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Outline
Theory of large-scale structure formation to confront with 

precision observations

Perturbation theory (PT) calculations: 
limitation and beyond

•Key observations beyond ΛCDM model

•ΛCDM model:  our current view of the Universe

Hard 
core

•Theoretical issues : improving/renovating theoretical tools
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Base ΛCDM model

•Minimal model characterized by only 6 parameters:

flat universe with cosmological constant 
& adiabatic power-law initial fluctuations

•Model consistently describes both cosmic expansion & structure 
formation

:  baryon density

:  CDM density

:  distance ratio to 
last scattering surface

 :  scalar spectral index

:  reionization optical depth

�bh2

�ch
2

ns

�MC �
ln(1010As) :  amplitude of curvature fluctuation



“Beyond ΛCDM” model

Success of minimal model does not imply model is convincing :

✓ Untested hypothesis :

✓ Invisible components:

No evidence for significant deviation from ΛCDM model
Success of Occam’s razor

Need a sensitive probe to 
test/clarify these issues

General relativity on cosmological scales,
Gaussianity of fluctuations, 
Copernican principle,  …

 Dark matter, Dark energy

However,

Dark Energy
69.1%

26.1%
4.8%

Dark 
Matter

baryon



Large-scale structure (LSS)
• Spatial matter inhomogeneity over ~ Gpc

• has evolved under the influence of gravity & cosmic expansion

Rich cosmological info on:

✓structure formation
✓primordial fluctuations

✓dynamics of cosmic expansion

SDSS-II

6dF

2dF

CFHTLens

 LSS offers testing grounds of ΛCDM model, 
and can provide a clue to ‘beyond ΛCDM’ model
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SuMIRe is powerful to pin down 
late-time universe (z~1)

Galaxy redshift survey with PFS
Weak lensing survey with HSC



LSS formation in ΛCDM model
z=18.3

0.21 Gyrs

http://www.mpa-garching.mpg.de/galform/millennium/

z=5.7
1 Gyrs

z=1.4

4.7 Gyrs

z=0 （Now）
13.8 Gyrs

31.25Mpc/h

Gaussian initial condition

Build up hierarchical clustering 
of matter distribution

Formation & merging of 
dark matter halos



Signature of “beyond ΛCDM”
Cosmic acceleration

(dark energy)

Growth 
of structure

Modification
 of gravity

Geometric distance 
to LSS (galaxies)

Hot/warm components
 of dark matter

All the tiny deviations from ΛCDM are imprinted on statistical 
properties of LSS  → precision statistical measurement is a key

Primordial 
non-Gaussianity Formation & clustering 

of halos/galaxies

Structure of halos



Key LSS observations: summary

Structure of dark matter halo

• Abundance of substructure (subhalo)
• Profiles of halo

(� 10 h�1 Mpc)

Clustering properties of galaxies/halos

• Free-streaming damping : mass of neutrinos
• Redshift-space distortion :  test of gravity

(� 10 h�1 Mpc)

: diagnosis of CDM paradigm & nature of gravity

Shape of WL & galaxy power spectra → cosmological parameters
Further

• Baryon Acoustic Oscillation :  cosmic acceleration

• Ultra-large scale clustering:  Gaussianity /Copernican principle



Theoretical issues

Need improvement on theory of large-scale structure formation

• Improving accuracy of theoretical predictions

• Incorporating new physical effects beyond ΛCDM model
(how/warm dark matter, relativistic effect, modification to gravity, …)

Confronting with the era of data-driven cosmology,

•Controlling/reducing systematics (e.g., galaxy bias)

Standard theoretical tools have to be renovated
Further, 

(theoretical template)



Tools for theory of LSS formation
Beyond linear theory,  theory of dark-matter dominated structure 
formation build up with several analytical & numerical tools

Perturbation theory (PT) 
(based on fluid approx.)

�pi

dt
= �Gm2

a

N�

j �=i

�xi � �xj

|�xi � �xj |3

�pi = ma2 d�xi

dt

(i = 1, 2, · · · , N)

http://www.projet-horizon.fr/

Discreteness
Making/locating galaxies UV-sensitivity at higher order

Cosmological  
N-body simulation

poor convergence of standard PT expansion, since
the low-k behavior of regularized propagators heav-
ily relies on the standard PT treatment. To be spe-

cific, the convergence of !ð1Þ
reg is the main source of

this discrepancy. Indeed, if !ð1Þ
reg is computed at one-

loop order only, the power spectrum is enhanced, and
then N-body results at low k lie in between the two
predictions. The impact of the high-order PT correc-
tions to the two-point propagator are specifically
studied in a separate publication, [38].

