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Observed extragalactic magnetic fields
Large-scale magnetic field observed

� Galactic scale ∼ kpc: 10−6 − 10−5G

� Extragalactic scales ∼ Mpc: Bobs
eff & 10−17G

. Blazar TeV-GeV γ ray observation

Neronov & Vovk ’10, Essey et al. ’11, Takahashi et al. ’13
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Taylor, Vovk & Neronov ’11

Extragalactic ~B fields

Bobs & 10−17 G
Effective amplitude at ∼ Mpc

Free EM photon is conformally coupled to FRW metric

� EoM:
(
∂2
τ + k2

)
~A = 0 – no effects from expansion, no production

� Several mechanisms have been proposed
. Cosmological phase transition Vachaspati ’91 , Enqvist & Olsen ’93

. 2nd-order pert. theory Ichiki et al. ’07, Maeda et al. ’09, Fenu et al. ’11, Saga et al. ’15

� Inflationary magnetic field production
Turner & Widrow ’88, Ratra ’92, Bamba & Yokoyama ’04, Martin & Yokoyama ’08, Kunze ’10, . . .
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Difficulties in large-scale magnetogenesis

Most studied model

L = − I2(a)

4
FµνFµν Ratra ’91

Time dependence of I(a) breaks conformal inv.

d
〈
B2

〉
d ln k

∼ H4
(

k
aH

)5−2|n− 1
2 |

, I ∝ a−n

1 Strong coupling problem
Demozzi, Mukhanov & Rubinstein ’09

� ~Ac = I ~A

=⇒ LAψψ = e ψ̄γµAµψ =
e
I
ψ̄γµAc,µψ

� needs I & 1 at all times⇔ n > 0

Strong coupling

Viable

tend
t

eEM

eeff
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1 Strong backreaction problem

� Large-scale ~B ⇔ magnetic spectral index nB < 0

� However, ρE � ρB

� Iso-curvature mode due to ρE back-react to inflationary dynamics and
curvature perturbations !

Fujita & Yokoyama ’13
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Model independent limit

ρ
1/4
inf < 300 MeV

(
1 Mpc

LB

)5/4 (10−15 G
Bobs

)
, (LB ≤ 1 Mpc)

Fujita & Yokoyama ’14

Must break the premises

Production only during inflation

~B evolves adiabatically after inflation, Bphy ∝ a−2

Ai ∝ τn is a good approx at the last e-folding of inflation

Must overcome the obstacles

� Substantial dilution after inflation

� Too large electromagnetic energy spoiling inflation

� Induced curvature perturbations consistent with CMB
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For sufficient production...

Post-inflationary
evolution

Ryo Namba (Kavli IPMU) Post-inflationary magnetogenesis Kick-off 2015 9 / 24



Outline

1 Introduction – Extragalactic magnetic fields

2 Axion inflation – Helical magnetic fields

3 Post-inflationary evolution

4 Present magnetic field amplitude

Ryo Namba (Kavli IPMU) Post-inflationary magnetogenesis Kick-off 2015 10 / 24



Why and what is axion inflation ?

Axion inflation
Successful inflation
UV controllable theory
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Why and what is axion inflation ?
� Slow roll of inflaton ϕ is necessary for a prolonged inflationary stage

� Slow roll in a standard single-field inflation is UV sensitive
. Radiative corrections

+ +

Lint = gϕψ̄ψ + λ
4!ϕ

4

m2
ϕ ∝ g2Λ2

UV ∝ λΛ2
UV

. η problem in supergravity

|η| � 1 is needed but VSG ∼ V ϕ2

M2
p

leads η ∼ O(1)

� One solution – to invoke shift symmetry
. Symmetry exact⇔ completely flat potential V (ϕ) = const.

. Mild breaking guarantees flat V (ϕ)

� Natural candidate...?

Axions – (pseudo) Nambu-Goldstone bosons

Arise from global symmetry breaking

Ubiquitous in particle theory

Flat V (ϕ) guaranteed – a good candidate for inflaton!

