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cancelation of all the imaginary ambiguities

pert. Saddles full partition function  
: real and no ambiguity

Complex Saddle Points needed

complex saddle points in QM path integral Behtash, Dunne, Schäfer, 
Sulejmanpasic, Ünsal (15)

instanton-anti instanton pair  
with ``complex separation”

complex bion

Extended resurgence (including complex saddles)

Z = Z0 + Z1 + · · ·



Final goal is field theory (CPN models) 
but as an exercise we begin with sine-Gordon QM



Sine-Gordon QM

✏ =
1

2
・             SUSY case
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For ϵ = 1
2 , the supersymmetric ground state wave function in the sine-Gordon quantum mechanics

is given by

Ψ = exp

(
m

2g2
cos θ

)
. (V.6)

By using the standard perturbation theory with respect to small ϵ− 1
2 ≡ δϵ, we obtain the correction

to the ground state energy in the near supersymmetric case:

E ≈ −m δϵ
I1(m/g2)

I0(m/g2)
= − δϵ g2m

∂

∂m
log I0(m/g2), (V.7)

where I1(m/g) and I0(m/g) are the modified Bessel function of the first kind. The asymptotic

expansion of the Bessel function implies that the perturbative expansion gives the following asymp-

totic series for the correction to the ground state energy

E(1)
pert = − g2m

∂

∂m
log e

m
g2

√
g2

2πm

(
1 + · · ·+ [(2n− 1)!!]2

n!

(
g2

8m

)n

+ · · ·
)
, (V.8)

The Borel resummation with negative g2 and the analytic continuation to positive g2 gives the

ambiguity

E(1)
pert = − g2m

∂

∂m
log

[
I0(m/g2)± i

π
K0(m/g2)

]
, (V.9)

whereK0(m/g2) is the modified Bessel function of the second kind. Therefore, the non-perturbative

part should have the following ambiguity

E(1)
bion = E(1) − E(1)

pert = g2m
∂

∂m
log

[
1± i

π

K0(m/g2)

I0(m/g2)

]
. (V.10)

The first leading order term is given by

E(1)
bion = g2m

∂

∂m
log
[
1± ie

− 2m
g2 + · · ·

]
= ∓ 2im e

− 2m
g2 +O

(
e
− 4m

g2

)
, (V.11)

corresponding to θ ≡ arg g2 = −,+ for upper and lower sign respectively. We can check that the

complexified quasi moduli integral (V.2) is consistent with this near supersymmetric result.

VI. SUMMARY AND DISCUSSION

We have discussed the non-perturbative contributions from the complex saddle points in the

CPN−1 and sine-Gordon quantum mechanics with the fermionic degrees of freedom. We obtained

non-perturbative contributions from the real and complex bion solutions by using the Gaussian

approximation, which is valid in the small coupling limit g → 0 with fixed boson-fermion coupling
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・             near-SUSY case

Hamiltonian Nonzero Ground State Energy

✏ ⇡ 1

2

�H = H �H|✏= 1
2

・SG Hamiltonian
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need to choose contours above or below the real axis,
which are indicated by ± here. In the present case, the
lateral Borel resummation S±Epert gives a finite but am-
biguous result, whose imaginary ambiguity is given by

ImS±Epert = ∓ 2πm

Γ(1− ϵ)2

(
g2

2m

)2(ϵ−1)

e
− 2m

g2 , (.24)

with − in the right hand side for θ = +0 and + for
θ = −0 with g2 = |g2|eiθ. We note that the direction θ

of the Laplace integral
∫ eiθ∞
0 in the Borel resummation

is equivalent to the phase of the coupling constant g2 =
|g2|eiθ. Instead of exhibitig the whole Borel resummation
S±E, we exhibit the result as an expansion of ϵ− 1 ≡ δϵ
for later convenience,

S±Epert = δϵ
[
g2 −m

]
+ δϵ2

[
......

]
. (.25)

Cancellation of Imaginary ambiguities : By use
of the relation sin ϵπ

π Γ (ϵ) = 1
Γ(1−ϵ) , the imaginary ambi-

guity from the perturbative contribution in CP 1 model
is rewritten as

ImS±Epert = ±2m

π
sin2 ϵπ Γ(ϵ)2

(
g2

2m

)2(ϵ−1)

e
− 2m

g2 ,(.26)

with + for θ = −0 and − for θ = +0. This is nothing
but the contribution from the real and complex bion so-
lutions with the opposite sign. Therefore, the imaginary
ambiguity from the perturbative and non-perturbative
contributions in CP 1 model completely cancel out as

ImS±Epert + ImEbion = 0. (.27)

The cancellation of the imaginary ambiguities in the
trans-series is one of the good indicators on validity of
application of the resurgence theory to the physical the-
ory since the physical quantity should be real.

Exact ground-state energy as trans-series : We
will obtain the exact result of the ground state energy and
write it in a form of trans-series in the CP 1 model. For
ϵ = 1, the ground state wave functionΨ0, which preserves
the supersymmetry, is given as the zero energy solution of
the Schrödinger equation HΨ0 = 0 . The exact solution
of the ground state wave function is written as

Ψ0 = exp

(
m

2g2
1− ϕϕ̄

1 + ϕϕ̄

)
. (.28)

The non-perturbative corrections in the near supersym-
metric case ϵ ≈ 1 is obtained by expanding the energy
with respect to small δϵ ≡ ϵ− 1

E =
⟨0|δH|0⟩
⟨0|0⟩ +

⟨δψ|δH|δψ⟩
⟨0|0⟩ +O(δϵ3), (.29)

where the perturbative Hamiltonian is given by
δH = H − Hϵ=1. We exactly calculate the leading

and next-leading order coefficients in the small δϵ expan-
sion of the ground state energy by using the explicit form
of the ground state wave function (.28) as

E = δϵ

[
g2 −m coth

m

g2

]

+ δϵ2
[
g2 −m

coth m
g2

sinh2 m
g2

(Ei( 2mg2 ) + Ei(− 2m
g2 )

2

− γ − log
2m

g2

)]
+ O(δϵ3)

= δϵE(1) + δϵ2 E(2) + O(δϵ3) , (.30)

with γ being the Euler constant. We note that Eq. (.30)
is non-perturbative as a function of the coupling constant
g. Now, we express the perturbative contribution and the
complex saddle-point contribution as an expansion of δϵ,

Ebion = δϵ
[
− 2me

− 2m
g2

]

+ δϵ2
[
4me

− 2m
g2 (γ + log

2m

g2
± iπ

2
)
]
+ O(δϵ3)

= δϵE(1)
bion + δϵ2 E(2)

bion + O(δϵ3), (.31)

S±Epert = δϵ
[
g2 −m

]
+ δϵ2

[
......