(ii) Another discrepancy can be found in the high-z
results, which temporally overshoot the N-body
results at mid-k regime (k# 0:2–0:3h Mpc$1). It
is unlikely to be due to a poor convergence of
standard PT expansion. We rather think that the
performances of the N-body simulations might be
responsible for this (small) discrepancy. We have
tested several runs with different resolutions, and
found that the low-resolution simulation with a
small number of particles tends to underestimate
the power at high z. Possible reason for this comes
from the precision of force calculation around the
intervening scales, where the tree and particle-mesh
algorithms are switched, and we suspect that the
discrepancy is mainly attributed to the inaccuracy of

the tree algorithm. Though the intervening scale is
usually set at a sufficiently small scale, with a low-
resolution simulation, it may affect the large-scale
dynamics with noticeable effects at higher redshifts.
Systematic studies on the convergence and resolu-
tion of N-body simulations will be reported else-
where [42].

Apart from the tiny systematics at subpercent level,
REGPT approach can give a reliable power spectrum pre-
diction at rather wider range, which entirely covers the
relevant scales of BAOs at z * 0:35. As we will see later in
Sec. VI B, the applicable range of the REGPT calculation
remains wide enough even in other cosmological models,
and can be empirically described with the criterion (42).

C. Correlation function

We next consider the two-point correlation function,
which can be computed from the power spectrum as

!ðrÞ ¼
Z dkk2

2"2 PðkÞ sinðkrÞ
kr

: (29)

In Fig. 10, left panel focuses on the behaviors around the
baryon acoustic peak, while right panel shows the global
shape of the two-point correlation function plotted in loga-
rithmic scales, for which !ðrÞ has been multiplied by the

FIG. 9 (color online). Comparison of power spectrum results between N-body simulations and REGPT calculations. In each panel, the
results at z ¼ 3, 2, 1, and 0.35 are shown (from top to bottom). Left panel shows the ratio of power spectrum to the smooth linear
spectrum, PðkÞ=Pno$wiggleðkÞ, where the reference spectrum Pno$wiggleðkÞ is calculated from the no-wiggle formula of the linear

transfer function in Ref. [47]. Solid lines are the REGPT results, while dotted lines represent the linear theory predictions. Right panel
plots the difference between N-body and REGPT results normalized by the no-wiggle spectrum, i.e., ½PN$bodyðkÞ $
PRegPTðkÞ'=Pno$wiggleðkÞ. In each panel, the vertical arrows respectively indicate the maximum wavenumber below which a percent-

level agreement with N-body simulation is achieved with Lagrangian resummation theory [25,48] and closure theory [22,29],
including the PT corrections up to two-loop order.
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AT et al. (’12)

(e.g., simulation, halo model, perturbation theory, …)



UV problem in perturbation theory

next-to-next-to-leading order (2-loop)

next-to-leading order (1-loop)

k=0.16 [h/Mpc]

Nishimichi, Bernardeau & AT 
(arXiv:1411.2970)
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Linear

z=0.375

Blas et al. (’14)

Very big 
corrections at 
3-loop order !!JCAP01(2014)010
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Figure 2. Comparison at redshifts z = {0, 0.375, 0.833, 1.75} of SPT up to one loop (black dashed
lines), two loops (black dot-dashed) and three loops (black diamonds) with N-body results of the
Horizon Run 2 [28] (red dots, see appendix C). The black line corresponds to the linear result. We
also show the results of Padé resummation (same styles as for SPT but in blue, see section 4); at
z = 0 the blue and black dashed line lie on top of each other.
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Figure 3. Same as figure 2 for redshifts z = {2.67, 4.5}

This is not obvious for other approaches, as the Zel’dovich approximation (ZA). For the
latter, the structure of the F

n

kernels di↵ers from the SPT dynamics at low-k, and di↵erent
contributions at higher loop order are suppressed by additional factors of the momentum

– 9 –

N-body simulations

Standard PT 3-loop

Standard PT 1-loop
Standard PT 2-loop

N-body simulations

2-loop



Effective field theory ?
“UV-insensitive” behavior in simulations would be attributed to 

small-scale physics that cannot be dealt with fluid approx.
(e.g., formation/merging of halos)

Power spectrum and kernel function in effective field theory of large-scale structure

Atsushi Taruya
(Dated: April 9, 2015)

Using a numerical scheme to compute the kernels of standard perturbation theory (PT), we
compute the kernel function of power spectrum in the context of effective field theory of large-scale
structure (EFTofLSS).

