assembly bias

- Dependence of the large scale clustering amplitude on secondary parameters other than the halo mass.
- Notice the asymmetric behaviour on either side of Mnl.

See also: Lemson & Kaufmann 99, Gao et al. 2005, 2008

Observationally: Yang et al. 2006, Weinmann et al. 2006, Kauffmann et al. 2013, Hearin et al. 2014, but cf. Lin et al. 2015

Visualization based on a technique developed by Kaehler, Hahn and Abel 2013

Princeton cosmology lunch, May 12, 2015

Last caustic in the density profile

- Depends upon the mass accretion rate
 - Faster accreting halos have smaller splash back radius

See also: Vogelsberger et al. 2011, Diemer & Kravtsov 2014, Adhikari, Dalal & Chamberlain 2014

5

redMaPPer cluster subsamples

8648 redMaPPer
clusters: z ∈ [0.1, 0.33]

- Subsamples based upon the average clustercentric distance of member galaxies, <R_{mem}>
- Control for halo mass using the weak lensing signal

Weak gravitational lensing

- Same average halo mass, different large scale bias.
- Bias difference due to mass difference is 1.1 in the extreme case.

Miyatake, SM, et al. 2015

Cluster-cluster autocorrelation

Shaded bands from weak lensing

 Projected clustering of galaxy clusters shows a significant and consistent difference as well

SDSS photometric galaxies around redMaPPer clusters

- Use photometric galaxies with M_i-5 log h k-1.0.42 (assuming cluster redshift)
- Surface number d isity of such galaxies as a function of radius

SM, et al. 2015 (in preparation)

on large sca

posterior of shown in identical h

Splashback radius

Fig 2: Firs radius for (a) shows t while par derivative. location of for the two assembly ti

- The steepening corresponding to the splash back radius is also seen in the photometric galaxy profiles
- High c_{gal} subsample should have a higher current accretion rate than the low c_{gal} subsample

SM, et al. 2015 (in preparation)

Weak lensing systematics ???

 Kinematics of member galaxies around the redMaPPer clusters (using spectra from SDSS DR12 BOSS)

IPMU DM workshop seminar, Oct 14, 2015

1

Xray properties

Stacked ROSAT all sky survey data

• Differences in the inner regions (perhaps different from theoretical expectations).

SZ properties

Stacked Planck Compton y – maps

IPMU DM workshop seminar, Oct 14, 2015

• Differences in the outer regions (similar to theoretical expectations).

• Concentration of galaxies is not same as concentration of dark matter (I see a similar effect in sims) SM, et al. 2015 (in preparation)

14

Conclusions

- Detection of halo assembly bias and the splash back radius on cluster scales
- Difficult to get theoretical predictions for assembly bias matching the observational criteria (but work in progress, ask me).
- Other results: Galaxy properties (conditional luminosity function, stacked BCG spectra, red fractions, etc.) Gas properties: SZ, Xray

Thank you!!!