]
+O(δϵ3)

= δϵS±E
(1)
pert + δϵ2S±E

(2)
pert + O(δϵ3) . (.32)

Finally, we find out that the exact ground state energy
(.30) turn out to be composed of the perturbative and
non-perturbative parts in each order of δϵ as

E(1) = S±E
(1)
pert + E(1)

bion ,

E(2) = S±E
(2)
pert + E(2)

bion . (.33)

These are the explicit trans-series equations (.1) which
we expected.

These results can be checked by using the original form
of asymptotic expansion, or without using the Borel re-
summation. For example, the coefficient of δϵ2 in the
exact result E(2) is decomposed into a part which can be
expressed as a series of g2/m and a part which cannot be
expressed by that. The former part is expanded as

∼
∑

l=0

m
(l − 1)!

2l−1

(
g2

m

)l+1

, (.34)

which is a δϵ2 coefficient of the perturbative series Epert

in (.21). The latter part is

∼ 4me
− 2m

g2

(
γ + log

2m

g2

)
, (.35)

which is the leading δϵ2 coefficient of the non-
perturbative contribution in (.13) except the imaginary
ambiguity. These results on CP 1 model can be extended
to CPN−1 model.
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・Near-SUSY Energy

E = E(1)�✏ + E(2)�✏2 + O(�✏3)
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V. COMMENTS ON BION CONTRIBUTIONS IN SINE-GORDON MODEL

As we have in the previous section, the sine-Gordon action (IV.21), which can be obtained by

restricting the CP 1 action to the zero angular momentum sector, also has real and complex bion

solutions [37, 38]. The crucial difference is that the bions in the sine-Gordon model do not have

phase modulus. This is merely one manifestation of the fundamental difference of the topology

of the target space: S1 for the sine-Gordon model and CP 1 = S2 for the CP 1 model. This fact

particularly gives a marked difference when we consider quantum theory[63]. Consequently, the

non-perturbative contributions to the ground state energy in the sine-Gordon model is different

from that in the CP 1 model. In the sine-Gordon model, the Gaussian approximation for the bion

contributions which is valid in the limit g → 0 with fixed λ = mϵg2, gives

− lim
β→∞

1

β

Z1

Z0
= 2

√
8ω5

πg2(ω2 −m2)
(1 + e±2πiϵ) exp

[
−2ω

g2
− 2ϵ log

ω +m

ω −m

]
, (V.1)

while the complexified quasi moduli integral, which is valid in the limit g → 0 with fixed ϵ, gives

− lim
β→∞

1

β

Z1

Z0
=

m

π
(1 + e±2πiϵ)Γ(2ϵ) exp

[
−2m

g2
+ (2ϵ− 1) log

g2

4m

]
, (V.2)

corresponding to θ = arg g2 = −,+ for upper and lower sign respectively. These results do not

agree with the corresponding non-perturbative corrections (III.44) and (IV.62) in the CP 1 model.

The mismatch of the ground state energies is due to the difference of the Hamiltonian HCP 1 in

Eq. (II.24) for the CP 1 model and that obtained from the Lagrangian (IV.21) for the sine-Gordon

model

H l=0
CP 1 = −g2

(
∂2θ +

1

tan θ
∂θ

)
+

m2

4g2
sin2 θ − ϵm cos θ = HSG − g2

tan θ
∂θ. (V.3)

The nonperturbative corrections (V.1) and (V.2) vanish in the limit ϵ = 1
2 . This is in accord with

the fact that ϵ = 1
2 is the supersymmetric limit of the sine-Gordon model.

As opposed to the CP 1 model, the ambiguity in (V.1) and (V.2) does not vanish in the near

supersymmetric regime ϵ ≈ 1
2 . To compare it with the ambiguity in the perturbative part, let us

consider the leading order correction to the ground state energy in the near supersymmetric limit:

E(1) = E(1)
pert + E(1)

bion, (V.4)

where E(1) stands for the leading order coefficient in the small δϵ ≡ ϵ− 1
2 expansion of the ground

state energy

E(1) ≡ lim
ϵ→ 1

2

∂ϵE. (V.5)

Perturbative part Saddle-point part

Sine-Gordon QM

[Fujimori, Kamata, TM, Nitta, Sakai(16)]



・Perturbative part as asympt. expansion
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For ϵ = 1
2 , the supersymmetric ground state wave function in the sine-Gordon quantum mechanics

is given by

Ψ = exp

(
m

2g2
cos θ

)
. (V.6)

By using the standard perturbation theory with respect to small ϵ− 1
2 ≡ δϵ, we obtain the correction

to the ground state energy in the near supersymmetric case:

E ≈ −m δϵ
I1(m/g2)

I0(m/g2)
= − δϵ g2m

∂

∂m
log I0(m/g2), (V.7)

where I1(m/g) and I0(m/g) are the modified Bessel function of the first kind. The asymptotic

expansion of the Bessel function implies that the perturbative expansion gives the following asymp-

totic series for the correction to the ground state energy

E(1)
pert = − g2m

∂

∂m
log e

m
g2

√
g2

2πm

(
1 + · · ·+ [(2n− 1)!!]2

n!

