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Observed extragalactic magnetic fields

Large-scale magnetic field observed
o Galactic scale ~ kpc: 1076 — 105G
o Extragalactic scales ~ Mpc: B > 10-7G

> Blazar TeV-GeV ~ ray observation
Neronov & Vovk ’10, Essey et al. 11, Takahashi et al. ’13
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Taylor, Vovk & Neronov ’11

([] @)Fol

1

°
[
o
I
@
T
-
i
w
i
©
T
~
I
©
i
@
i
2
|
!
&
|

Iy
EX
=
£
=3
38

¢
d
&

©
9
54
z
Q
>
3



Taylor, Vovk & Neronov ’11
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Extragalactic B fields

Bops > 1077 G

Effective amplitude at ~ Mpc
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Free EM photon is conformally coupled to FRW metric
o EoM: (92 + k?) A = 0 - no effects from expansion, no production
< Several mechanisms have been proposed
> Cosmological phase transition Vachaspati ‘91 , Engvist & Olsen '93
> 2nd-order pert. theory Ichiki et al. ‘07, Maeda et al. '09, Fenu et al. '11, Saga et al. '15

o Inflationary magnetic field production
Turner & Widrow ‘88, Ratra '92, Bamba & Yokoyama '04, MaErltin & gokoyama '08, Kunze '10,
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Difficulties in large-scale magnetogenesis
Most studied model

2
c=-! ga) Fu F

@ Time dependence of /(a) breaks conformal inv.

Ratra '91
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@ Strong coupling problem
Demozzi, Mukhanov & Rubinstein '09 Ceff
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@ Strong backreaction problem
o Large-scale B < magnetic spectral index ng < 0

o However, pe > ps

o Iso-curvature mode due to p- back-react to inflationary dynamics and
curvature perturbations !

Fujita & Yokoyama ’'13
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@ Strong backreaction problem
o Large-scale B < magnetic spectral index ng < 0

o However, pe > ps

o Iso-curvature mode due to p- back-react to inflationary dynamics and
curvature perturbations !

Fujita & Yokoyama ’'13
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Model independent limit

5/4 —15
pi/4 < 300 MeV (1 Mpc) (10 G) . (Lg < 1Mpc)
LB Bobs

Must break the premises

Fujita & Yokoyama '14

@ Production only during inflation
@ B evolves adiabatically after inflation, Bohy oc a2

@ A; « 7" is a good approx at the last e-folding of inflation

Must overcome the obstacles

< Substantial dilution after inflation

o Too large electromagnetic energy spoiling inflation

Ryo Namba (Kavli IPMU)

¢ Induced curvature perturbations consistent with CM

B
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For sufficient production...

Post-inflationary
evolution
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@ Axion inflation — Helical magnetic fields
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Why and what is axion inflation ?

Axion inflation
@ Successful inflation

@ UV controllable theory
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Why and what is axion inflation ?

< Slow roll of inflaton ¢ is necessary for a prolonged inflationary stage
o Slow roll in a standard single-field inflation is UV sensitive
> Radiative corrections

Lin = gt + 39"

- - ,< ’)7 - =
< g* Ay
> 7 problem in supergravity
In| < 1 is needed but Vsg ~ V"%S

leads n ~ O(1)
o One solution — to invoke shift symmetry

> Symmetry exact < completely flat potential V() = const.
> Mild breaking guarantees flat V()

< Natural candidate...?

Ryo Namba (Kavli IPMU)
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Why and what is axion inflation ?

< Slow roll of inflaton ¢ is necessary for a prolonged inflationary stage

o Slow roll in a standard single-field inflation is UV sensitive
> Radiative corrections

Liw = g% + ¢

> 7 problem in supergravity

In| < 1 is needed but Vsg ~ Vﬁz leads n ~ O(1)
/7]
o Or Axions — (pseudo) Nambu-Goldstone bosons

@ Arise from global symmetry breaking
@ Ubiquitous in particle theory
o Ne

@ Flat V(y) guaranteed — a good candidate for inflaton!
> Natural inflation

Freese, Frieman & Olinto '90
Ryo Namba (Kavli IPMU)
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Axion inflation
@ Successful inflation

@ UV controllable theory

— fixed by symmetries
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Axion-gauge coupling

Eintzgwé'é

A natural coupling to electromagnetic fields
— fixed by symmetries
Modified dispersion of the EM field

82
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o Only one helicity grows exponentially

