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Introduction: Inflationary cosmology

Quantum fluctuations are the origin of structures in the Universe

anti-correlation of CMB TE spectrum -> super-H curvature perturbations

(future) CMB BB spectrum -> super-H gravitational-wave (GW)

=7 IR F—ICLD

perturbations ,
B
Y D FRBARIR _ . Dark Energy
4055 s BAPUES Accelerated Expansion
Afterglow Light =51t DL
Pattern Dark Ages Development of

400,000 yrs. /' Galaxies, Planets, etc.

hq.tf‘

i Tl KT A -l "’"_H'
g f CiEERRs e
17—
c . " . # " '. Ay |
= B .,i. }9* H | WMAP
g . ™ - -4 *‘&’ - 4 O - 4 1
v "‘ -{ L ’ g ‘.. Q"’ r:—‘ﬂ-\YvY.MA:P
) bl e % g o | FERTER
- v 'S , R L) I
Quantt j’ - ’l.’;.; P N v - 41_4 v |
Fluctuations -'.),. & S
BFESE Ao ST |
. P Rl g e Y
-N.. :.':f, . \
FHTHDIEE 1st Stars —_——de T
HI4{BF about 400 million yrs. < Q'\\'

Big Bang Expansion & 7/ ik
13.7 billion years |37{8<F credit: NASA

i



Tensor-to-scalar ratio (r.002)

0.05 0.10 0.15 0.20 0.25

0.00

Constraint on inflation models [Pianck 20157

Primordial tilt (ns)

e | arge class of models with

Planck TT-+lowP
Planck TT+lowP+BKP
Planck TT-+lowP+BKP-+BAO
Natural inflation

Hilltop quartic model

o attractors

Power-law inflation

Low scale SB SUSY

R? inflation

V x ¢?

V x ¢?

V o ¢t/

Voo

V o ¢?/3

N,.=50

N,=60

are in good

agreement with observations, e.g., R2, Higgs, a-attractors




Models with non-minimal coupling (NMC)

In the context of modified gravity, field theory in curved space-time and
higher-dimensional unifying particle physics theories,

0.9 Sy = fd'x-gf(R) = fd'xf-g(ek+.) .Y

, (@=df 1aR)|| V(6) (1~ exp (~V/2/30/Mr) )’
Syies = [4'x\/-g [E(Mpﬁ +ER” )R+ ...

- Make conformal transformation: §,, = Q%g,.

= 1. Flattening of potential V = V/Q*

2. Rescaling of field © = Mp1\/3/21n ¢
= Ideal for inflation

_ 2 12
- All predict ns=1-— N r= RE
but , Which is

Gravitational reheating
[Takeda & YW 1405.3830; YW & White 1503.08430]
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Purposes of this study

- More general gravitational theories for inflation”? E.g. Horndeski gravity and
beyond [Yokoyama-san’s talk, Saitou-san’s talk]

- The primordial tensor power spectrum from inflation can be always cast
into the standard form at leading order in derivatives with suitable conformal
and disformal transformations in EFT of inflation. [Creminelli et al 1407.8439]

- Invariance of the curvature perturbation under disformal transformations has
been shown . [Minamitsuji 1409.1566, Tsujikawa 1412.6210]

e We extend the invariance of the curvature and GW perturbations to
. = necessary for non-Gaussianity etc.
e We further show the invariance under a new type of disformal
transformation, dubbed multi-disformal transformation, generated by
multi-component scalar fields.



Decomposing spacetime

ds? = gupdztdx” = —a?dt? + Yii (daji + 5idt) (dxj + 5jdt)
o is the lapse function, 8° is the shift vector

Yij = az(t)ew%j : dety;; = 1

3 | |
(=S fole (s
A is the flat 3-dimensional Laplacian and 9* = §% 9,



Decomposing spacetime and curvature pert’n

ds? = gupdztdx” = —a?dt? + Yii (da:i + 5idt) (dxj + 5jdt)
o is the lapse function, 3° is the shift vector

Yij = az(t)ew%j : dety;; = 1

3 | |
(=S fole (s
A is the flat 3-dimensional Laplacian and 9* = §% 9,

(comoving slicing if ¢ dominates): ¢ — ¢(t)

Re = 7vbc‘l‘X(:/3

R is the (comoving) curvature perturbation at linear
order and ‘R, its non-linear generalization



Decomposing spacetime and GW pert’n

ds? = gupdztdx” = —a?dt? + Yii (daji + 5idt) (dxj + 5jdt)
o is the lapse function, 3° is the shift vector

Yij = az(t)ew%j : dety;; = 1

3 | |
(=S fole (s
A is the flat 3-dimensional Laplacian and 9* = §% 9,

¢ = ()

wg;T is independent of the time-slicing condition at linear order
but is slice-dependent at higher orders.



