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What is the universe accelerated by?

Cosmological constant
Graviton mass

Matter condensation
Unknown scalar field(s)




H O rn d eS kl th eO ry Homdeski "74, Nicolis et al & Deffayet et al ‘09, Kobayashi et al “11

Most-general single scalar field and gravity theory, which
field equations contain derivatives only up to the second
order
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Ostrogradski’'s theorem oswgasa s, oo o7

- “If the higher order time derivative Lagrangian is non-
degenerate, there is at least one linear instability in the
Hamiltonian of this system”

- example

_l 9 X d4Q
L=oR"+S5R-Q) == —==0

1
Hyhys = Po(Ps — Pp) [+ S% + SR + SR

Pr=~0, R+S5=0 [ An extra d.o.f appears!}

# of degree of freedom = (6-2)/2=2=1+1




B
Horndeski theory

- Most-general single scalar field and gravity theory, which
field equations contain derivatives only up to the second
order

05 )

09w =0, % =0 - f(gﬂl/?glil/?g,ul/v ¢7 ¢7 Qb) =0
[ No extra d.o.f appear. }

Horndeski theory doesn’t suffer
from the Ostrogradski’s theorem




Counter-example(?) of the theorem

- Derivative-dependent metric transformation

gﬂy — QZ (X, ¢)gﬂy‘ Bekenstein ’93,.

Zumalacarregui et al ‘14

L= Y I RG £V g(LoGprs &) + Lon (D))

¥
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Lo= 1V67[G(QZR+6Q &%) +/—9(Ly + L)

Explicitly beyond Horndeski term appears!




Field equations in Jordan frame

- 4t order term by beyond Horndeski
QZGW + ZQ(gWIZIQ — QW) + (61Q — QR)Q,ng,ﬂgb,y
— 9,Q.Q% +4Q,Q, = 82G(Th, + T, (41)
10L,
V.(Qx¢*(QR — 60Q)) + Q 4(QR — 61Q) + Y oh 0,

- Trace of (41) Substitute it chk into EoMs

(600Q — QR)(Q — 2Q yX) = 87GT




Field equations in Jordan frame

- 4% order term by beyond Horndeski

Q2G;w + 2Q(g,u1/DQ _ Q;,uv) T TK¢,,H¢,I/ _ g,uVQ,aQ’a
+4Q ,Q , = 82GT}5; )

pvo

Q 16L
V (H Te) + 2 1. ——2=% _ . 0,

* Trace ¢ poquced to the 2M order EoMs




Short summary of transformed theory

Lo = Y= (PR + 60,09 + =G(Ly + L)
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EoMs are higher order than
the 2nd order, and the theory
will suffer from the
Ostrogradski’s theorem

EoMs could be reduced to
the 2"d order by the trace of

field equation

Linear instability of the
Hamiltonian
Extra degrees of freedom

Counter-example of the
theorem and stable
New scalar-tensor theory??



2. Derivative-dependent transformation

- Conformal + Disformal transformation Bekenstein '93

Juv — guu — -A(¢a X)g/ﬂ/ + B(¢7 X)a,u¢8u¢

detg # 0 : A(A—BX) #0

G
33“ £0 : A(A— AxX +BxX2) #£0

- Transforming E-H + K-essence in tilde system
Liotal = Iem + /dd+1fE\/ —§P(¢, X

) -
Liotal [§MV7 ¢] = Liotal [g,uw ¢]



- Transformed action in general gauge

2

3 M, 1/2
Ipn = —* / ditlz/—g Ald-D/2 (1 - %X)

B d(d—1 B
S B v (0] D Emavia - B wren,
d—1 B B B
T 9 A-_BX VulnA [XV“ln (74) +VHpVY¢V, In (74)]
- L lV"X+V"¢V2¢ (d-1)V,InA+V m(ﬁ)] (11)
A—BX 2 1 17 .A s

[Many beyond Horndeski terms! }




Hamiltonian analysis in Unitary gauge
- Unitary gauge
¢ =1
- ADM variables
ds® = g datdz” = —N?dt* + ;5 (dz* + N*dt) (dz’ + N7dt)
- Transformation
N?=AN? -B, N'=N' 7= Ay
A=A(t,N), B=DB(t,N)



- Action in unitary gauge
e = Ty [ dedlo N/ Aa(t, )

