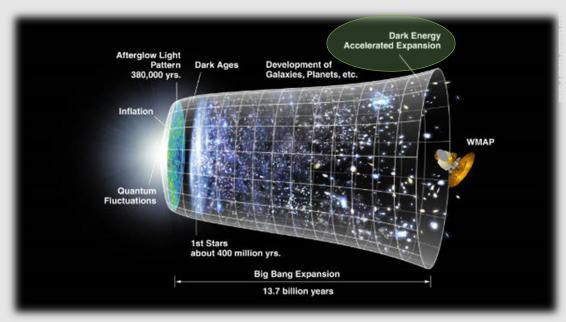
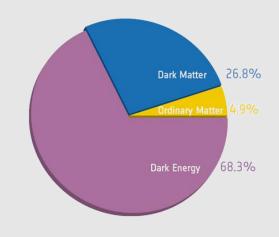


Dark Energy

Dominant source for late time expansion

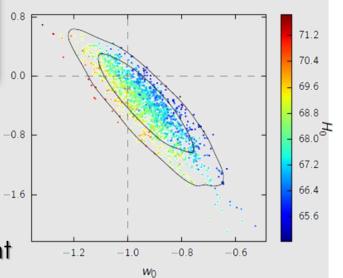




Planck(TT, lowP, lensing)+BAO+JLA+ H_0 ("ext") $\stackrel{\circ}{=}$ __0.8

$$w = \frac{p}{\rho} = -1.006^{+0.085}_{-0.091} (95\% \text{ CL})$$

agrees with the positive cosmological constant



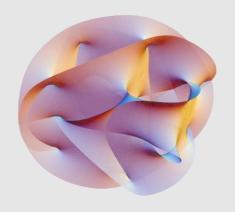
String theory in 10D

A prime candidate of quantum gravity

ability to address vacuum energy

String theory has a nice feature: 10D = 4D + 6D

Information of 6D space determines what we have in 4D!



- Light/heavy d.o.f. (moduli fields)
- Sources of potential
- Matters (visible and hidden)

Importantly, we cannot simply select at our will.

String theory compactifications impose conditions on SUGRA.

Key points of string cosmology

Moduli stabilization

Minimum with positive CC (or DE)

Consistency of compactifications

Reasonable parameters

• ...

Moduli stabilization

We have to stabilize moduli fields of compactification.

- Reheating for BBN $\implies m_{\phi} \gtrsim \mathcal{O}(10) \text{ TeV}$
- Determining parameters in 4D theory

Many moduli fields in string compactification (dilaton, complex structure moduli, Kähler moduli etc.)

 $N \sim \mathcal{O}(100)$

Probability of stability (eigenvalues $(m_{ij}^2) > 0$) is given a Gaussian function of # of moduli, if random enough.

$$\mathcal{P} \sim e^{-aN^2}$$

[Aazami, Easther, 05], [Dean, Majumdar, 08], [Borot, Eynard, Majumdar, Nadal, 10], [Marsh, McAllister, Wrase 11], [X. Chen, Shiu, YS, Tye, 11], [Bachlechner, Marsh, McAllister, Wrase 12]

So, when no hierarchy at $N \sim \mathcal{O}(100)$, hopeless.

Need for a hierarchical structure of mass matrix.

Type IIB on Calabi-Yau

A region that is not completely random and works well for cosmology.

No-scale structure generates a hierarchy:

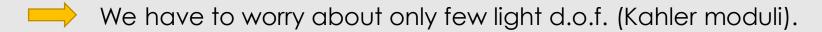
$$V=V_{
m Flux}$$
 + $V_{
m NP}+V_{lpha\prime}+\cdots$ ${\cal O}({\cal V}^{-2})$ $>> {\cal O}(\ll {\cal V}^{-2})$: CY volume scaling

Also, $V_{\text{Flux}} = e^K \left| D_{S,U_i} W_0 \right|^2$: positive definite

$$D_{S,U_i}W_0=0$$

Many moduli are integrated out at high scale.

e.g. CY
$$\mathbb{P}^4_{[1,1,1,6,9]}$$
: $h^{1,1}=2$, $h^{2,1}=272$ (Hessian) (real part) $M \sim \begin{pmatrix} \text{large small} \\ \text{small} \end{pmatrix} \frac{272+1}{2}$



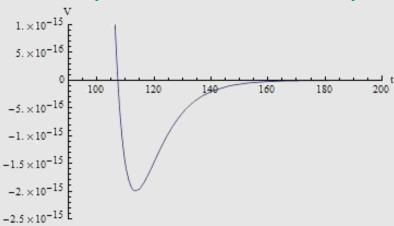
Kahler Moduli stabilization

Consider SUGRA F-term scalar potential: $V_F = e^K(|DW|^2 - 3|W|^2)$

$$K = -2\ln\left(\mathcal{V} + \frac{\xi}{2}\right), \qquad W = W_0 + \frac{W_{NP}}{\text{non-perturbative effect (instantons etc.)}}$$