. Natural inflation Freese, Frieman & Olinto ’90
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Axion inflation
Successful inflation
UV controllable theory

A natural coupling to electromagnetic fields
– fixed by symmetries

Axion-gauge coupling

Lint =
α

f
ϕ ~E · ~B

Modified dispersion of the EM field

∂2

∂τ2 A± +
(

k2∓a
α

f
k ϕ̇

)
A± = 0

� Only one helicity grows exponentially
Anber & Sorbo /09
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Large production of helical magnetic fields !
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Other phenomenological features

Bounds from CMB observations

. Produced photons inverse-decay to inflaton quanta

=⇒ contribute to curvature perturbations

A + A→ δϕ→ ζ

Barnaby, RN & Peloso ’12; Meerburg & Pajer ’12

A

A

δϕ

CMB bounds
α

f
≤ 35− 48M−1

p

Planck collaboration ’15
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Other phenomenological features

Prospects at gravitational-wave detectors
. Produced photons contribute to anisotropic shear

=⇒ source tensor perturbations (GW)

. No signal at CMB scales ⇔ Bounds on scalar perturbations are too strong

. Potential signals at GW interferometer scales
Barnaby, Pajer & Peloso ’12
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Crowder et al. ’12; c.f. Seto & Taruya ’07
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Evolution of magntic fields

Distinctive post-inflationary evolution

Coupling to inflaton ϕ until reheating

Slow roll breaks down

Inflaton oscillation after inflation

Helical nature of the produced ~B fields

Numerical computation during and after inflation until the coupling shuts off:

Ä± + HȦ± +

(
k2

a2 ∓
α

f
k
a
φ̇0

)
A± = 0

φ̈0 + 3Hφ̇0 + Vφ(φ0) =
α

f
〈
~E · ~B

〉
3M2

p H2 =
1
2
φ̇2

0 + V (φ0) +

〈
~E2 + ~B2

〉
2
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Growth around the end of inflation
Growth triggered by the coupling

1 Tachyonic growth
. towards the end of inflation
. growth only in one helicity state

2 Parametric resonance
. lasts a few e-folds after inflation
. growth in both helicity states

Spectrum of growing state Spectrum of non-growing state
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Evolution of amplitude and correlation length

� Non-trivial evolution of ~B fields during and after inflation

� Once parametric resonance ceases, the ~B fields evolve adiabatically
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Inverse cascade in turbulent plasma

Inverse cascade = helicity conservation
Nonlinearity of MHD dynamics (High Reynolds number)
Helicity of the magnetized fluid with high conductivity is conserved
Part of the energy is transferred to larger scales

Non-helical Helical

Durrer & Neronov ’13

Helicity conservation

h ∝ a3 λphy B2
phy = const. , (σc →∞)
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Concerning issues
1 Low conductivity

. Thermalized charged particles wash away ~E fields and “freeze” ~B fields

. Do not thermalize if Γφ . 106 GeV

2 Perturbation under control
. We have neglected the effects from inflaton perturbation δϕ, e.g.,

A

A

δϕ

. Calculation consistent as long as δϕ� φ0 at all times
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Present magnetic field amplitude
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Effective amplitudes

Bnow
eff . 1.5× 10−19 G

(
Γφ

106 GeV

)1/4

� MUCH bigger than those in inflationary IFF models, . 10−47 G !

� STILL smaller than the observed bound, Bobs & 10−17 G...
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Summary and outlook
Blazars observations⇒ Beff & 10−17 G at ∼ 1 Mpc !

Challenging to find inflation-only origins ⇒ post-inflationary evolution

Theoretically motivated axion inflation studied

� Rich phenomenology
. Non-Gaussian curvature perturbations, gravitational waves at interferometers

� Generation mechanism of ~B naturally implemented

� Rich physics
. Tachyonic enhancement near the end of inflation
. Parametric resonance
. Parity violation⇒ helical ~B ⇒ Inverse cascade

� Much larger ~B than previous studies ! ...but not enough for blazars

More elaborate model that incorporates post-inf. evolution of ~B is needed
� Work in progress: post-inflationary kinetic coupling model

� Preliminary results: Bobf & 10−15 G is possible with all constraints satisfied

� ...but not enough time in this talk
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