PACS numbers:

I. BASIC EQUATIONS FOR PERTURBATIONS

In the standard PT formalism, we normally adopt the single-stream approximation, under which the (CDM+baryon)
system can be reduced to a pressureless fuild system. In the context of EFTofLSS, on top of this treatment, we
introduce the effective stress tensor, τij , which superficially describes the effect of small-scale physics, and compensate
the deviation from single-stream approximation after shell-crossing. The governing equations for perturbations are
then

∂δ

∂t
+

1
a
∇ · [(1 + δ)v] = 0, (1)

∂v

∂t
+ H v +

1
a
(v ·∇) · v = −1

a
∇ψ − 1

ρm

1
a
∇τij , (2)

1
a2

∇2ψ =
κ2

2
ρm δ (3)

(4)

with κ2 = 8πG. The functional form of the stress tensor τij can be in principle derived from the collisionless
Boltzmann equation by taking a spatial average over the small scales. It generally involves not only a type of pressure
perturbation and shear viscosity terms but also the nonlinear interaction terms, which may not be locally expressed
in terms of the fluid quantities. Here, we are particularly concerned with the power spectrum at the one-loop order
of standard PT calculations. In this case, the relevant terms would be the leading-order terms which are expressed in
terms of a linear combination of the fluid quantities. We then write the effective stress tensor as (e.g., [1–3])

τij = ρm

[(
c2
s δ −

c2
bv

aH
∇ · v

)
δij −

3
4

c2
sv

aH

{
∂jvi + ∂ivj −

2
3
(∇ · v)δij

}]
. (5)

The coefficient cs is the sound speed, while csv and cbv are the shear and bulk viscosity coefficients with units of speed.
Eqs. (1)–(3) with effective tensor (5) are the basic equations for perturbations. In Fourier space, these can be

reduced to a more compact form. As usual in the standard PT formalism, we assume the irrotationality of fluid
quantities, and introduce the velocity divergence field, θ = ∇ · v/(aH). Then, we have

H−1 ∂δ(k)
∂t

+ θ(k) = −
∫

d3k1d3k2

(2π)3
δD(k − k12)α(k1, k2) θ(k1)δ(k2), (6)

H−1 ∂θ(k)
∂t

+

{
2 +

Ḣ

H2

}
θ(k) +

κ2 ρm

2H2
δ(k) − k2

a2H2

{
c2
s δ(k) − c2

v θ(k)
}

= −1
2

∫
d3k1d3k2

(2π)3
δD(k − k12)β(k1, k2) θ(k1)θ(k2), (7)

where we define c2
v = c2

bv + c2
sv

1. The functions α and β are the mode-coupling kernels given by

α(k1, k2) = 1 +
k1 · k2

|k1|2
, β(k1, k2) =

(k1 · k2)|k1 + k2|2

|k1|2|k2|2
.

1 That is, as long as we consider the irrotational flow, the shear and bulk viscosity are indistinguishable.

Introducing effective stress tensor to counteract with UV-sensitive terms 
in PT calculation

Baumann et al. (’12), Carrasco, Herzberg & 
Senatore (’12), Carrasco et al. (‘13ab), …

“Effective field theory (EFT)” of large-scale structure
4

FIG. 1: Standard PT predictions for the power spectra at one-loop order in real space. Adopting the cosmological parameters
determined by wmap5, the power spectra are computed, and results at z = 1 (top) and 0.35 (bottom) are plotted. The thin dotted
lines are the linear theory predictions, while the black solid lines are the normal standard PT results. For reference, we also
plot the prediction based on the RegPT treatment (magenta). On the other hand, red and blue curves are the results including
the EFTofLSS corrections (labeled as EFT), for which we specifically set the EFTofLSS coefficients to (c2

s , c
2
v) = (10−7c2, 0)

and (2 × 10−7c2, 0), respectively.

