## Post-inflationary magnetogenesis in axion inflation

Ryo Namba

Kavli IPMU

## Shin-gakujuku Kick-off Meeting Kavli IPMU September 21, 2015

Fujita, RN, Tada, Takeda & Tashiro, JCAP 1505 (2015) 05, 054 [arXiv:1503.05802]

Fujita & RN, soon to appear

## Outline



Axion inflation – Helical magnetic fields





## Outline

#### Introduction – Extragalactic magnetic fields

- Axion inflation Helical magnetic fields
- 3 Post-inflationary evolution
- Present magnetic field amplitude

## Observed extragalactic magnetic fields

Large-scale magnetic field observed

- $\diamond\,$  Galactic scale  $\sim$  kpc:  $\,10^{-6}-10^{-5}G$
- ♦ Extragalactic scales  $\sim$  Mpc:  $B_{eff}^{obs} \gtrsim 10^{-17} G$ 
  - $\triangleright$  Blazar TeV-GeV  $\gamma$  ray observation



Neronov & Vovk '10, Essey et al. '11, Takahashi et al. '13



590

◆□▶ ◆□▶ ◆ □▶ ◆ □▶



Free EM photon is *conformally* coupled to FRW metric

- ♦ EoM:  $(\partial_{\tau}^2 + k^2) \vec{A} = 0$  no effects from expansion, no production
- Several mechanisms have been proposed
  - Cosmological phase transition
    Vachaspati '91, Enqvist & Olsen '93
  - 2nd-order pert. theory
    Ichiki et al. '07, Maeda et al. '09, Fenu et al. '11, Saga et al. '15

#### Inflationary magnetic field production

Turner & Widrow '88, Ratra '92, Bamba & Yokoyama '04, Martin & Yokoyama '08, Kunze '10, ...

## Difficulties in large-scale magnetogenesis



$$\frac{d\langle B^2\rangle}{d\ln k} \sim H^4 \left(\frac{k}{aH}\right)^{5-2|n-\frac{1}{2}|}, \qquad I \propto a^{-n}$$

#### Strong coupling problem

Demozzi, Mukhanov & Rubinstein '09

$$\diamond \ \vec{A}_{\rm c} = I \vec{A}$$

$$\implies \mathcal{L}_{A\psi\psi} = e \, \bar{\psi} \gamma^{\mu} A_{\mu} \psi = \frac{e}{l} \, \bar{\psi} \gamma^{\mu} A_{c,\mu} \psi$$

♦ needs 
$$I \gtrsim 1$$
 at all times  $\Leftrightarrow n > 0$ 



- Strong backreaction problem
  - ♦ Large-scale  $\vec{B}$   $\Leftrightarrow$  magnetic spectral index  $n_B < 0$
  - ♦ However,  $\rho_E \gg \rho_B$
  - $\diamond~$  Iso-curvature mode due to  $\rho_{\rm E}$  back-react to inflationary dynamics and curvature perturbations !



- Strong backreaction problem
  - ♦ Large-scale  $\vec{B}$   $\Leftrightarrow$  magnetic spectral index  $n_B < 0$
  - ♦ However,  $\rho_E \gg \rho_B$
  - $\diamond~$  Iso-curvature mode due to  $\rho_{\rm E}$  back-react to inflationary dynamics and curvature perturbations !



 $\begin{array}{l} \mbox{Model independent limit} \\ \rho_{\rm inf}^{1/4} < 300 \, {\rm MeV} \left( \frac{1 \, {\rm Mpc}}{L_B} \right)^{5/4} \left( \frac{10^{-15} \, {\rm G}}{B_{\rm obs}} \right) \ , \quad (L_B \leq 1 \, {\rm Mpc}) \\ \\ \mbox{Fujita \& Yokoyama '14} \end{array}$ 

#### Must break the premises

#### Production only during inflation

- $ec{B}$  evolves adiabatically after inflation,  $B_{
  m phy} \propto a^{-2}$
- $A_i \propto \tau^n$  is a good approx at the last e-folding of inflation

#### Must overcome the obstacles

- Substantial dilution after inflation
- Too large electromagnetic energy spoiling inflation
- Induced curvature perturbations consistent with CMB

For sufficient production...