(
g2

8m

)n

+ · · ·
)
, (V.8)

The Borel resummation with negative g2 and the analytic continuation to positive g2 gives the

ambiguity

E(1)
pert = − g2m

∂

∂m
log

[
I0(m/g2)± i

π
K0(m/g2)

]
, (V.9)

whereK0(m/g2) is the modified Bessel function of the second kind. Therefore, the non-perturbative

part should have the following ambiguity

E(1)
bion = E(1) − E(1)

pert = g2m
∂

∂m
log

[
1± i

π

K0(m/g2)

I0(m/g2)

]
. (V.10)

The first leading order term is given by

E(1)
bion = g2m

∂

∂m
log
[
1± ie

− 2m
g2 + · · ·

]
= ∓ 2im e

− 2m
g2 +O

(
e
− 4m

g2

)
, (V.11)

corresponding to θ ≡ arg g2 = −,+ for upper and lower sign respectively. We can check that the

complexified quasi moduli integral (V.2) is consistent with this near supersymmetric result.

VI. SUMMARY AND DISCUSSION

We have discussed the non-perturbative contributions from the complex saddle points in the

CPN−1 and sine-Gordon quantum mechanics with the fermionic degrees of freedom. We obtained

non-perturbative contributions from the real and complex bion solutions by using the Gaussian

approximation, which is valid in the small coupling limit g → 0 with fixed boson-fermion coupling

E(1)
pert = �g2m@m log e

m
g2

r
g2

2⇡m

1X

n=0

[(2n� 1)!!]

2

n!

✓
g2

8m

◆n

Borel 
resum.

This is consistent with the known perturbative calculation! 

Sine-Gordon QM
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Behtash, Dunne, Schäfer, Sulejmanpasic, Ünsal (15)



・Saddle point parts

This is exactly consistent with contributions from  
real and complex bions!
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For ϵ = 1
2 , the supersymmetric ground state wave function in the sine-Gordon quantum mechanics

is given by

Ψ = exp
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m

2g2
cos θ

)
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2 ≡ δϵ, we obtain the correction

to the ground state energy in the near supersymmetric case:
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∂
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where I1(m/g) and I0(m/g) are the modified Bessel function of the first kind. The asymptotic

expansion of the Bessel function implies that the perturbative expansion gives the following asymp-

totic series for the correction to the ground state energy
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∂

∂m
log e

m
g2

√
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2πm
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n!

(
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8m

)n
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)
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The Borel resummation with negative g2 and the analytic continuation to positive g2 gives the

ambiguity

E(1)
pert = − g2m

∂

∂m
log

[
I0(m/g2)± i

π
K0(m/g2)

]
, (V.9)

whereK0(m/g2) is the modified Bessel function of the second kind. Therefore, the non-perturbative

part should have the following ambiguity

E(1)
bion = E(1) − E(1)

pert = g2m
∂

∂m
log

[
1± i

π

K0(m/g2)

I0(m/g2)

]
. (V.10)
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E(1)
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∂

∂m
log
[
1± ie

− 2m
g2 + · · ·

]
= ∓ 2im e

− 2m
g2 +O

(
e
− 4m

g2

)
, (V.11)

corresponding to θ ≡ arg g2 = −,+ for upper and lower sign respectively. We can check that the

complexified quasi moduli integral (V.2) is consistent with this near supersymmetric result.

VI. SUMMARY AND DISCUSSION

We have discussed the non-perturbative contributions from the complex saddle points in the

CPN−1 and sine-Gordon quantum mechanics with the fermionic degrees of freedom. We obtained

non-perturbative contributions from the real and complex bion solutions by using the Gaussian

approximation, which is valid in the small coupling limit g → 0 with fixed boson-fermion coupling
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・Contributions from real and complex bions

Sine-Gordon QM
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・Contributions from real and complex bions
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In summary, the leading order bion contribution to the ground state energy for small g and λ is

given by the following quasi moduli integral

− lim
β→∞

1

β

Z1

Z0
≈ −8m4

πg4

∫
dτrdφr exp (−Veff) . (IV.20)

In the following, we apply the Lefschetz thimble method to evaluate the quasi moduli integral with

the asymptotic potential (IV.15).

B. Quasi-moduli Integral in sine-Gordon quantum mechanics

Before calculating the quasi moduli integral in the CP 1 model, let us briefly discuss the case

of the sine-Gordon model, which can be obtained by restricting the CP 1 mechanics to the zero

angular momentum (l = 0) sector:

L =
1

4g2

(
θ̇2 −m2 sin2 θ

)
+ ϵm cos θ,

(
ϕ = tan

θ

2
eiφ
)
. (IV.21)

This model is not only simpler, but also serves as a useful building block for the CP 1 model. Since

the bion solutions in the CP 1 model are in the zero angular momentum sector, the sine-Gordon

action (IV.21) also has the corresponding real and complex bion solutions [37, 38]. As shown in

[11, 22, 36, 46, 47], the bion contribution with periodic potentials can be expressed in terms of the

following quasi zero mode integral with respect to the relative separation τ (the subscript of τr will

be omitted in the following)

[IĪ] =
∫

CR
dτ e−VSG(τ) VSG(τ) ≡ −4m

g2
e−mτ + 2ϵmτ , (IV.22)

where [IĪ] denotes the single bion contribution excluding the classical part e−Sbion = e
− 2m

g2 . The

original integration cycle is the real axis since the original path integral is over real configurations.

Note that the divergence of the integrand (IV.22) in the τ → −∞ limit is an artifact of the

approximation, since the effective potential is valid only for large τ . In the Bogomolny–Zinn-Justin

(BZJ) prescription, with which we can extract physical information form (IV.22), we first regard

g2 as a negative number and perform the integral. In the end of the calculation, we analytically

continue g2 back to a positive number. Then we end up with a bion contribution [IĪ] with an

imaginary ambiguity depending on how the result is analytically continued to real positive g2. It

is known that this ambiguity is cancelled out by another imaginary ambiguity emerging from the

Borel re-summation of the perturbative series. This is the well-known first step to the resurgence

theory. In the reference [38], it has been indicated that the complexified quasi moduli integral is a

Quasi-moduli integral

27

more rigorous way to treat the quasi moduli integral which can replace the BZJ prescription. We

here extend this idea and clarify the BZJ prescription in terms of the complexification method.