Fig. 1 shows the results of standard PT calculations. We here plot the cases at z = 1 (top) and z = 0.35 (bottom),
and the results are compared with N -body simulations (taken from Ref. [4]). The black solid lines represent the
normal case of standard PT calculations (i.e., c2

s = c2
v = 0), while the red and blue curves are the results with

EFTofLSS corrections (labeled as EFT). Here, we particularly choose c2
s = 10−7c2 (red), 2× 10−7c2 (blue), setting c2

v
to zero5. Note that as shown in Fig. 2, the dependence of the linear power spectrum on the coefficients c2

s and c2
v is

mostly degenerate. Thus, at the linear order, the role of the EFTofLSS corrections can be parameterized by the single
parameter, c2

s +fc2
v, with f being the linear growth rate (see also Ref. [3]). Since this degeneracy approximately holds

even at one-loop order, we shall set c2
v = 0 below. Fig. 1

Fig. 1 shows that the EFTofLSS corrections can reduce the power spectrum amplitude at high-k, and with an
appropriate choice of c2

s , the agreement between N -body simulation and PT calculation is improved. For reference,
we also plot the RegPT one-loop result (dashed magenta, with c2

s = c2
v = 0), however, a strong damping of the RegPT

power spectrum appears at relatively low-k, and thus the EFT predictions are superficially excellent (if we properly
choose the coefficients).

5 These coefficients may not be independent of time, because the EFTofLSS corrections are in general non-local. Here, just for simplicity,
we consider the time-independent coefficients, and study the role of EFTofLSS corrections.

EFT

EFT
Standard PT

Linear

c2
s = 10�7c2

c2
s = 2� 10�7c2

RegPT

z=1

4

FIG. 1: Standard PT predictions for the power spectra at one-loop order in real space. Adopting the cosmological parameters
determined by wmap5, the power spectra are computed, and results at z = 1 (top) and 0.35 (bottom) are plotted. The thin dotted
lines are the linear theory predictions, while the black solid lines are the normal standard PT results. For reference, we also
plot the prediction based on the RegPT treatment (magenta). On the other hand, red and blue curves are the results including
the EFTofLSS corrections (labeled as EFT), for which we specifically set the EFTofLSS coefficients to (c2

s , c
2
v) = (10−7c2, 0)

and (2 × 10−7c2, 0), respectively.

Fig. 1 shows the results of standard PT calculations. We here plot the cases at z = 1 (top) and z = 0.35 (bottom),
and the results are compared with N -body simulations (taken from Ref. [4]). The black solid lines represent the
normal case of standard PT calculations (i.e., c2

s = c2
v = 0), while the red and blue curves are the results with

EFTofLSS corrections (labeled as EFT). Here, we particularly choose c2
s = 10−7c2 (red), 2× 10−7c2 (blue), setting c2

v
to zero5. Note that as shown in Fig. 2, the dependence of the linear power spectrum on the coefficients c2

s and c2
v is

mostly degenerate. Thus, at the linear order, the role of the EFTofLSS corrections can be parameterized by the single
parameter, c2

s +fc2
v, with f being the linear growth rate (see also Ref. [3]). Since this degeneracy approximately holds

even at one-loop order, we shall set c2
v = 0 below. Fig. 1

Fig. 1 shows that the EFTofLSS corrections can reduce the power spectrum amplitude at high-k, and with an
appropriate choice of c2

s , the agreement between N -body simulation and PT calculation is improved. For reference,
we also plot the RegPT one-loop result (dashed magenta, with c2

s = c2
v = 0), however, a strong damping of the RegPT

power spectrum appears at relatively low-k, and thus the EFT predictions are superficially excellent (if we properly
choose the coefficients).

5 These coefficients may not be independent of time, because the EFTofLSS corrections are in general non-local. Here, just for simplicity,
we consider the time-independent coefficients, and study the role of EFTofLSS corrections.

At 1-loop 
order

Pressure, viscosity, …



Effective field theory ?
“UV-insensitive” behavior in simulations would be attributed to 

small-scale physics that cannot be dealt with fluid approx.
(e.g., formation/merging of halos)

Power spectrum and kernel function in effective field theory of large-scale structure

Atsushi Taruya
(Dated: April 9, 2015)

Using a numerical scheme to compute the kernels of standard perturbation theory (PT), we
compute the kernel function of power spectrum in the context of effective field theory of large-scale
structure (EFTofLSS).