E.g. KKLT

[Kachru, Kallosh, Linde, Trivedi, 03]

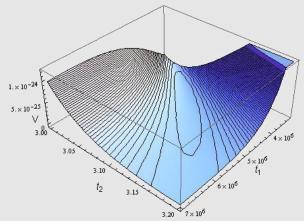


 $D_IW = 0$: supersymmetric

Both minima stay at AdS

Large Volume Scenario (LVS)

[Balasubramanian, Beglund, Conlon, Quevedo, 05]



 $\partial_I V = 0$: non-sypersymmetric

Uplift to dS

Some uplift models

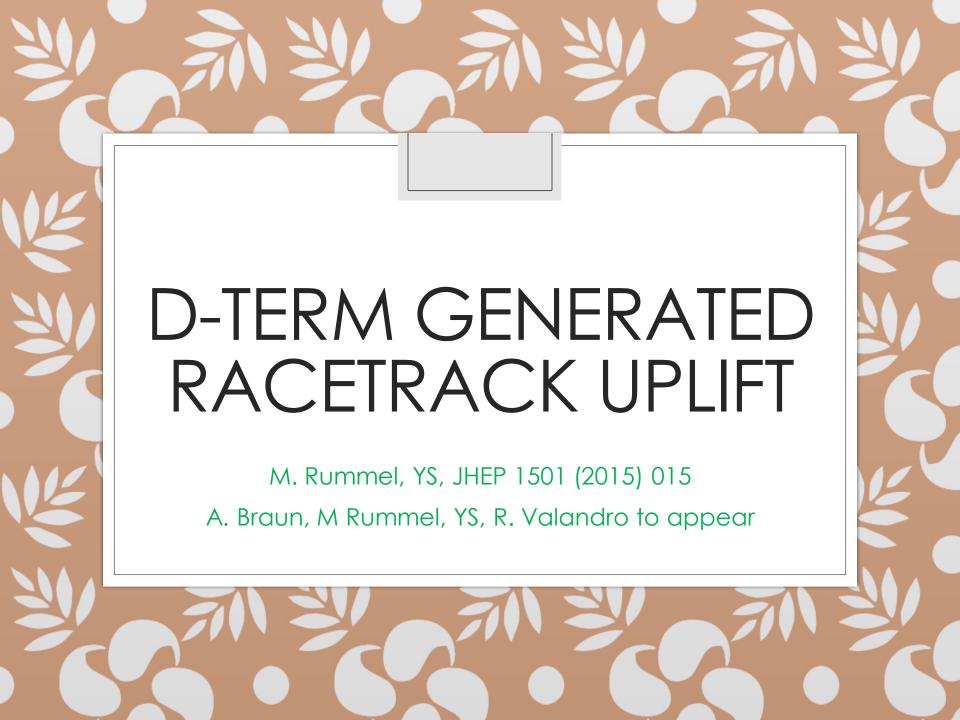
Some proposals keeping stability, but not so many.

- Anti-brane $V = V_{SUGRA} + V_{D3-\overline{D3}}$ [Kachru, Pearson, Verlinde, 01], [KKLT, 03]
 - Adding positive contribution by localized source, tuned by warping.
- Non-zero minimum of flux potential $V_{\rm Flux}>0$ [Saltman, Silverstein, 04] Require tuning to balance with $V_{\rm Kahler}$ (generically $\ll V_{\rm Flux}$).
- **D-term uplift**[Burgess, Kallosh, Quevedo, 03], [Cremades, Garcia del Moral, Quevedo, 07], [Krippendorf, Quevedo, 09] [Cicoli, Goodsell, Jaeckel Ringwald, 11]
 - Coefficient tuning is required to balance with stabilization potential.
- Dilaton-dependent non-perturbative effects [Cicoli, Maharana, Quevedo, Burgess, 12]

 $V_{up} \propto \frac{e^{-2b\langle s \rangle}}{v}$: dilaton value $\langle s \rangle$ should be tuned accordingly.

A tuning of coefficient is required.