As we have done in Sec. III B, we first introduce a small complex factor as a regulator into the

coupling as

g2 → g2eiθ . (IV.23)

In the end of calculation we take θ → ±0 limits. Now, we complexify the quasi moduli τ

τ ∈ R → τ = τR + iτI ∈ C , (IV.24)

with the real part τR and the imaginary part τI . Let S be the set of saddle points in the complex

τ -plane. Then the original integration cycle can be decomposed as

CR =
∑

σ∈S
nσJσ, (IV.25)

where Jσ is the thimble associated with the saddle point τσ, i.e. the flow line starting from the

the saddle point τσ:

dτ

dt
=

1

2m

∂VSG

∂τ
, lim

t→−∞
τ = τσ, (IV.26)

where we have rescaled the flow time parameter t for notational convenience. Using the decompo-

sition of the integration contour (IV.25), we can rewrite the original integral in (IV.22) as

[IĪ] =
∑

σ

nσZσ, Zσ =

∫

Jσ

dτ e−VSG(τ) , (IV.27)

The coefficients nσ is the intersection number between the original integration cycle CR and the

dual cycle Kσ (dual thimble)

nσ = ⟨CR, Kσ⟩ (IV.28)

a. Thimbles and Dual Thimbles

The effective kink-antikink potential deformed by θ is written as

VSG(τ) = −4m

g2
e−mτ−iθ + 2ϵmτ. (IV.29)

What we need to do is just to find the saddle points of the potential, and the thimbles and the

dual thimbles associated with them.

The saddle points of the potential VSG is labeled by an integer σ ∈ Z:

τ = τσ ≡ 1

m

[
log

2m

ϵg2
+ (2σ − 1)πi− iθ

]
. (IV.30)

28

The gradient flow equation is given by

dτ

dt
=

1

2m

∂VSG

∂τ
= − 2m

g2
emτ̄+iθ + ϵ . (IV.31)

This equation can be solved as

τ(t) =
1

m
log

[
2m

ϵg2
sin(a− be−ϵmt − θ)

be−ϵmt

]
− i

m
(a− be−ϵmt), (IV.32)

where a and b are real integration constants. The dual thimbles can be defined as flows reaching

the saddle points at t → ∞. The above solution of the flow equation approach the saddle point τσ

in Eq. (IV.30), if the integration constant a is given by

aσ = −(2σ − 1)π + θ, σ ∈ Z. (IV.33)

Eliminating t from the solution (IV.32) and its complex conjugate, we find that the real part

τR = Re τ and the imaginary part τI = Im τ are related in the dual thimble Kσ as

mτR = log

[
2m

ϵg2
sin(mτI + aσ)

mτI + aσ

]
, (−aσ − π ≤ mτI ≤ −aσ + π). (IV.34)

On the other hand, thimbles are defined by reaching the saddle point at t → −∞. Such solutions

can be obtained from the general solution (IV.32) by redefining the integration constants as

a = aσ + δ, b = −δe−ϵmt0 , (IV.35)

and taking the limit δ → 0:

τ(t) =
1

m
log

2m

ϵg2

(
1 + eϵm(t−t0)

)
− i

m
aσ. (IV.36)

Therefore, the thimble Jσ is the straight line with fixed imaginary part

mτI = − aσ = (2σ − 1)π − θ. (IV.37)

b. Integral along Lefschetz Thimbles and BZJ prescription

In Fig. 7, the two critical points τσ, the associated thimbles Jσ and the dual cycles Kσ are

depicted for σ = 0 and σ = 1. For θ = 0, the intersection numbers are ill-defined since the dual

thimbles never cross the original integration path CR although they are asymptotically tangent to

CR. This is one of the reasons why we need to regulate the potential by the imaginary part of the

coupling constant.

As shown in Fig. 7, the intersection number jumps when θ changes its sign:

(n0, n1) =

⎧
⎨

⎩
(0, 1) for θ = +0

(1, 0) for θ = −0
, (IV.38)

Saddle points

Thimbles

✓ = arg[g2]

Sine-Gordon QM

• Relative distance between instantons is only nearly-massless mode 
• The complex quasi-moduli integral corresponds to thimble integral

� = 0, 1
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Fig. 7: Complex integration cycles for bion amplitude in quantum mechanics. The regularization parameter

is θ = +0(left) and θ = −0(right).

and hence

[IĪ] =
∑

σ

nσZσ =

⎧
⎨

⎩
Zσ=1 for θ = +0

Zσ=0 for θ = −0
. (IV.39)

Integrating along each thimble Jσ, we find that

Zσ =

∫

Jσ

dτ exp (−VSG) =
1

m
e−2πiϵ(2σ−1)

(
g2

4m
eiθ
)2ϵ

Γ(2ϵ). (IV.40)

This agrees with the result from the BZJ description. In this calculation of the complex integration,

the region where the integrand is divergent is avoided by moving the integration contour [−∞,∞]

to either of the Lefschetz thimbles [−∞± iπ,∞± iπ]. This is how one extracts a finite result from

the ill-defined integral in the BZJ prescription. Now, it is clear that the ambiguity comes from the

sign of regularization parameter θ in g2 → g2eiθ.

To sum up, unambiguous definition of moduli integral is obtained by making the coupling

constant complex and using the Lefschetz thimble approach. We can regard this method as a more

rigorous definition of the BZJ prescription.