PACS numbers:

I. BASIC EQUATIONS FOR PERTURBATIONS

In the standard PT formalism, we normally adopt the single-stream approximation, under which the (CDM+baryon)
system can be reduced to a pressureless fuild system. In the context of EFTofLSS, on top of this treatment, we
introduce the effective stress tensor, τij , which superficially describes the effect of small-scale physics, and compensate
the deviation from single-stream approximation after shell-crossing. The governing equations for perturbations are
then
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(4)

with κ2 = 8πG. The functional form of the stress tensor τij can be in principle derived from the collisionless
Boltzmann equation by taking a spatial average over the small scales. It generally involves not only a type of pressure
perturbation and shear viscosity terms but also the nonlinear interaction terms, which may not be locally expressed
in terms of the fluid quantities. Here, we are particularly concerned with the power spectrum at the one-loop order
of standard PT calculations. In this case, the relevant terms would be the leading-order terms which are expressed in
terms of a linear combination of the fluid quantities. We then write the effective stress tensor as (e.g., [1–3])
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}]
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The coefficient cs is the sound speed, while csv and cbv are the shear and bulk viscosity coefficients with units of speed.
Eqs. (1)–(3) with effective tensor (5) are the basic equations for perturbations. In Fourier space, these can be

reduced to a more compact form. As usual in the standard PT formalism, we assume the irrotationality of fluid
quantities, and introduce the velocity divergence field, θ = ∇ · v/(aH). Then, we have
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where we define c2
v = c2

bv + c2
sv

1. The functions α and β are the mode-coupling kernels given by

α(k1, k2) = 1 +
k1 · k2

|k1|2
, β(k1, k2) =

(k1 · k2)|k1 + k2|2

|k1|2|k2|2
.

1 That is, as long as we consider the irrotational flow, the shear and bulk viscosity are indistinguishable.

Introducing effective stress tensor to counteract with UV-sensitive terms 
in PT calculation

Baumann et al. (’12), Carrasco, Herzberg & 
Senatore (’12), Carrasco et al. (‘13ab), …

“Effective field theory (EFT)” of large-scale structure
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FIG. 1: Standard PT predictions for the power spectra at one-loop order in real space. Adopting the cosmological parameters
determined by wmap5, the power spectra are computed, and results at z = 1 (top) and 0.35 (bottom) are plotted. The thin dotted
lines are the linear theory predictions, while the black solid lines are the normal standard PT results. For reference, we also
plot the prediction based on the RegPT treatment (magenta). On the other hand, red and blue curves are the results including
the EFTofLSS corrections (labeled as EFT), for which we specifically set the EFTofLSS coefficients to (c2

s , c
2
v) = (10−7c2, 0)

and (2 × 10−7c2, 0), respectively.

Fig. 1 shows the results of standard PT calculations. We here plot the cases at z = 1 (top) and z = 0.35 (bottom),
and the results are compared with N -body simulations (taken from Ref. [4]). The black solid lines represent the
normal case of standard PT calculations (i.e., c2

s = c2
v = 0), while the red and blue curves are the results with

EFTofLSS corrections (labeled as EFT). Here, we particularly choose c2
s = 10−7c2 (red), 2× 10−7c2 (blue), setting c2

v
to zero5. Note that as shown in Fig. 2, the dependence of the linear power spectrum on the coefficients c2

s and c2
v is

mostly degenerate. Thus, at the linear order, the role of the EFTofLSS corrections can be parameterized by the single
parameter, c2

s +fc2
v, with f being the linear growth rate (see also Ref. [3]). Since this degeneracy approximately holds

even at one-loop order, we shall set c2
v = 0 below. Fig. 1

Fig. 1 shows that the EFTofLSS corrections can reduce the power spectrum amplitude at high-k, and with an
appropriate choice of c2

s , the agreement between N -body simulation and PT calculation is improved. For reference,
we also plot the RegPT one-loop result (dashed magenta, with c2

s = c2
v = 0), however, a strong damping of the RegPT

power spectrum appears at relatively low-k, and thus the EFT predictions are superficially excellent (if we properly
choose the coefficients).