# Post-inflationary evolution

Ryo Namba (Kavli IPMU)

Post-inflationary magnetogenesis

Kick-off 2015 9 / 24

## Outline



- 2 Axion inflation Helical magnetic fields
  - 3 Post-inflationary evolution
  - Present magnetic field amplitude

## Why and what is **axion inflation**?

#### **Axion inflation**

- Successful inflation
- UV controllable theory

590

## Why and what is axion inflation ?

- $\diamond$  Slow roll of inflaton  $\varphi$  is necessary for a prolonged inflationary stage
- Slow roll in a standard single-field inflation is UV sensitive
  - Radiative corrections



η problem in supergravity

$$|\eta| \ll$$
 1 is needed but  $V_{
m SG} \sim V rac{arphi^2}{M_{
m P}^2}$  leads  $\eta \sim {\cal O}(1)$ 

- One solution to invoke shift symmetry
  - ▷ Symmetry exact  $\Leftrightarrow$  completely flat potential  $V(\varphi) = \text{const.}$
  - ▷ Mild breaking guarantees flat  $V(\varphi)$
- Natural candidate...?

イロト イポト イヨト イヨト 二日

## Why and what is axion inflation ?

- $\diamond$  Slow roll of inflaton  $\varphi$  is necessary for a prolonged inflationary stage
- Slow roll in a standard single-field inflation is UV sensitive
  - Radiative corrections



η problem in supergravity

$$|\eta| \ll$$
 1 is needed but  $V_{
m SG} \sim V rac{arphi^2}{M_{
m P}^2}$  leads  $\eta \sim \mathcal{O}(1)$ 

#### Or Axions – (pseudo) Nambu-Goldstone bosons

- Arise from global symmetry breaking
- Ubiquitous in particle theory
- Flat  $V(\varphi)$  guaranteed a good candidate for inflaton!
  - Natural inflation Freese, Frieman & Olinto '90

Ryo Namba (Kavli IPMU)

◊ Na

(D) (A) (A) (A) (A) (A)

#### **Axion inflation**

- Successful inflation
- UV controllable theory

A natural coupling to electromagnetic fields – fixed by symmetries

5900

Axion-gauge coupling  
$$\mathcal{L}_{int} = \frac{\alpha}{f} \varphi \vec{E} \cdot \vec{B}$$

A natural coupling to electromagnetic fields – fixed by symmetries



Ryo Namba (Kavli IPMU)

Post-inflationary magnetogenesis

Kick-off 2015 13 / 24

## Other phenomenological features

#### Bounds from CMB observations

Produced photons inverse-decay to inflaton quanta

 $\implies$  contribute to curvature perturbations

$$A + A \rightarrow \delta \varphi \rightarrow \zeta$$

Barnaby, RN & Peloso '12; Meerburg & Pajer '12

CMB bounds
$$rac{lpha}{f} \leq 35 - 48 M_p^{-1}$$
Planck collaboration '15



## Other phenomenological features

#### Prospects at gravitational-wave detectors

Produced photons contribute to anisotropic shear

 $\implies$  source tensor perturbations (GW)

- ▷ No signal at CMB scales ⇔ Bounds on scalar perturbations are too strong
- Potential signals at GW interferometer scales



Barnaby, Pajer & Peloso '12

Ryo Namba (Kavli IPMU)

Kick-off 2015 15 / 24

## Other phenomenological features

#### Prospects at gravitational-wave detectors

Produced photons contribute to anisotropic shear

 $\implies$  source tensor perturbations (GW)

- ▷ No signal at CMB scales ⇔ Bounds on scalar perturbations are too strong
- Potential signals at GW interferometer scales

Barnaby, Pajer & Peloso '12



- No constraints from current (1<sup>st</sup> generation) detectors
- Future (2<sup>nd</sup> & 3<sup>rd</sup> gen.) have potential to detect helical GWs !