Generalization of conformal transformation

[Bekenstein 1993]

guv = A(¢, X) g + B(¢, X) Ou00r0, X = —g"0,00,0/2

A=1 B =#0:
A= 1, B =0: Conformal transformation

- Non-linear invariance of curvature and GW perturbations under the conformal

transformation A(¢) has been shown. [Gong, Sasaki et al 2011]



Invariance of nonlinear perturbations

§,LLI/ — 9uv B(¢ 9 X) a,u¢8v§b 9 X = _gw/a,ugbaugb/Q

o = o(1)
g,uu — Juv + B $2 5,u05u0

Only the lapse function is affectedby ~2 __ 2 ¢22
the disformal transformation! 84 — X B

Thus, the spatial metric (y_Ij) & shift vector (B 1) are invariant to
— Invariance of curvature and GW perturbations



Invariance of nonlinear perturbations

g,ul/ — A(¢ 9 X) 9uv 9 — _g'w/a,uj¢8u¢/2
A= 1, B =0: Conformal transformation

¢ = o)

G = A g = flgw/ +0A g, +0A0g,0

Since the conformal factor A does not affect the unimodular part of the
spatial metric, GW is invariant to



Invariance of nonlinear perturbations

g,ul/ — A(¢ 9 X) 9uv 9 — _g'w/a,uj¢8u¢/2
A= 1, B =0: Conformal transformation

¢ = o)

G = A g = flgw/ +0A g, +0A0g,0
For curvature pert’n: R — R+ 514/(214_1) s R

OA is sourced by &X, but is vanishing on large scales b/c 7°ZC x Hoa,

_ 1 q.52(t) _ 1 12 1 2
A = 56%%(?5,%) — iqb (t)_5&6(t7$)¢ (t)+"'

€ represents the terms of 1st order in spatial deriv’s.
ba, = O(e?) ¢ ni
c — urvature pert'nis



Transformation of linear MS equations

/

Rc> +c§k2Rc =0, =z= aﬂ

H

o 18 the background value of the lapse function and cs is the sound velocity

Under disformal transformation, &’

11d<z2d

22 agdn \ g dn

= o — B¢52, there are two ways to

interpret: ,

1 1 d /2 d

= Re °k*R. =0

2% &g dn (640 dn ) e

It takes if d7 = apdt and d7 = qodt (dt = adn)
-9

On the other hand = ~1 Ld/f=d Re | +Ek*R. =0, @

zZ2 ag dn \ ag dn °

. O . o
Cs = —Cg, VAR — <
o o

It can be interpreted as the one in modified gravity with this redefinition
of c_s and z.



Transformation of nonlinear equations in spatial

gradient expansion

[Takamizu et al]:

1 1 0 (2% 0 c?
L s (3) 29, ] — 4
2 a0 877 (Ogo 877%(:) | A R[e 7@]] 0(8 )

Y = R, + O(?) and @R is the spatial scalar curvature

By the same reasoning as in the linear case, it takes

, or is interpreted as the one in modified gravity
with rescaled c_s and z.

Cs = Cs , 2 =4 =R
87y 87y




Transformation of nonlinear equations in spatial

gradient expansion

1 1 0O ZtQ o, TT 1 —24) (3) TT_ 4
zZ g On (ozo(‘?n%j >+4( Fi; [ %]]) =0(")

7zt = a and (---)'! denotes the transverse-traceless projection

By the same reasoning as in the linear case, it takes

, or is interpreted as the one in modified gravity
with rescaled c_s and z.




Multi-disformal transformation

Suppose there are ' component scalar field, ¢! (I =1,--- | N).
Juv = A(le 7XIJ) Guv T BKL(QbI aXIJ) (9“¢K(9,/¢L )

X1 = g 0,610,07

Adiabatic limit: ¢’ = ¢ ()
d I
G = s+ B [81(9) X (0, 00)] (6" (01 Do, (0) =

P
Gur = g + Brcr |0 (9), X1 (0, 6/0) | (65) (6%)'9%5,°8,°

Since the multi-disformal transformation only affects the lapse function,
we can apply the same argument as before!



e The curvature and tensor perturbations on the uniform ¢ slicing are
under the disformal transformation.

e The same conclusion can be drawn for a multi-component
extension of the disformal transformation, dubbed multi-disformal
transformation, on the uniform @ slicing in the adiabatic limit.

e Once a 2nd order differential eq. is obtained in modified gravity or
EFT, one can map it into the same form as the one in GR by a
suitable disformal transformation, linearly and non-linearly (the next
leading order in gradient expansion).