Anber & Sorbo /09
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aH/k 5.‘0 16.0
Large production of helical magnetic fields ! |
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Other phenomenological features

e Bounds from CMB observations

> Produced photons inverse-decay to inflaton quanta
— contribute to curvature perturbations

A+A—dp—¢

Barnaby, RN & Peloso '12; Meerburg & Pajer '12

CMB bounds

| Q

< 35— 48M,"

Planck collaboration ’15
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Other phenomenological features

e Prospects at gravitational-wave detectors
> Produced photons contribute to anisotropic shear

— source tensor perturbations (GW)

> No signal at CMB scales < Bounds on scalar perturbations are too strong
> Potential signals at GW interferometer scales
10°

Barnaby, Pajer & Peloso 12
.5
B =2.
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Other phenomenological features

e Prospects at gravitational-wave detectors
> Produced photons contribute to anisotropic shear
— source tensor perturbations (GW)
> No signal at CMB scales < Bounds on scalar perturbations are too strong

> Potential signals at GW interferometer scales
Barnaby, Pajer & Peloso 12

@ No constraints from current (1! generation) detectors

@ Future (2" & 3" gen.) have potential to detect helical GWs !
Crowder et al. '12; c.f. Seto & Taruya '07

CEREE = =» = 9a0
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0 Post-inflationary evolution
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Evolution of magntic fields

Distinctive post-inflationary evolution
@ Coupling to inflaton ¢ until reheating
@ Slow roll breaks down
@ Inflaton oscillation after inflation

@ Helical nature of the produced B fields

v

Numerical computation during and after inflation until the coupling shuts off:

.. . 2 k.
Ai+HAi+<k—2¥(;ac>o>Ai:0

o +3Heo + V(o) = <E' B)
+B?)

w154 vion) + LB
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Growth around the end of inflation
Growth triggered by the coupling

@ Tachyonic growth
> towards the end of inflation
> growth only in one helicity state

@ Parametric resonance
> lasts a few e-folds after inflation
> growth in both helicity states

Spectrum of growing state Spectrum of non-growing state
V2k A,

50.0]
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Evolution of amplitude and correlation length

o Non-trivial evolution of B fields during and after inflation
o Once parametric resonance ceases, the B fields evolve adiabatically

By 2/m* Xpnylm ™"
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Inverse cascade in turbulent plasma

Inverse cascade = helicity conservation
@ Nonlinearity of MHD dynamics (High Reynolds number)
@ Helicity of the magnetized fluid with high conductivity is conserved
@ Part of the energy is transferred to larger scales
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Inverse cascade in turbulent plasma

Inverse cascade = helicity conservation
@ Nonlinearity of MHD dynamics (High Reynolds number)
@ Helicity of the magnetized fluid with high conductivity is conserved
@ Part of the energy is transferred to larger scales
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Q Present magnetic field amplitude
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Concerning issues
@ Low conductivity

> Thermalized charged particles wash away E fields and “freeze” B fields
> Do not thermalize if ', < 10° GeV
@ Perturbation under control

> We have neglected the effects from inflaton perturbation d¢, e.g.,

.
mX(5¢%)py
1000¢

> Calculation consistent as long as dp < ¢ at all times
10
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Present magnetic field amplitude

Betr[Gl
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Present magnetic field amplitude
Betr[Gl

o Effective amplitudeﬂs

r 1/4
1x Bgfcf)w 5 1.5 x 10_19G (m)

1%10720 .

1 1 1 1 1 1 1 aMPl/f
7.0 7.5 8.0 8.5 9.0 9.5 10.0

o MUCH bigger than those in inflationary /FF models, < 10-4' G !

o STILL smaller than the observed bound, By, > 10717 G...
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Summary and outlook
@ Blazars observations = Bg; > 10~ G at ~ 1 Mpc !
@ Challenging to find inflation-only origins = post-inflationary evolution
@ Theoretically motivated axion inflation studied

o Rich phenomenology
> Non-Gaussian curvature perturbations, gravitational waves at interferometers

& Generation mechanism of B naturally implemented
o Rich physics
> Tachyonic enhancement near the end of inflation

> Parametric resonance
> Parity violation = helical B = Inverse cascade

& Much larger B than previous studies ! ...but not enough for blazars

@ More elaborate model that incorporates post-inf. evolution of B is needed
o Work in progress: post-inflationary kinetic coupling model
o Preliminary results: By > 107 '° G is possible with all constraints satisfied

o ...but not enough time in this talk
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