

Subaru Imaging Survey

Satoshi Miyazaki National Astronomical Observatory of Japan

20150920 Shingakujutsu Symposium@IPMU

Miyazaki

- Weak Lensing technique is employed to measure LSS of dark matter distribution directly.
 - Tomographic Cosmic Shear
 - Standard: Other project (DES) can do as well
- Clusters of Galaxies
 - Harder to observe the lensing effect: Sharp & Deep imaging required.

Subaru Telescope

HSC

yazaki

PSF Evaluation

HSC

Wide Survey Projects

		Depth	Width (dea ²)	<iq> (arcsec)</iq>
CFHTLensS	Completed	25.0	170	0.75
Pan-STARRS	on-going	25.4	70	~ 1.1
DES	on-going	25.2	5,000	~ 1.0
HSC	on-going	26.2	1,500	0.67

Dark Energy Survey WL map

WL map by HSC

Abell 781Region (z=0.3)

Optical Clusters

PSF Evaluation

HSC

Generating Cluster Catalogs HSC

- Cluster identifications by optical method
- Group the clusters by the (richness, redshift)
- Stack the shears in the group to measure (average) mass precisely

NAOJ

Number Density vs Peaks

NAOJ

HSC

HSC SSP Survey: Three layers

- Three-tier survey
 - Wide: 1400 sq. degs, i~26
 - Deep: 28 sq. degs, i~27
 - Ultradeep: 3 sq. degs, i~27.7

HSC

Survey Field

- SDSS Field
- Least dusty
- Well spread in RA)
- Useful Data set
 - Atacama Cosmology Telescope CMB, Survey SDSS/BOSS, spectroscopic data, NIR, X-ray

summary of the current status

2015.07.27 HSC Collabo. Mtg A. J. Nishizawa IAR, Nagoya Univ.

breakdown fractional

2015.07.27 HSC Collabo. Mtg A. J. Nishizawa IAR, Nagoya Univ.

seeing distributions

HSC-Wide

50

40

30

20

10

0.0

80

70

60

50

40

30 20

10

0.0

0.5

1.0

seeing

FWHM<0.7(g)=27% FWHM<0.7(r) =40% FWHM<0.7(i) =75% FWHM<0.7(z)=56% FWHM<0.7(Y)=51%

1.5

10

0.5

1.0

seeing

1.5

2.0

2.0 0.0

2015.07.27 HSC Collabo. Mtg A. J. Nishizawa IAR, Nagoya Univ.

HSC-Deep/Ultra-Deep

FWHM<0.7(g)=17% FWHM<0.7(r) =40% FWHM<0.7(i) =58% FWHM<0.7(z)=36% FWHM<0.7(Y)=42%

Cosmology through WL (Forecast)

HSC

Ν

3 times improvement compared with **CFHT** Lensing Survey (Heymans et al. 13): 154deg2、 2003-2008

Miyazaki

BO2 Sub project

Miyazaki

HSC Lucky Imaging to improve images

To increase number density of resolved galaxies

- 0.1 arcsec/pix
- 10 % luckily good image
 - Seeing0".6 -> 0".3
- 15 Hz readout
- isoplanatic patch ~ 1 arcmin
- Field coverage ~ 50 % of 30' FOV

Simulation

Guyon, Garrel, Miyazaki in prep.

Merit of better Seeing

HSC

Number of faint galaxies used for weak lensing analysis

Conclusion

- Subaru Imaging Survey underway
 - HSC: 3 tons 3 m tall ~ 1Gpixel Digital Camera for 8.2 m Telescope
- 5 years Survey to measure LSS for cosmology
- Uniquely using clusters of galaxies by taking advantage of sharp and deep imaging
- Shear measurement technique & Photo-z being developed
- New sensor and camera planned to probe the nature of dark matter