N o d(d—1
IgﬁtarYZ/dtddeﬁ[Azl(t,N) (Kz—K’LjKJi‘F(d_]')KL_'_(T)Lz) _U(t,N,’)’):|

(d—1)(d—2)

U(t, N,~v) = —Bu(t, N) [R(d) —(d—1)D?*In A - 1 D;InAD!In A
M2 NAd/Z

As(t, N) = — L ,

(N = AN =B

M2
By(t,N) = ﬁAW—?)/%/ANz ~- B,



The Hamiltonian & The Constraints

- Hamiltonian




- Constraints

m ~0, FN—ATNWE%E'N%O
i (z) ~ {mi(x), H'}p = —H;" (z) = 0

- 0 . .
7TN(£L') ~ awN(w) + {ﬂ'N(.’IZ),H,}p =C~=0

C_ﬁDZ (N \/,7)+\/,7[<A4)N+ 2AA4] (71'7,_771' d_lﬂ- +CU[taN7’Y,A2N,B4N]

) AN 0
Cu = (5N(w) ~ 'Yij&yij(w)> /ddyNﬁ (A2 = U, N,v)) -

1st class : H', m; 2nd class : 7, C

- # of degrees of freedom [No extra d.o.f. appear! ]

1
#=(20-6x2-2)=3=2+1



- Constraints

m ~0, WN—ATNﬂ'Eﬁ'N%O
iri(z) ~ {ms(z), H'}p = —H; () = 0

O v (@) + {7y (@), H'} p = C ~ 0

New sca

YTy /) J

1st class : H', m; 2nd class : 7, C

- # of degrees of freedom [No extra d.o.f. appear! J

1
#=5(20-6x2-2)=3=2+1



3. General analysis

- Consider a scalar-tensor theory which contains up to m-th
order g’s derivatives and up to n-th order @’s derivatives:

I' = /dd+1$ [L(g/u/a Raﬁ’ytsa Ruaﬂ'yéa e 7Ru1---umaﬂ’75a ¢a ¢IM T 7¢M1"'Mn) + Aaﬁqé(Raﬁ’Ws - Raﬂ')/&)

+A“aﬂ76(Ruaﬂ75 - VMRaﬂvé) T+t Amm“maﬂﬁ(Rm---ﬂmaﬁw - V(umRm---u —1)aB'76)
‘|‘)‘“(¢u - V,,,gb) e AT (¢u1---un - v(um¢u1---um_1))] ’

- The action can be cast into the form
I = / ditly B/CABchch + Mo®4 — V]

j’grﬁitary I/dtdd.’ENﬁ[A4(t,N) (K2 —KinJ:i-F(d_ 1)KL_|_ d(d4—_1)L2) _U(t,N,’)’)]



Transformation would be also cast into the derivative-
independent form if it is regular:

o4 = FA4(®,t), (A=1,2,---,N)

_ OF4
- 0PB

NQZANQ—B, NiZNi, ’%jZ.A’)/z‘j

det F5 # 0, oo F4

4 N

This transformation is a point transformation
included in canonical transformation as long as F*A
Is regular. So, the physics in the two different frame

should be the same.

o J




We can easily find the generator by comparing the
Hamiltonians in the different frames

H=H+ %—f GIIL, ®; ] = —/dda:HA GA(D,t)

o4 =G4D,t), (A=1,2,---,N)

(242),25@)}, =0, {84@).Tp(@)}, = 540°E — ), {Ia@),p@)}p =0.

{#@.8°()} =0 {24@. 1@} =36*E -9, {0a@. 0@} =0,

4 )

We would never find new scalar-tensor theories as long
as we consider the regular transformation, although the
transformed theory may have quite non-trivial beyond
Horndeski terms.

\_ J




4. Summary

Derivative-dependent transformation, though it can create
beyond Horndeski term, does not make any new scalar-
tensor theory from known theories as long as the
transformation is invertible and regular.

AA—-BX)(A—-AxX +BxX?) #0
In unitary gauge, regular derivative-dependent trf. reduces
to point trf. included in the canonical trf.

The result looks very non-trivial in general gauge, but
quite natural in unitary gauge.

Singular transformation can create some new scalar-
tensor theories (ex. mimetic DM chamseddine et a13)

Guv = XGuv



