Inflationary Universe (project A01)

Toward Understanding Physics/Mechanism of Inflation

Misao Sasaki

YITP, Kyoto University (Original version by Masahide Yamaguchi)

 $c = \hbar = 1$, $M_G = 1/\sqrt{8\pi G} \sim 2.4 \times 10^{18} \text{GeV}$.

Introduction

Inflation

The Universe rapidly expanded thanks to the vacuum energy density in the early stage. (accelerated expansion: $\ddot{a} > 0$)

Brout, Englert & Gunzig '78, Starobinsky '79, Sato '80, Guth '80, ... Vacuum energy density

State of vacuum (expectation value of scalar field) $a(t) \propto \exp[Ht]$

From inflation to bigbang

At the end of inflation, the vacuum energy is released as latent heat (called "re"heating) and hot Bigbang Universe is realized.

Kinematics

Length scales of inflationary universe

Flatness

seeds of cosmological perturbations

Mukhanov '81,

harmonic oscillator with friction term and time-dependent *o*

$$\delta \phi_k \rightarrow \text{const.}$$

••• frozen when $\lambda > c H^{-1}$ (on superhorizon scales)

tensor (gravitational wave) modes also satisfy the same eq.

Starobinsky '79

generation of curvature perturbation Mukhanov '81, '85; MS '86, ...

curvature perturbation $\mathcal{R} \approx$ gravitational potential Ψ

- $\delta \phi$ is frozen on "flat" ($\mathcal{R}=0$) 3-surface (t=const. hypersurface)
- Inflation ends/damped osc starts on ϕ =const. 3-surface.

Generic predictions of inflation

• Spatially flat universe

- Almost scale invariant, adiabatic, and Gaussian primordial density fluctuations
- Almost scale invariant and Gaussian primordial tensor fluctuations

Generates anisotropy of CMBR. Origin of galaxies, stars, ... Amplitude of curvature perturbation:

$$\mathcal{R} = \left. \frac{H^2}{2\pi \dot{\phi}} \right|_{k/a=H}$$
 Mukhanov (1985), MS (1986)

Power spectrum index:

 $M_{pl} \equiv \frac{1}{\sqrt{8\pi G}} \sim 2.4 \times 10^{18} \text{GeV: Planck mass}$

$$\frac{4\pi k^3}{(2\pi)^3} P_{\mathcal{R}}(k) = Ak^{n_s-1} ; \ n_s - 1 = M_{pl}^2 \left(2\frac{V''}{V} - 3\frac{V'^2}{V^2} \right)$$

Tensor (gravitational wave) spectrum:

$$\frac{4\pi k^3}{(2\pi)^3} P_T(k) = Ak^{n_T} ; \quad n_T = -3\frac{\dot{\phi}^2}{V} = -\frac{1}{8}\frac{P_R(k)}{P_T(k)}$$

Liddle-Lyth (1992)

Observational results

Map of CMBR by PLANCK

Temperature anisotropy

Feb 2015

Fig. 7. Maximum posterior CMB intensity map at 5' resolution derived from the joint baseline analysis of *Planck*, WMAP, and 408 MHz observations. A small strip of the Galactic plane, 1.6% of the sky, is filled in by a constrained realization that has the same statistical properties as the rest of the sky.

Planck 2015 results. I

Amplitude of curvature perturbation:

$$\mathcal{R} = \left. \frac{H^2}{2\pi \dot{\phi}} \right|_{k/a=H}$$
 Mukhanov (1985), MS (1986)
$$\mathcal{R}_{obs} \sim 10^{-5} \implies V^{1/4}(\phi) \sim 10^{16} \text{GeV}$$

- Power spectrum index: $M_{pl} = \frac{1}{\sqrt{8\pi G}} \sim 2.4 \times 10^{18} \text{ GeV: Planck mass}$ $\frac{4\pi k^3}{(2\pi)^3} P_{\mathcal{R}}(k) = Ak^{n_s-1} ; \quad n_s - 1 = M_{pl}^2 \left(2\frac{V''}{V} - 3\frac{V'^2}{V^2} \right)$ $n_{S,\text{Planck}} - 1 = -0.032 \pm 0.006 \iff n_s - 1 \sim -0.04 \text{ for a typical model}$
- Tensor (gravitational wave) spectrum:

$$\frac{4\pi k^3}{(2\pi)^3} P_T(k) = Ak^{n_T} ; \quad n_T = -3\frac{\dot{\phi}^2}{V} = -\frac{1}{8}\frac{P_R(k)}{P_T(k)} \qquad \text{Liddle-Lyth (1992)}$$

to be observed by LiteBIRD/...

PLANCK constraints

Fig. 54. Marginalized joint 68 % and 95 % CL regions for n_s and $r_{0.002}$ from *Planck* alone and in combination with its cross-correlation with BICEP2/Keck Array and/or BAO data compared with the theoretical predictions of selected inflationary models.

Implications

Planck implications

- scalar spectral index: $n_s < 1$ at ~ 5 σ
- tensor/scalar ratio: r < 0.1 implies E_{inflation} < 10¹⁶ GeV
- simple, canonical models are on verge of extinction (m²φ² model excluded at > 2 σ)
- R² (Starobinsky) model seems to fit best. But why? (large R² correction but negligible higher order terms)
- f_{NL}^{local} <O(1) suggests (effectively) single-field slow-roll (but non-slow-roll models with f_{NL}^{local} =O(1) not excluded)

perhaps elements of non-canonicality is needed

non-canonical single-field models

Non-canonical kinetic term? (c_s <1?)

$$P_{\mathcal{R}} \propto \frac{1}{c_s}$$
 (c_s : sound speed), $f_{\mathsf{NL}}^{equil} \propto \frac{1}{c_s^2}$
Planck: $c_s > 0.024$ at 95% CL

non-minimal coupling to gravity?

$$V(\phi) + \xi \phi^2 R \implies r = \frac{P_T(k)}{P_R(k)} \propto \frac{1}{\xi}$$

Planck: $\xi > O(10)$?

scalar-tensor with derivative couplings (Hordeski) ?

$$c_s < 1, \quad c_{s,T} < 1, \quad c_s \neq c_{s,T}$$

non-existence of Einstein frame?

tensor propagation speed

other possibilities

WMAP/Planck anomalies:

suppression of δ T/T at /<10?

hemispherical asymmetry of δ T/T at l < 30?

- featured models: heavy fields, particle creation, trans-Planckian, ...
- open inflation, supercurvature modulation, ...

scalar & tensor spectrum in open inflation

Future Issues

- definition of inflation? Domenech & MS '15 (conformal trans can give any expansion law) $ds^2 = -dt^2 + a^2(t)d\vec{x}^2$ $d\tilde{s}^2 = \Omega^2(t)ds^2 \Rightarrow d\tilde{t} = \Omega(t)dt, \ \tilde{a}(\tilde{t}) = \Omega(t)a(t)$
- initial condition before inflation, multiverse?
- successful reheating?
- non-linear effects, non-Gaussianities?
- gravitational waves at second order?
- massive gravity?

Identification of Inflaton!