C. Bion contributions in CP 1 model

a. Quasi-moduli Integral

As discussed above and in [22, 36], the bion contribution in CP 1 quantum mechanics can be

expressed by the following quasi zero mode integral with respect to the separation τ and the relative

E
1bions

= (1 + e±2⇡i✏)
m�(2✏)

⇡

✓
g2

4m

◆
2✏�1

e
� 2m

g2

= ⌥2ime
� 2m

g2 �✏ + O �
�✏2

�

arg[g2] = +0 arg[g2] = �0

Sine-Gordon QM

Quasi-moduli integral
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In summary, the leading order bion contribution to the ground state energy for small g and λ is

given by the following quasi moduli integral

− lim
β→∞

1

β

Z1

Z0
≈ −8m4

πg4

∫
dτrdφr exp (−Veff) . (IV.20)

In the following, we apply the Lefschetz thimble method to evaluate the quasi moduli integral with

the asymptotic potential (IV.15).

B. Quasi-moduli Integral in sine-Gordon quantum mechanics

Before calculating the quasi moduli integral in the CP 1 model, let us briefly discuss the case

of the sine-Gordon model, which can be obtained by restricting the CP 1 mechanics to the zero

angular momentum (l = 0) sector:

L =
1

4g2

(
θ̇2 −m2 sin2 θ

)
+ ϵm cos θ,

(
ϕ = tan

θ

2
eiφ
)
. (IV.21)

This model is not only simpler, but also serves as a useful building block for the CP 1 model. Since

the bion solutions in the CP 1 model are in the zero angular momentum sector, the sine-Gordon

action (IV.21) also has the corresponding real and complex bion solutions [37, 38]. As shown in

[11, 22, 36, 46, 47], the bion contribution with periodic potentials can be expressed in terms of the

following quasi zero mode integral with respect to the relative separation τ (the subscript of τr will

be omitted in the following)

[IĪ] =
∫

CR
dτ e−VSG(τ) VSG(τ) ≡ −4m

g2
e−mτ + 2ϵmτ , (IV.22)

where [IĪ] denotes the single bion contribution excluding the classical part e−Sbion = e
− 2m

g2 . The

original integration cycle is the real axis since the original path integral is over real configurations.

Note that the divergence of the integrand (IV.22) in the τ → −∞ limit is an artifact of the

approximation, since the effective potential is valid only for large τ . In the Bogomolny–Zinn-Justin

(BZJ) prescription, with which we can extract physical information form (IV.22), we first regard

g2 as a negative number and perform the integral. In the end of the calculation, we analytically

continue g2 back to a positive number. Then we end up with a bion contribution [IĪ] with an

imaginary ambiguity depending on how the result is analytically continued to real positive g2. It

is known that this ambiguity is cancelled out by another imaginary ambiguity emerging from the

Borel re-summation of the perturbative series. This is the well-known first step to the resurgence

theory. In the reference [38], it has been indicated that the complexified quasi moduli integral is a
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V. COMMENTS ON BION CONTRIBUTIONS IN SINE-GORDON MODEL

As we have in the previous section, the sine-Gordon action (IV.21), which can be obtained by

restricting the CP 1 action to the zero angular momentum sector, also has real and complex bion

solutions [37, 38]. The crucial difference is that the bions in the sine-Gordon model do not have

phase modulus. This is merely one manifestation of the fundamental difference of the topology

of the target space: S1 for the sine-Gordon model and CP 1 = S2 for the CP 1 model. This fact

particularly gives a marked difference when we consider quantum theory[63]. Consequently, the

non-perturbative contributions to the ground state energy in the sine-Gordon model is different

from that in the CP 1 model. In the sine-Gordon model, the Gaussian approximation for the bion

contributions which is valid in the limit g → 0 with fixed λ = mϵg2, gives

− lim
β→∞

1

β

Z1

Z0
= 2

√
8ω5

πg2(ω2 −m2)
(1 + e±2πiϵ) exp

[
−2ω

g2
− 2ϵ log

ω +m

ω −m

]
, (V.1)

while the complexified quasi moduli integral, which is valid in the limit g → 0 with fixed ϵ, gives

− lim
β→∞

1

β

Z1

Z0
=

m

π
(1 + e±2πiϵ)Γ(2ϵ) exp

[
−2m

g2
+ (2ϵ− 1) log

g2

4m

]
, (V.2)

corresponding to θ = arg g2 = −,+ for upper and lower sign respectively. These results do not

agree with the corresponding non-perturbative corrections (III.44) and (IV.62) in the CP 1 model.

The mismatch of the ground state energies is due to the difference of the Hamiltonian HCP 1 in

Eq. (II.24) for the CP 1 model and that obtained from the Lagrangian (IV.21) for the sine-Gordon

model

H l=0
CP 1 = −g2

(
∂2θ +

1

tan θ
∂θ

)
+

m2

4g2
sin2 θ − ϵm cos θ = HSG − g2

tan θ
∂θ. (V.3)

The nonperturbative corrections (V.1) and (V.2) vanish in the limit ϵ = 1
2 . This is in accord with

the fact that ϵ = 1
2 is the supersymmetric limit of the sine-Gordon model.

As opposed to the CP 1 model, the ambiguity in (V.1) and (V.2) does not vanish in the near

supersymmetric regime ϵ ≈ 1
2 . To compare it with the ambiguity in the perturbative part, let us

consider the leading order correction to the ground state energy in the near supersymmetric limit:

E(1) = E(1)
pert + E(1)

bion, (V.4)

where E(1) stands for the leading order coefficient in the small δϵ ≡ ϵ− 1
2 expansion of the ground

state energy

E(1) ≡ lim
ϵ→ 1

2

∂ϵE. (V.5)
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For ϵ = 1
2 , the supersymmetric ground state wave function in the sine-Gordon quantum mechanics

is given by

Ψ = exp

(
m

2g2
cos θ

)
. (V.6)

By using the standard perturbation theory with respect to small ϵ− 1
2 ≡ δϵ, we obtain the correction

to the ground state energy in the near supersymmetric case:

E ≈ −m δϵ
I1(m/g2)

I0(m/g2)
= − δϵ g2m

∂

∂m
log I0(m/g2), (V.7)

where I1(m/g) and I0(m/g) are the modified Bessel function of the first kind. The asymptotic

expansion of the Bessel function implies that the perturbative expansion gives the following asymp-

totic series for the correction to the ground state energy

E(1)
pert = − g2m

∂

∂m
log e

m
g2

√
g2

2πm

(
1 + · · ·+ [(2n− 1)!!]2

n!