(due to different volume dependence)



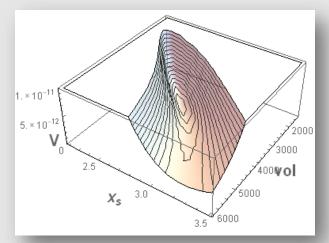
D-term generated racetrack uplift

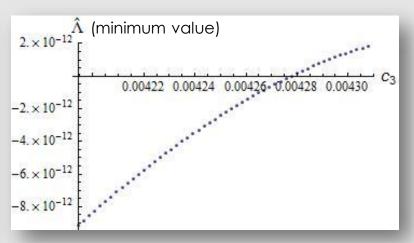
[Rummel, YS, 14]

Effective potential:

$$\hat{V} \sim \frac{3\xi}{4\mathcal{V}} + \frac{4c_2x_s}{\mathcal{V}^2}e^{-x_s} + \frac{2\sqrt{2}c_2^2\sqrt{x_s}}{3\mathcal{V}}e^{-2x_s} + \frac{4\beta c_3x_s}{\mathcal{V}^2}e^{-\beta x_s} + \cdots$$
LVS stabilization at AdS uplift

When $c_2 = -0.01$, $\xi = 5$, $\beta = 5/6$, and increase c_3





Minkowski point: $c_3 \sim 4 \times 10^{-3}$, $V \sim 3240$, $x_s \sim 3.07$.

 $|c_3| \sim |c_2|$ special suppression is not required when $\beta \sim 1$.

Analytically, $\beta < 1, c_3 > 0$ are required for uplift.

Key idea: D-term constraint

D-term potential imposes a constraint at high scale.

$$V = V_F + V_D$$

$$V_D \gg V_F$$

 $V = V_F + V_D$ $V_D \gg V_F$ generating a heavy mass

In string theory compactifications,

Magnetized D7-branes wrapping a Calabi-Yau four-cycle

$$V_D = \frac{1}{\text{Re}(f_D)} \xi_D^2$$

$$V_D = \frac{1}{\mathrm{Re}(f_D)} \xi_D^2$$
 $\xi_D = \frac{1}{4\pi \mathcal{V}} \int J \wedge D_D \wedge \mathcal{F}_D$ w/ matters stabilized accordingly

A choice of flux \mathcal{F}_D would give

$$V_D \propto \frac{1}{\text{Re}(f_D)} \frac{1}{\mathcal{V}^2} \left(\sqrt{\beta x_s} - \sqrt{x_a} \right)^2$$
 so a constraint: $x_a = \beta x_s$

Then, a racetrack is generated (different from simple racetrack).

$$V_F \ni \hat{C}_S e^{-x_S} + \hat{C}_a e^{-x_A} + \cdots \qquad \qquad \hat{C}_S e^{-x_S} + \hat{C}_a e^{-\beta x_S} + \cdots$$

$$\hat{C}_{S}e^{-x_{S}}+\hat{C}_{a}e^{-\beta x_{S}}+\cdots$$

Values of β

The value of β determines how much tuning we need.

$$V \ni \hat{C}_S e^{-x_S} + \hat{C}_a e^{-\beta x_S} + \cdots \qquad (x_a = \beta x_S)$$

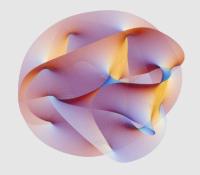
If $\beta = 0.9$, almost no tuning of coefficients for uplift $|\hat{c}_s| \sim |\hat{c}_a|$.

Parameter β is determined by geometry and fluxes.

Constraints from consistency of CY compactifications:

- ✓ Two instantons (on rigid divisors)
- \checkmark D-term that relates two moduli $x_{s,a}$
- ✓ Quantized fluxes on integral basis
- ✓ Charge cancellations (no D3, D5, D7 tadpoles)
- ✓ No anomaly (Freed-Witten)

We assume that open-string moduli are stabilized at $\langle \phi_i \rangle \neq 0$ (hidden matters) for simplicity.



Scanning Calabi-Yau for β

[Braun, Rummel, YS, Valandro, to appear]

Using the data of 6D toric Calabi-Yau hypersurfaces,

[Kreuzer, Skarke, 00], [Altman, Gray, He, Jejjala, Nelson 14]

Three moduli

$$(h^{1,1} = 3, \quad \mathcal{V}, x_s, x_a)$$

Total: 244 (polytopes)

Suitable geometry and successful flux: 32 (13%)

Four moduli

$$(h^{1,1}=4, \quad \mathcal{V}, x_s, x_a, x_b)$$

Total: 1197 (polytopes)

Suitable geometry and successful flux: 191 (16%)

Possible β values

$$\beta = \frac{49}{50} (= 0.98), \frac{121}{128} (\sim 0.95), \frac{225}{242} (\sim 0.93), \dots$$
 good β , good realizability

There are several other setups too.

Summary & Discussion

- 6D geometry determines 4D physics.
- Moduli stabilization, minimum vev, consistency, naturalness should be taken into account for string cosmology.
- D-term generated racetrack model uplifts potential successfully.
 (Simple racetrack does not.)
- Less tuning of parameters if $\beta \sim 1$, logarithmically insensitive
- 6D CY data suggests that $\beta \sim 1$ is ubiquitous.
- Open-string moduli need not to be $\langle \phi_i \rangle \neq 0$ in other types of CY.