Crowder et al. '12; c.f. Seto & Taruya '07

## Outline

Introduction – Extragalactic magnetic fields

Axion inflation – Helical magnetic fields





## Evolution of magntic fields



Numerical computation during and after inflation until the coupling shuts off:

$$\begin{aligned} \ddot{A}_{\pm} + H\dot{A}_{\pm} + \left(\frac{k^2}{a^2} \mp \frac{\alpha}{f} \frac{k}{a} \dot{\phi}_0\right) A_{\pm} &= 0\\ \ddot{\phi}_0 + 3H\dot{\phi}_0 + V_{\phi}(\phi_0) &= \frac{\alpha}{f} \langle \vec{E} \cdot \vec{B} \rangle\\ 3M_{\rho}^2 H^2 &= \frac{1}{2} \dot{\phi}_0^2 + V(\phi_0) + \frac{\langle \vec{E}^2 + \vec{B}^2 \rangle}{2} \end{aligned}$$

## Growth around the end of inflation

Growth triggered by the coupling

#### Tachyonic growth

- towards the end of inflation
- growth only in one helicity state

#### Parametric resonance

- lasts a few e-folds after inflation
- growth in both helicity states



Ryo Namba (Kavli IPMU)

## Evolution of amplitude and correlation length

- $\diamond$  Non-trivial evolution of  $\vec{B}$  fields during and after inflation
- $\diamond$  Once parametric resonance ceases, the  $\vec{B}$  fields evolve adiabatically



$$\mathcal{B}_{\mathsf{phys}} \simeq \left( 6 \cdot 10^{45} \, a^{-4} 
ight) \, \mathrm{G} \;, \quad \lambda_{\mathsf{phys}} \simeq \left( 9 \cdot 10^{-52} \, a 
ight) \; \mathsf{Mpc} \;, \quad \left( rac{lpha}{f} = 8 \, \mathit{M}_{
ho}^{-1}, \mathit{N} \gtrsim 2 
ight)$$

## Inverse cascade in turbulent plasma

#### Inverse cascade = helicity conservation

- Nonlinearity of MHD dynamics (High Reynolds number)
- Helicity of the magnetized fluid with high conductivity is conserved
- Part of the energy is transferred to larger scales



## Inverse cascade in turbulent plasma

#### Inverse cascade = helicity conservation

- Nonlinearity of MHD dynamics (High Reynolds number)
- Helicity of the magnetized fluid with high conductivity is conserved
- Part of the energy is transferred to larger scales



## Outline

Introduction – Extragalactic magnetic fields

Axion inflation – Helical magnetic fields

3 Post-inflationary evolution



## **Concerning issues**

- Low conductivity
  - ▷ Thermalized charged particles wash away  $\vec{E}$  fields and "freeze"  $\vec{B}$  fields
  - $\triangleright$  Do not thermalize if  $\Gamma_{\phi} \lesssim 10^{6}\,{
    m GeV}$

#### Perturbation under control

 $\triangleright$  We have neglected the effects from inflaton perturbation  $\delta \varphi$ , e.g.,



 $\,\triangleright\,\,$  Calculation consistent as long as  $\delta\varphi\ll\phi_{\rm 0}$  at all times



## Present magnetic field amplitude



590

## Present magnetic field amplitude



 $\diamond$  MUCH bigger than those in inflationary *IFF* models,  $\lesssim 10^{-47}$  G !

 $\diamond$  STILL smaller than the observed bound,  $B_{\rm obs} \gtrsim 10^{-17} \, {\rm G}...$ 

## Summary and outlook

- Blazars observations  $\Rightarrow$   $B_{\rm eff} \gtrsim 10^{-17} \, {\rm G}$  at  $\sim 1 \, {\rm Mpc}$  !
- Challenging to find inflation-only origins  $\Rightarrow$  post-inflationary evolution
- Theoretically motivated axion inflation studied
  - Rich phenomenology
    - $\,\triangleright\,\,$  Non-Gaussian curvature perturbations, gravitational waves at interferometers
  - $\diamond$  Generation mechanism of  $\vec{B}$  naturally implemented
  - Rich physics
    - > Tachyonic enhancement near the end of inflation
    - Parametric resonance
    - $\,\triangleright\,\,$  Parity violation  $\Rightarrow\,$  helical  $\vec{B}$   $\Rightarrow\,$  Inverse cascade
  - $\diamond$  Much larger  $\vec{B}$  than previous studies ! ...but not enough for blazars

• More elaborate model that incorporates post-inf. evolution of  $\vec{B}$  is needed

- Work in progress: post-inflationary kinetic coupling model
- $\diamond~$  Preliminary results:  $B_{obf}\gtrsim 10^{-15}\,G$  is possible with all constraints satisfied
- ...but not enough time in this talk

nan