(
g2

8m

)n

+ · · ·
)
, (V.8)

The Borel resummation with negative g2 and the analytic continuation to positive g2 gives the

ambiguity

E(1)
pert = − g2m

∂

∂m
log

[
I0(m/g2)± i

π
K0(m/g2)

]
, (V.9)

whereK0(m/g2) is the modified Bessel function of the second kind. Therefore, the non-perturbative

part should have the following ambiguity

E(1)
bion = E(1) − E(1)

pert = g2m
∂

∂m
log

[
1± i

π

K0(m/g2)

I0(m/g2)

]
. (V.10)

The first leading order term is given by

E(1)
bion = g2m

∂

∂m
log
[
1± ie

− 2m
g2 + · · ·

]
= ∓ 2im e

− 2m
g2 +O

(
e
− 4m

g2

)
, (V.11)

corresponding to θ ≡ arg g2 = −,+ for upper and lower sign respectively. We can check that the

complexified quasi moduli integral (V.2) is consistent with this near supersymmetric result.

VI. SUMMARY AND DISCUSSION

We have discussed the non-perturbative contributions from the complex saddle points in the

CPN−1 and sine-Gordon quantum mechanics with the fermionic degrees of freedom. We obtained

non-perturbative contributions from the real and complex bion solutions by using the Gaussian

approximation, which is valid in the small coupling limit g → 0 with fixed boson-fermion coupling

E(1)

bion

= ⌥2ime
� 2m

g2 +O
⇣
e
� 4m

g2

⌘

single bions multi bions

can be obtained from multi-bion solutions
will be announced in a forthcoming paper

Imaginary ambiguities cancel between pert and nonpert parts, 
and we end up with the exact result !

Sine-Gordon QM
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CP1 Sigma model

・CP1 sigma model on R1 x S1

・Twisted boundary conditions

L =
1

g2
|@µ'|2

(1 + |'|2)2

'(y + L) = eimL'(y) m=π   :    Z2 twisted b.c.

dimensional reduction

· 1d limit : QM of a particle on sphere
(due to twisted b.c.)potential with two minima

· fractional instanton

kink 
(tunneling)

complex bion solution 
complex φ-plane

→ BPS Fractional instantons
cf.) m=π

30

! !

FIG. 9: Fractional instanton configuration on S2 in the reduced quantum mechanics is depicted. It corre-

sponds to a single line from the north to the south pole which is rotated over the half of S2 homogeneously.

The figure depicts the rotation of the line around the half sphere. The red arrows denote paths depending

on x2 with a constant x1, while the blue arrows denote the x1 dependence of such paths.

!

π1 +1/2 −1/2 +1/2 −1/2

π2 +1/2 −1/2 −1/2 +1/2

(a) (b) (c) (d)

FIG. 10: Fractional (anti-)instanton configurations in the reduced quantum mechanics is depicted on the

S2 target space of the CP 1 model. The first and second homotopy groups for instantons in the sine-Gordon

model and CP 1 model are shown. Configurations with positive values of the second homotopy class π2 are

BPS while those with negative values are anti-BPS both in the CP 1 model and reduced sine-Gordon model.

Thus, (a) and (d) are BPS while (b) and (c) are anti-BPS.



CP1 QM via dimensional reduction

・Potential with two minima due to t.b.c.

・Kink solutions

dimensional reduction

· 1d limit : QM of a particle on sphere
(due to twisted b.c.)potential with two minima
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in the CPN−1 quantum mechanics. The fractional instanton in Eq.(II.9) and the bion configuration

in Eq. (II.12) take the form of Eq. (II.18). Thus we find that both the fractional instantons and the

bion configurations are correctly described in the CPN−1 quantum mechanics. We can show that all

other multi-fractional instanton configurations can be correctly described by the CPN−1 quantum

mechanics, provided it does not contain multi-fractional-instantons with |Q| ≥ 1 anywhere locally.

The instanton configuration (II.10) with Q = 1 is not reducible to the CPN−1 quantum me-

chanics, since it does not satisfy (II.18). The action and topological charge densities of the N

fractional instanton solution in Eq.(II.10) do exhibit a strong x2 dependence approaching the or-

dinary single instanton solution when the constituent fractional instantons are compressed in a

point. This situation inevitably occurs whenever configurations with |Q| ≥ 1 are contained. On

the other hand, we find that the configurations compatible with the CPN−1 quantum mechanics

have action density and topological charge density which are independent of the coordinate x2 of

the compact direction. Therefore, configurations with |Q| < 1 in the two-dimensional field theory

are correctly captured by the CPN−1 quantum mechanics, provided the multi-fractional-instanton

configurations with more than unit topological charge is not contained anywhere locally [44].

Once it was conjectured that the CPN−1 model reduces to the sine-Gordon quantum mechanics

in the limit of L → 0 (the compactification limit) [11, 12]. However, it has been observed that the

relative phase moduli of fractional instanton and anti-instanton is not correctly described by the

sine-Gordon quantum mechanics [22, 28, 36]. We discuss the differences between the CP 1 and the

sine-Gordon quantum mechanics in Sec. V.

C. CP 1 quantum mechanics with fermion and supersymmetry

To examine bion configurations, it is convenient to introduce a fermionic degree of freedom.