5 These coefficients may not be independent of time, because the EFTofLSS corrections are in general non-local. Here, just for simplicity,
we consider the time-independent coefficients, and study the role of EFTofLSS corrections.
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At 1-loop 
order

Pressure, viscosity, …•  It does not imply EFT properly describes nonlinear mode-coupling 
structure of gravitational dynamics

•  Free parameters need to be calibrated with simulations
 → lose predictability

Remarks   EFT superficially looks better, but

Need a more fundamental treatment



Vlasov-Poisson: back to the source

Vlasov-Poisson 
system
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A more fundamental description :

•  Reduced to a (pressureless) fluid system for single-stream flow:

• N→∞ limit of self-gravitating N-body system 

Single-stream flow is initially correct, but will be later violated 
(at small scales)

(collisionless Boltzmann)
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Post-collapse perturbation theory

Colombi (’15),  AT & Colombi (in progress)

Zel’dovich
Post-collapse PT

Simulation

Going beyond shell-crossing,  a new analytical framework needs 
to be developed

Note—. Zel’dovich solution is exact in 1D before shell crossing

Lagrangian-based PT that can follow post-collapse dynamics

A performance in 1D: 
cold collapse
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power spectrum 
of density field

Simulation by 
S.  Colombi

Post-collapse perturbation theory

phase space

Random initial 
condition (in 1D)

AT & Colombi (in progress)

• Post-collapse PT surpasses 
fluid-based PT methods

Zel’dovich
Post-collapse PT

Simulation

Post-collapse PT

Zel’dovich

• Extension from 1D to 3D 
is straightforward
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ABSTRACT

We present a scheme for numerical simulations of collisionless self-gravitating systems which directly integrates the
Vlasov–Poisson equations in six-dimensional phase space. Using the results from a suite of large-scale numerical
simulations, we demonstrate that the present scheme can simulate collisionless self-gravitating systems properly.
The integration scheme is based on the positive flux conservation method recently developed in plasma physics.
We test the accuracy of our code by performing several test calculations, including the stability of King spheres, the
gravitational instability, and the Landau damping. We show that the mass and the energy are accurately conserved for
all the test cases we study. The results are in good agreement with linear theory predictions and/or analytic solutions.
The distribution function keeps the property of positivity and remains non-oscillatory. The largest simulations are
run on 646 grids. The computation speed scales well with the number of processors, and thus our code performs
efficiently on massively parallel supercomputers.

Key words: galaxies: kinematics and dynamics – methods: numerical

Online-only material: color figures

1. INTRODUCTION

Gravitational interaction is one of the most important physical
processes in the dynamics and the formation of astrophys-
ical objects, such as star clusters, galaxies, and the large-
scale structure of the universe. Stars and dark matter in these
self-gravitating systems are essentially collisionless, except for
a few cases, such as globular clusters and stars around supermas-
sive black holes. The dynamics of the collisionless systems is
described by the collisionless Boltzmann equation or the Vlasov
equation.

Conventionally, gravitational N-body simulations are used to
follow the evolution of collisionless systems. In such simu-
lations, particles represent sampled points of the distribution
function in the phase space. The particles—point masses—
interact gravitationally with other particles, through which their
orbits are determined. They are actually superparticles of stars
or dark matter particles. The gravitational potential field repro-
duced in an N-body simulation is therefore intrinsically grainy
rather than what it should be in the real physical system. It is
well known that two-body encounters can alter the distribution
function in a way that violates the collisionless feature of the
systems, and undesired artificial two-body relaxation is often
seen in N-body simulations. There is another inherent problem
in N-body simulations. Gravitational softening needs to be intro-
duced to avoid artificial large-angle scattering of particles caused
by close encounters. Physical quantities such as mass density
and velocity field are subject to intrinsic random noise owing to
the finite number of particles especially in low-density regions.

To overcome these shortcomings of the N-body simulations,
several alternative approaches have been explored. For example,
the self-consistent field (SCF) method (Hernquist & Ostriker
1992; Hozumi 1997) integrates orbits of particles under the
gravitational field calculated by expanding the density and the
gravitational potential into a set of basis functions. In the SCF
method, the particles do not directly interact with one another but

move on the smooth gravitational potential calculated from the
overall distribution of the particles. Despite of these attractive
features, the major disadvantage of the SCF method is its
inflexibility that the basis set must be chosen so that the lowest
order terms reproduce the global structure of the systems under
investigation (Weinberg 1999). In other words, the SCF method
can be applied only to the symmetric gravitational collapse or
the secular evolution of the collisionless systems.

