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Accelerating Universe  
Chapter 9: Cosmology with Gravitational Lensing

Figure 9.1.: The growth rate D(a) ∝ ag(a) for different cosmological models. Left: The growth rate for three
different dark energy equation of state w. The larger value of w indicates more dark energy in the past, leading
to more suppression of the growth rate. Right: An example of the growth rate for the modified gravity model (the
so-called f(R) model, see e.g., Narikawa & Yamamoto 2010). In modified gravity models, the growth rate can be
significantly different from the case of general relativity, even if the expansion history of the universe is similar, and
can be scale-dependent (kc is the Compton wavelength scale).

of various observable distances, is given as
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where H0(= 100h km s−1Mpc−1) is the Hubble parameter, Ωm, ΩK, and Ωde are the energy density
parameters of matter, curvature, and dark energy today, respectively, and w(z) is the dark energy
equation of state:

w(z) ≡
p̄de
ρ̄de

. (9.2)

The dark energy equation of state w(z) is a key parameter for distinguishing between various
dark energy models, and therefore plays a central role in cosmological analysis as presented in this
Chapter.

Dark energy that has negative pressure leads to repulsive gravity, and therefore does not cluster
significantly. However, dark energy does affect the growth of mass clustering through its effect on
the expansion rate. In linear theory, all Fourier modes of the mass density perturbation, δm, grow
at the same rate: δm(a) ∝ ag(a), where g(a) is the growth suppression rate. The growth factor can

be computed by solving the linearized differential equation, ¨̃δk + 2(ȧ/a) ˙̃δk − 4πGρ̄mδ̃k = 0, where
δ̃ is the Fourier transform of the density perturbation and the dot is the derivative with respect to
physical time. Hence, the growth suppression rate g(a) can be obtained by solving the differential
equation (e.g., Komatsu et al. 2009):
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• dark energy suppresses 
   the growth of density
   fluctuations

• time evolution of dark
   matter dist.  tells us
   how the Universe is 
   accelerating
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Lensing effect on galaxies

no lensing lens potential at the center

simulated by glafic
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Convergence and shear
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• κ is related to mass dist. 
   via Poisson eq.

• we observe γ by averaging
   many galaxies’ shapes
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Mass reconstruction
• both κ and γ are second derivatives of ɸ,
   so their relation is simple in Fourier space

• suggests that κ and γ are related to each other
   by convolution in real space (γ is non-local)

• need filtering to suppress shot noise



HSC survey
• ~20% of observations completed
   (talk by Satoshi Miyazaki)

• analysis ongoing....



• mass map for
   ~25 deg2 HSC 
   wide patch 



E-mode and B-mode



Mass selected cluster sample
• from mass map we can select massive clusters 
   of galaxies (using purely gravitational effect)

• this is totally different from traditional cluster
   finding using member galaxies, X-ray, SZ

• HSC survey will be the first survey to provide
   a significant number of mass-selected clusters
   (e.g., Miyazaki, Oguri, et al. 2015, ApJ, 807, 22)



HSC mass reconstruction to-do’s
• HSC data look great and preliminary analysis
   has shown promising results!

• more tests on shape measurements 
   − try multiple methods, various systematics 
      tests (star-galaxy cross-correlation, ...),  quantify
      the accuracy with image simulations 
      (w/ HSC WL working group)

• check effects of source galaxy clustering

• mock catalogs from all-sky ray-tracing sims
   (w/ F. Irie, N. Katayama, T. Hamana, et al.)



3D mass reconstruction
• weak lensing probe projected mass distribution

• source galaxies at different redshifts probe 
   different lens redshift range 
   → 3D mass reconstruction possible
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3D mass reconstruction method
• essentially it is a linear inversion problem

• 3D mass reconstruction is very noisy, thus
   needs efficient filtering using e.g., Wiener filter
   (e.g., Hu & Keeton 2003)



Test example
input (halo at z=0.3)

reconstructed

z=0.05
z=0.85

• 3D reconstruction w/ 
   transverse Wiener 
   filter (e.g., Simon et al. 2009) 

• recover position and 
   redshift of input halo

• smearing in radial 
   direction 



HSC (very preliminary)



Challenges in 3D mass map

• accurate photo-z’s
   (talk by Masayuki Tanaka)

• increase galaxy number density → CMOS??
   (talk by Satoshi Miyazaki)

• improve algorithm
   radial filter? deconvolution? 
   priors from galaxy distribution??



Summary
• weak gravitational lensing enables direct mapping 
   of dark matter distribution

• HSC survey data look great and preliminary 
   results are promising

• need more work for careful systematic checks
   and improving algorithms



Importance of deep imaging

• high source number density is crucial for 
   efficient survey of mass-selected clusters

HSC

DES


