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Qutline

Theory of large-scale structure formation to confront with
precision observations

* ACDM model: our current view of the Universe

* Key observations beyond ACDM model

* Theoretical issues : improving/renovating theoretical tools

Perturbation theory (PT) calculations: Hard
limitation and beyond ' .«



Polarization

Planck 2015
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Base ACDM model

flat universe with cosmological constant
& adiabatic power-law initial fluctuations

* Minimal model characterized by only 6 parameters:

* Model con5|stently descrlbes both cosmic expan5|on & structure
formation ’ o Linives




“Beyond ACDM” model

No evidence for significant deviation from ACDM model
------- Success of Occam’s razor

owever,
Success of minimal model does not imply model is convincing :

v Untested hypothesis : General relativity on cosmological scales,
Gaussianity of fluctuations,
Copernican principle, ...

¥ Invisible components: Dark matter, Dark energy

Dark o o
VI, 2617 Need a sensitive probe to

test/clarify these issues

Dark Energy

69.1%




Large-scale structure (LSS)

e Spatial matter inhomogeneity over ~ Gpc

* has evolved under the influence of gravity & cosmic expansion

Rich cosmological info on:

v primordial fluctuations

LSS offers testing grounds of ACDM model,
and can provide a clue to ‘beyond ACDM’ model
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SDSS-II



Timeline of Universe

380,000 yrs 13.8G yrs



Timeline of Universe

IRe is powerful to pin down
CMB late-time universe (z~1)

o>

380,000 yrs 13.8G yrs



LSS formation in ACDM model

IY' .3.. .1\* !

 Gaussian initial condition
0.2|§5yrsi’ B o Y )

Formation & merging of
dark matter halos

L 2=0" (Now)
w .

13.8 Gyrs. © 4 .
&

Build up hierarchical clustering & 31.25Mpc/h-

of matter distribution - '———_—""

http://www.mpa-garching.mpg.de/galform/millennium/



Signature of “beyond ACDM”

Cosmic acceleration Geometric distance

(dark energy) to LSS (galaxies)

Modification

of gravity ! Growth

of structure
Hot/warm components

of dark matter '@% Structure of halos

Primordial - : " |
non-Gaussianity Formation & clustering

of halos/galaxies

All the tiny deviations from ACDM are imprinted on statistical
properties of LSS — precision statistical measurement is a key



Key LSS observations: summary

Clustering properties of galaxies/halos (2 10A™" Mpc)

* Baryon Acoustic Oscillation : cosmic accelefgTsloly s

* Redshift-space distortion : test of gravity
* Free-streaming damping : mass of neutrinos fi&= R
* Ultra-large scale clustering: Gaussianity /Cqjslslgalfe:1s¥s7g13elIo] (=g

Further
Shape of WL & galaxy power spectra — cosmological parameters

Structure of dark matter halo (< 10h™' Mpc)

* Profiles of halo
* Abundance of substructure (subhalo)

: diagnosis of CDM paradigm & nature of gravity



Theoretical issues

Confronting with the era of data-driven cosmology,

Need improvement on theory of large-scale structure formation

(theoretical template)
* Improving accuracy of theoretical predictions
* Controlling/reducing (e.g., galaxy bias)

*Incorporating beyond ACDM model

(how/warm dark matter, relativistic effect, modification to gravity, ...)

Further,

Standard theoretical tools have to be renovated



Tools for theory of LSS formation

Beyond linear theory, theory of dark-matter dominated structure
formation build up with several analytical & numerical tools

(e.g., simulation, halo model, perturbation theory, ...)

Cosmological Perturbation theory (PT)
N-body simulation (based on fluid approx.)
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UV problem in perturbation theory

Nishimichi, Bernardeau & AT
(arXiv:1411.2970)
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Nonlinear response to a small
initial variation in P(k):

0 Pni(k) = / dIHQ-(;Po(Q)— |

nonlinear linear (initial)




UV problem in perturbation theory

Nishimichi, Bernardeau & AT

S (arXiv:1411.2970)
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Actual mode-coupling is UV-insensitive at high-q (i.e., coupling
btw small & large scales is suppressed) = breakdown of PT



UV problem in perturbation theory

Nishimichi, Bernardeau & AT

= i (arXiv:1411.2970)
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Effective field theory

“UV-insensitive” behavior in simulations would be attributed to
small-scale physics that cannot be dealt with fluid approx.

(e.g., formation/merging of halos)

Introducing effective stress tensor to counteract with UV-sensitive terms

in PT calculation N . I I
N p— EFT ¢ =
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Effective field theory !

“UV-insensitive” behavior in simulations would be attributed to
small-scale physics that cannot be dealt with fluid approx.

(e.g., formation/merging of halos)

Introducing effective stress tensor to counteract with UV-sensitive terms
in PT calculation \ 0

EFT superficially looks better,

* Free parameters need to be calibrated with simulations
— lose predictability

* |t does not imply EFT properly describes nonlinear mode-coupling
structure of gravitational dynamics

>



Vlasov-Poisson: back to the source

A more fundamental description :

e

(collisionless Boltzmann) v2¢(£€; t) = GCLQ/CZB’U f(w, v; t)

*N— oo limit of self-gravitating N-body system

* Reduced to a (pressureless) fluid system for single-stream flow:

[z, v;t) — p(t) {1+d(zx; )} op (v — v(z; 1))

Single-stream flow is initially correct, but will be later violated
(at small scales)




Vlasov-Poisson: back to the source

A more fundamental description :

T - , t=6.85 t=50
Ap=0.01 t=0 . R -L_,l'? I S s

R \ ] " development of o l R= :
. _shellcrossing = multi-val i . formation of halg)
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Post-collapse perturbation theory

Going beyond shell-crossing, a new analytical framework needs
to be developed

POSt—CO”GPSG PT Colombi ('15), AT & Colombi (in progress)

Lagrangian-based PT that can follow post-collapse dynamics
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Post-collapse perturbation theory

Random initial 0-01

condition (in |1D)
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State-of-the-art 6D Vlasov code
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Summary

Precision observations of large-scale structure will provide
an important clue to go beyond ACDM model

To confront with precision observations,

Theoretical tool (template) needs to be improved:
accuracy, systematics, new physical eff

fects, ...

Renovating perturbation theory (PT) tool:

* Limitation of current PT framework based on single-stream approx

* “post-collapse PT”’: new PT treatment based on Vlasov-Poisson

— performance in |D cosmology

Should help to clarify/understand nature of dark matter/dark energy



