Mapping Dark Matter

Masamune Oguri

(RESCEU/Physics/Kavli IPMU, University of Tokyo)

[計画研究B02 "広視野イメージング"研究分担者 大栗真宗(東京大学)]

2015/9/20 Why does the Universe accelerate? @ Kavli IPMU

Accelerating Universe

- dark energy suppresses the growth of density fluctuations
- time evolution of dark matter dist. tells us how the Universe is accelerating

growth rate of density fluctuations

simulated by glafic

Lensing effect on galaxies

no lensing

lens potential at the center

Mass reconstruction

• both K and Y are second derivatives of φ , so their relation is simple in Fourier space

$$\tilde{\kappa}(\boldsymbol{\ell}) = e^{-2i\psi}\tilde{\gamma}(\boldsymbol{\ell})$$

 suggests that κ and γ are related to each other by convolution in real space (γ is non-local)

$$\kappa(\boldsymbol{\theta}) = \int d\boldsymbol{\theta}' D^*(\boldsymbol{\theta} - \boldsymbol{\theta}') \gamma(\boldsymbol{\theta}')$$

• need filtering to suppress shot noise

HSC survey

- ~20% of observations completed (talk by Satoshi Miyazaki)
- analysis ongoing....

 mass map for ~25 deg² HSC wide patch

E-mode and B-mode

Mass selected cluster sample

- from mass map we can select massive clusters of galaxies (using purely gravitational effect)
- this is totally different from traditional cluster finding using member galaxies, X-ray, SZ
- HSC survey will be the first survey to provide a significant number of mass-selected clusters (e.g., Miyazaki, Oguri, et al. 2015, ApJ, 807, 22)

HSC mass reconstruction to-do's

- HSC data look great and preliminary analysis has shown promising results!
- more tests on shape measurements
 - try multiple methods, various systematics tests (star-galaxy cross-correlation, ...), quantify the accuracy with image simulations (w/ HSC WL working group)
- check effects of source galaxy clustering
- mock catalogs from all-sky ray-tracing sims (w/ F. Irie, N. Katayama, T. Hamana, et al.)

3D mass reconstruction

- weak lensing probe projected mass distribution $\kappa \propto \int d\chi W(\chi) \rho$
- source galaxies at different redshifts probe different lens redshift range
 - → 3D mass reconstruction possible

3D mass reconstruction method

• essentially it is a linear inversion problem

$$\kappa(\boldsymbol{\theta}, z_{s,i}) = \sum_{j} R(z_{s,i}, z_{l,j}) \rho(\boldsymbol{\theta}, z_{l,j}) \quad \Longrightarrow \quad \rho(\boldsymbol{\theta}, z_{l,j}) = \sum_{i} \left[R^{-1} \right]_{ij} \kappa(\boldsymbol{\theta}, z_{s,i})$$

• 3D mass reconstruction is very noisy, thus needs efficient filtering using e.g., Wiener filter (e.g., Hu & Keeton 2003)

Test example

- 3D reconstruction w/ transverse Wiener filter (e.g., Simon et al. 2009)
- recover position and redshift of input halo
- smearing in radial direction

HSC (very preliminary)

Challenges in 3D mass map

accurate photo-z's

(talk by Masayuki Tanaka)

- increase galaxy number density → CMOS??
 (talk by Satoshi Miyazaki)
- improve algorithm radial filter? deconvolution? priors from galaxy distribution??

Summary

- weak gravitational lensing enables direct mapping of dark matter distribution
- HSC survey data look great and preliminary results are promising
- need more work for careful systematic checks and improving algorithms

Importance of deep imaging

 high source number density is crucial for efficient survey of mass-selected clusters