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Introduction



Inflation

The Universe rapidly expanded thanks to the
vacuum energy density In the early stage.

(accelerated expansion: 4> )

Brout, Englert & Gunzig ‘78, Starobinsky ’79, Sato 80, Guth 80, ...
Vacuum energy density
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From inflation to bigbang

At the end of inflation, the vacuum energy is released as
latent heat (called “re”heating) and hot Bigbang Universe is

realized.

Vacuum energy density
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Kinematics



|_ength scales of inflationary universe
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Flatness

small universe o Size of our observable universe

//\

expands by a
factor >1030

looks perfectly
flat

universe

Flatness can be explained only by Inflation



Dynamics



seeds of cosmological perturbations
Mukhanov ’81, ....

Zero-point (vacuum) fluctuations of ¢: 56 = Z 56, (1) ke
k

5py, +3Hp + 0* ()54, =0 5 w’(t) = aI:(Zt) - (%j

physical wavelength Al xa(t)

harmonic oscillator with friction term and time-dependent @

op, — const.
%E é% .- frozen when A > ¢ H?
on superhorizon scales
o 5, ( P )

[tensor (gravitational wave) modes also satisfy the same eq. ]

Starobinsky ‘79



generation of curvature perturbation

Mukhanov ‘81, ‘85; MS ’86, ...

curvature perturbation ‘R = gravitational potential ¥

* 0 is frozen on “flat” (R=0) 3-surface (t=const. hypersurface)

« Inflation ends/damped osc starts on ¢ =const. 3-surface.
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Generic predictions of inflation

® Spatially flat universe

® Almost scale invariant, adiabatic, and
Gaussian primordial density fluctuations

® Almost scale Invariant and Gaussian
primordial tensor fluctuations

‘ Generates anisotropy of CMBR.
Origin of galaxies, stars, ...



- Amplitude of curvature perturbation:

2
R = Lo . Mukhanov (1985), MS (1986)
27Z-¢ k/a=H
- Power spectrum index: M = L 2.4x10°GeV: Planck mass
P 87G
& " 12
4”k3P (k)= Ak™™ ; n,-1= M, 2V 3V
(27) Plov o ve
- Tensor (gravitational wave) spectrum:
A7k’ # 1P, (k)
P.(k)=Ak™ ; n,=-3—= R iddle-
(277 (k) . V- 8P.k) Liddle-Lyth (1992)



Observational results



Map of CMBR by PLANCK

Temperature anisotropy Feb 2015
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Fig. 7. Maximum posterior CMB intensity map at 5' resolution derived from the joint baseline analysis of Planck, WMAP, and
408 MHz observations. A small strip of the Galactic plane, 1.6 % of the sky, is filled in by a constrained realization that has the same

statistical properties as the rest of the sky. blanck 2015 lts. |
anc results.
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- Amplitude of curvature perturbation:

Mukhanov (1985), MS (1986)

[ R, ~10° = VY%(4)~10"GeV }

- Power spectrum index: M, =—1 - 2.4x10°GeV: Planck mass

P 8xG
il , V” VrZ
P, (k)= Ak™™ ; nS—lepl(Z 357

Ak’
(2z)’

[ Mg ppanek —1=-0.032+0.006 < ny—-1~-0.04 for a typical model ]

- Tensor (gravitational wave) spectrum:

4rk’ : P 1P(k
(27;)3 Gl 5 =—3¢7=—§ PREki Liddle-Lyth (1992)
T

[ to be observed by LiteBIRD/... ]




PLANCK constraints

Planck TT+lowP

Planck TT+lowP+BKP
Planck TT+lowP+BKP+BAO
Natural inflation

Hilltop quartic model

(v attractors

Power-law inflation

Low scale SB SUSY

R? inflation (Starobinsky moglel)
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Fig. 54. Marginalized joint 68 % and 95 % CL regions for ns and rypp from Planck alone and in combination with its cross-
correlation with BICEP2/Keck Array and/or BAO data compared with the theoretical predictions of selected inflationary models.

Planck 2015 results. XX



Implications



Planck implications

scalar spectral index: n.<lat~5c
tensor/scalar ratio: r < 0.1 implies E, .i,, < 106 GeV

simple, canonical models are on verge of extinction
(m?¢$p> model excluded at > 2 o)

R? (Starobinsky) model seems to fit best. But why?
(large R? correction but negligible higher order terms)

fy o <O(1) suggests (effectively) single-field slow-roll
(but non-slow-roll models with fy, '@ =0O(1) not excluded)

o

[ perhaps elements of non-canonicality is needed }




non-canonical single-field models

* Non-canonical kinetic term? (c, <1?)
P, 1 (c.: sound speed) , [ o
C

S

1

Planck: ¢,> 0.024 at 95% CL

 non-minimal coupling to gravity?
P, (k) 1

P, ) ¢
Planck: £> 0O(10)?

« scalar-tensor with derivative couplings (Hordeski) ?

V(g)+EP°R =

c, <l ¢, <L c #c,; non-existence of
t Einstein frame?

tensor propagation speed



other possibilities
WMAP/Planck anomalies:

suppression of 8T/T at /<107

hemispherical asymmetry of 8T/T at /< 307

T

« featured models: heavy fields, particle creation,
trans-Planckian, ...

* open inflation, supercurvature modulation, ...

still viable if Q, >103
A>R > H:': supercurvature mode

leading order effect on
our universe is dipolar

T~

our
universe




scalar & tensor spectrum in open inflation

Linde, MS & Tanaka (1999)

2 2 3 2
(R, "[j‘" ) i) | | White, Zhang & MS (2014)
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Future Issues



definition of inflation?  Domenech & MS ‘15
(conformal trans can give any expansion law)

ds® = —dt* +a’(t)dx*

ds® = Q*(t)ds* = dt =Q(t)dt, a(t) = Q(t)a(t)
Initial condition before inflation, multiverse?
successful reheating?
non-linear effects, non-Gaussianities?
gravitational waves at second order?
massive gravity?

[ Identification of Inflaton! }