The ultimate approach for numerical simulations of the
collisionless self-gravitating systems would be direct inte-
gration of the collisionless Boltzmann equation, or Vlasov
equation, combined with the Poisson equation. The advan-
tage of the Vlasov–Poisson simulations was previously shown
by Janin (1971) and Cuperman et al. (1971), who studied
one-dimensional violent relaxation problems using the water-
bag method (Hohl & Feix 1967; Roberts & Berk 1967).
Fujiwara (1981, 1983), for the first time, successfully solved
the Vlasov–Poisson equations for one-dimensional and spheri-
cally symmetric systems using the finite volume method. Other
grid-based approaches include the seminal splitting method of
Cheng & Knorr (1976), more generally the semi-Lagrangean
methods (Sonnendrücker 1998), a finite element method (Zaki
et al. 1988), a finite volume method (Filbet et al. 2001), the
spectral method (Klimas 1987; Klimas & Farrell 1994), and a
more recent multi-moment method (Minoshima et al. 2011).
A comparison study of some of these methods is presented in
Filbet & Sonnendrücker (2003).

So far, such direct integration of the Vlasov equation has been
applied only to problems in one or two spatial dimensions. Solv-
ing the Vlasov equation in six-dimensional phase space requires
an extremely large memory and computational time. However,
the rapid development of massively parallel supercomputers has
made it possible to simulate collisionless self-gravitating sys-
tems in the full six-dimensional phase space by numerically
integrating the Vlasov–Poisson equations with a scientifically
meaningful resolution.
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ABSTRACT
Dark matter numerical simulations and the N -body method are essential for understanding
how structure forms and evolves in the Universe. However, the discrete nature of N -body
simulations can a↵ect its accuracy when modelling collisionless systems.
We introduce a new approach to simulate the gravitational evolution of cold collisionless
fluids by solving the Vlasov-Poisson equations in terms of adaptively refineable “Lagrangian
phase space elements”. These geometrical elements are piecewise smooth maps between
three-dimensional Lagrangian space and six-dimensional Eulerian phase space and ap-
proximate the continuum structure of the distribution function. They allow for dynamical
adaptive splitting to accurately follow the evolution even in regions of very strong mixing.
The elements thus permit a deterministic non-linear description of self-gravitating cold
and collisionless fluids in the continuous limit.
We discuss in detail various one-, two- and three-dimensional test problems which demon-
strate the correctness and performance of our method. We show that our method has
several advantages compared to standard N -body algorithms by i) explicitly tracking the
fine-grained distribution function, ii) naturally representing caustics, iii) providing an
arbitrarily regular density field that is defined everywhere in space, iv) giving directly a
smooth and regular gravitational potential field, thus eliminating the need for any type of
ad-hoc force softening.
Finally, we illustrate the feasibility of using our method for cosmological studies by
simulating structure formation in a warm dark matter cosmology. We show that spurious
collisionality and large-scale discreteness noise of N -body methods are both strongly
suppressed, which eliminates artificial fragmentation of filaments while providing access to
the full deterministic evolution of the fluid in phase space.
Therefore, we argue that our new approach improves on the N -body method when
simulating self-gravitating cold and collisionless fluids, and is the first method that allows
to explicitly follow the fine-grained evolution in six-dimensional phase space.

Key words: cosmology: dark matter – cosmology: large-scale structure of the Universe –
cosmology: theory – galaxies: kinematics and dynamics – methods: numerical

1 INTRODUCTION

Numerical simulations lie at the very heart of contemporary
cosmology. They are the only method that can accurately follow
the growth of small primordial density fluctuations into the
highly nonlinear objects that populate the low-redshift Universe
(e.g. Davis et al. 1985; Efstathiou et al. 1985; Bertschinger 1998;
Springel et al. 2005; Angulo et al. 2012). As such, they have
proven an indispensable tool in the formulation of our theory
of cosmological structure formation and in the validation of
the ⇤CDM model.