Only in this subsection, we use Lorentzian signature instead of Euclidean signature in order to

use also Schrödinger equation later. To denote 1d quantities simply, we rewrite without subscript:

−ix1 as the Lorentzian time t, ϕk=1
(0) → ϕ, g1d → g, G(0)

11̄
→ G etc. The Lagrangian of the CP 1

Lorentzian quantum mechanics with a fermion takes the form

L =
1

g2
G
[
∂tϕ∂tϕ̄−m2ϕϕ̄+ iψ̄Dtψ + ϵm(1 + ϕ∂ϕ logG)ψ̄ψ

]
, (II.20)

where G is the Fubini-Study metric and Dt is the pullback of the covariant derivative

G =
1

(1 + ϕϕ̄)2
, Dtψ =

[
∂t + ∂tϕ∂ϕ logG

]
ψ. (II.21)
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where G is the Fubini-Study metric and Dt is the pullback of the covariant derivative
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1

(1 + ϕϕ̄)2
, Dtψ =

[
∂t + ∂tϕ∂ϕ logG

]
ψ. (II.21)
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The parameter ϵ controls the strength of the interaction between the bosonic and fermionic degrees

of freedom. If we set ϵ = 1, this model becomes a supersymmetric system which can be obtained

from the 2d N = (2, 0) CP 1 sigma model by an analogous dimensional reduction as the one

discussed in the previous subsection.

Since the fermion number ψ̄ψ commutes with the Hamiltonian, we can eliminate ψ by using

the conserved fermion number and the associated induced potential. By projecting quantum states

onto the subspace of the Hilbert space with a fixed fermion number, we obtain the following purely

bosonic Lagrangian (see Appendix A for details)

L =
1

g2
∂tϕ∂tϕ̄

(1 + ϕϕ̄)2
− V (ϕϕ̄), V (ϕϕ̄) ≡ 1

g2
m2ϕϕ̄

(1 + ϕϕ̄)2
− ϵm

1− ϕϕ̄

1 + ϕϕ̄
, (II.22)

where we have chosen the fermion number so that the supersymmetric ground state for ϵ = 1

is contained in the subspace of the Hilbert space. The potential V as a function of the latitude

θ ≡ 2arctan|ϕ| is shown in Fig. 3.

! "
#
!

Fig. 3: The potential V with the contribution of the fermion. The horizontal axis denotes the latitude

θ ≡ 2arctan|ϕ| on CP 1 ∼= S2.

For ϵ = 1, the ground state wave function Ψ0, which preserves the supersymmetry, is given as

the zero energy solution of the Schrödinger equation

HΨ0 = 0, (II.23)

with the Hamiltonian H of the bosonic theory:

H = −g2(1 + ϕϕ̄)2
∂

∂ϕ

∂

∂ϕ̄
+ V (ϕϕ̄). (II.24)

We find the exact solution of the ground state wave function

Ψ0 = exp

(
m

2g2
1− ϕϕ̄

1 + ϕϕ̄

)
. (II.25)

· Euclidean effective action

· Induced potential

SE =
1

g2

Z
d⌧
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need to choose contours above or below the real axis,
which are indicated by ± here. In the present case, the
lateral Borel resummation S±Epert gives a finite but am-
biguous result, whose imaginary ambiguity is given by

ImS±Epert = ∓ 2πm

Γ(1− ϵ)2

(
g2

2m

)2(ϵ−1)

e
− 2m

g2 , (.24)

with − in the right hand side for θ = +0 and + for
θ = −0 with g2 = |g2|eiθ. We note that the direction θ

of the Laplace integral
∫ eiθ∞
0 in the Borel resummation

is equivalent to the phase of the coupling constant g2 =
|g2|eiθ. Instead of exhibitig the whole Borel resummation
S±E, we exhibit the result as an expansion of ϵ− 1 ≡ δϵ
for later convenience,

S±Epert = δϵ
[
g2 −m

]
+ δϵ2

[
......

]
. (.25)

Cancellation of Imaginary ambiguities : By use
of the relation sin ϵπ

π Γ (ϵ) = 1
Γ(1−ϵ) , the imaginary ambi-

guity from the perturbative contribution in CP 1 model
is rewritten as

ImS±Epert = ±2m

π
sin2 ϵπ Γ(ϵ)2

(
g2

2m

)2(ϵ−1)

e
− 2m

g2 ,(.26)

with + for θ = −0 and − for θ = +0. This is nothing
but the contribution from the real and complex bion so-
lutions with the opposite sign. Therefore, the imaginary
ambiguity from the perturbative and non-perturbative
contributions in CP 1 model completely cancel out as

ImS±Epert + ImEbion = 0. (.27)

The cancellation of the imaginary ambiguities in the
trans-series is one of the good indicators on validity of
application of the resurgence theory to the physical the-
ory since the physical quantity should be real.

Exact ground-state energy as trans-series : We
will obtain the exact result of the ground state energy and
write it in a form of trans-series in the CP 1 model. For
ϵ = 1, the ground state wave functionΨ0, which preserves
the supersymmetry, is given as the zero energy solution of
the Schrödinger equation HΨ0 = 0 . The exact solution
of the ground state wave function is written as

Ψ0 = exp

(
m

2g2
1− ϕϕ̄

1 + ϕϕ̄

)
. (.28)

The non-perturbative corrections in the near supersym-
metric case ϵ ≈ 1 is obtained by expanding the energy
with respect to small δϵ ≡ ϵ− 1

E =
⟨0|δH|0⟩
⟨0|0⟩ +

⟨δψ|δH|δψ⟩
⟨0|0⟩ +O(δϵ3), (.29)

where the perturbative Hamiltonian is given by
δH = H − Hϵ=1. We exactly calculate the leading

and next-leading order coefficients in the small δϵ expan-
sion of the ground state energy by using the explicit form
of the ground state wave function (.28) as

E = δϵ

[
g2 −m coth

m

g2

]

+ δϵ2
[
g2 −m

coth m
g2

sinh2 m
g2

(Ei( 2mg2 ) + Ei(− 2m
g2 )

2

− γ − log
2m

g2

)]
+ O(δϵ3)

= δϵE(1) + δϵ2 E(2) + O(δϵ3) , (.30)

with γ being the Euler constant. We note that Eq. (.30)
is non-perturbative as a function of the coupling constant
g. Now, we express the perturbative contribution and the
complex saddle-point contribution as an expansion of δϵ,

Ebion = δϵ
[
− 2me

− 2m
g2

]

+ δϵ2
[
4me

− 2m
g2 (γ + log

2m

g2
± iπ

2
)
]
+ O(δϵ3)

= δϵE(1)
bion + δϵ2 E(2)

bion + O(δϵ3), (.31)

S±Epert = δϵ
[
g2 −m

]
+ δϵ2

[
......