Since most of the mass in the Universe appears to be in

? Email: hahn@phys.ethz.ch
† Email: rangulo@cefca.es

the form of dark matter (DM; a fundamental particle with a
negligible non-gravitational interaction cross-section with both
itself and baryonic matter), numerical simulations that only fol-
low gravitational forces were the natural first tool employed by
pioneer cosmologists. Since the 1970s, these simulations have
progressively increased their scope and accuracy, nowadays
spanning a huge dynamic range. State-of-the-art simulations
employ trillions of bodies to describe volumes comparable to
the observable Universe, while resolving the collapsed DM
structures that could host the faintest galaxies (see e.g. Heit-
mann et al. 2014; Skillman et al. 2014; Ishiyama et al. 2014,
for recent examples).

A milestone in the history of gravity-only simulations was
the establishment of a universal form for the density profile
of collapsed dark matter haloes (Navarro et al. 1996, 1997).
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b)

c) d)

a)

Figure 14. The initial conditions for the “ripple-wave” test problem
(cf. Sec. 4.2). Shown are the particle locations (panel a), the density
field using the tetrahedral phase space elements (panel b), using
tri-linear elements (panel c) and using tri-quadratic elements (panel
d). The linear elements are discontinuous at element boundaries,
while the quadratic is continuous.

tri-quadratic reconstructed from N-body 323

tri-quadratic 323 self-consistent

Figure 16. Comparison between a reconstruction of the tri-
quadratic density field from the 322 standard N-body run (top
half-panel) and the self-consistent evolution of the tri-quadratic
elements (bottom half-panel). One clearly sees that N -body particle
noise significantly perturbs the solution, in particular, caustics are
not persistent.

using refinement in Figure 17, comparing once more against
the 5123 particle high-res N -body solution at the same force
resolution. We only consider the tri-quadratic elements in this
case, although the linear elements also perform reasonably well.
We started with the same 323 initial conditions as in the fixed
resolution test shown in Figure 15, but now employed the force
refinement criterion with a threshold of 0.1 to dynamically
split elements if required (the results using velocity refinement
are however not significantly di↵erent). The solution allowing
for one additional level of refinement is shown in the top panel,
the one for two levels in the middle panel, and the reference
N -body solution at the bottom. Rather strikingly, the solutions
quickly converge to the reference solution in the exact shape
and position of caustics. Already with one additional level, the
central density of the clump is comparable to the reference
solution. We do not perform a more quantitative solution of

a. 323 + one level dynamic adaptive refinement

b. 323 + two level dynamic adaptive refinement

c. 5123 N-body

Figure 17. The ripple wave collapse test with dynamic adaptive
refinement. The 323 runs use the same initial conditions as in Fig. 15,
tri-quadratic elements and one (top, panel a), and two (middle, panel
b) of dynamic adaptive refinement. The bottom panel shows the
solution of a high-resolution N -body run using 5123 particles at the
same 2563 PM force resolution. On clearly sees how adding more
supporting points approaches the high-resolution N -body solution.
Still, the top two panels have significantly fewer degrees of freedom
than the N -body run.

these toy problems but let the images speak for themselves
and perform a quantitative convergence study of refinement
in the next section, where we apply the Lagrangian element
method to cosmological structure formation.

5 A FIRST APPLICATION: COSMOLOGICAL
SIMULATION OF A WARM DM UNIVERSE

We now apply our Lagrangian phase space element method to a
cosmological problem. We simulate the gravitational evolution
of a L=20 Mpc/h cube in a universe where dark matter is
made of warm particles of mass m

dm

= 250 eV, leading to a
small-scale cut-o↵ in the density perturbation spectrum.

The cosmological parameters we employ correspond to

c� 0000 RAS, MNRAS 000, 000–000

New analytic framework will also help to 
develop cosmological Vlasov code



Summary

Renovating perturbation theory (PT) tool:

• “post-collapse PT”:  new PT treatment based on Vlasov-Poisson

→ performance in 1D cosmology

Theoretical tool (template) needs to be improved: 
accuracy, systematics, new physical effects, … 

Precision observations of large-scale structure will provide 
an important clue to go beyond ΛCDM model

• Limitation of current  PT framework based on single-stream approx.

Should help to clarify/understand nature of dark matter/dark energy

To confront with precision observations,