]
+O(δϵ3)

= δϵS±E
(1)
pert + δϵ2S±E

(2)
pert + O(δϵ3) . (.32)

Finally, we find out that the exact ground state energy
(.30) turn out to be composed of the perturbative and
non-perturbative parts in each order of δϵ as

E(1) = S±E
(1)
pert + E(1)

bion ,

E(2) = S±E
(2)
pert + E(2)

bion . (.33)

These are the explicit trans-series equations (.1) which
we expected.

These results can be checked by using the original form
of asymptotic expansion, or without using the Borel re-
summation. For example, the coefficient of δϵ2 in the
exact result E(2) is decomposed into a part which can be
expressed as a series of g2/m and a part which cannot be
expressed by that. The former part is expanded as

∼
∑

l=0

m
(l − 1)!

2l−1

(
g2

m

)l+1

, (.34)

which is a δϵ2 coefficient of the perturbative series Epert

in (.21). The latter part is

∼ 4me
− 2m

g2

(
γ + log

2m

g2

)
, (.35)

which is the leading δϵ2 coefficient of the non-
perturbative contribution in (.13) except the imaginary
ambiguity. These results on CP 1 model can be extended
to CPN−1 model.
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The parameter ϵ controls the strength of the interaction between the bosonic and fermionic degrees

of freedom. If we set ϵ = 1, this model becomes a supersymmetric system which can be obtained

from the 2d N = (2, 0) CP 1 sigma model by an analogous dimensional reduction as the one

discussed in the previous subsection.

Since the fermion number ψ̄ψ commutes with the Hamiltonian, we can eliminate ψ by using

the conserved fermion number and the associated induced potential. By projecting quantum states

onto the subspace of the Hilbert space with a fixed fermion number, we obtain the following purely

bosonic Lagrangian (see Appendix A for details)

L =
1

g2
∂tϕ∂tϕ̄

(1 + ϕϕ̄)2
− V (ϕϕ̄), V (ϕϕ̄) ≡ 1

g2
m2ϕϕ̄

(1 + ϕϕ̄)2
− ϵm

1− ϕϕ̄

1 + ϕϕ̄
, (II.22)

where we have chosen the fermion number so that the supersymmetric ground state for ϵ = 1

is contained in the subspace of the Hilbert space. The potential V as a function of the latitude

θ ≡ 2arctan|ϕ| is shown in Fig. 3.

! "
#
!

Fig. 3: The potential V with the contribution of the fermion. The horizontal axis denotes the latitude

θ ≡ 2arctan|ϕ| on CP 1 ∼= S2.

For ϵ = 1, the ground state wave function Ψ0, which preserves the supersymmetry, is given as

the zero energy solution of the Schrödinger equation

HΨ0 = 0, (II.23)

with the Hamiltonian H of the bosonic theory:

H = −g2(1 + ϕϕ̄)2
∂

∂ϕ

∂

∂ϕ̄
+ V (ϕϕ̄). (II.24)

We find the exact solution of the ground state wave function

Ψ0 = exp

(
m

2g2
1− ϕϕ̄

1 + ϕϕ̄

)
. (II.25)✏ ⇡ 1

11

The existence of the supersymmetric state implies that the ground state energy receives no non-

perturbative correction for ϵ = 1. For a generic value of ϵ, there can be corrections to the ground

state energy. Indeed, we can show that there exist non-perturbative corrections in the near super-

symmetric case ϵ ≈ 1 by expanding the energy with respect to small δϵ ≡ ϵ− 1

E ≈ ⟨0|δH|0⟩
⟨0|0⟩ = − δϵm

〈
1− ϕϕ̄

1 + ϕϕ̄

〉

ϵ=1

, (II.26)

where the perturbative Hamiltonian is given by

δH = H −Hϵ=1 = − δϵm
1− ϕϕ̄

1 + ϕϕ̄
. (II.27)

As Eq. (II.26) indicates, we can exactly calculate the leading order coefficients in the small δϵ

expansion of the ground state energy by using the explicit form of the ground state wave function

(II.25) as

E =

∫
dv δH|Ψ0|2
∫

dv |Ψ0|2
+O(δϵ2) = δϵ

[
g2 −m coth

m

g2

]
+O(δϵ2), (II.28)

where dv is the standard volume element on CP 1: dv ≡ d2ϕ/(1 + ϕϕ̄)2. Note that although we

have expanded the energy with respect to δϵ, Eq. (II.28) is non-perturbative as a function of the

coupling constant g. We can decompose the ground state energy (II.28) into the perturbative and

non-perturbative parts

Epert = (g2 −m)δϵ+O
(
δϵ2
)
, (II.29)

Ebion = −2me
− 2m

g2 δϵ+O
(
e
− 4m

g2 , δϵ2
)
. (II.30)

It is interesting to note that perturbative contributions to this order of ϵ − 1 are terminated at

the order g2 without any higher order corrections, and hence there is no ambiguity associated with

non-Borel summable asymptotic series. In the following, we will see that contributions of (real and

complex) bion configurations correctly reproduce this non-perturbative correction.

III. BION SADDLE POINTS AND ONE-LOOP APPROXIMATION

In the previous section, we have seen that the ground state energy receives no correction for

ϵ = 1 due to the supersymmetry and there exists a non-perturbative correction at least in the near

supersymmetric case ϵ ≈ 1. In this section, we discuss the non-perturbative correction from the

�✏ = ✏� 1
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V. COMMENTS ON BION CONTRIBUTIONS IN SINE-GORDON MODEL

As we have in the previous section, the sine-Gordon action (IV.21), which can be obtained by

restricting the CP 1 action to the zero angular momentum sector, also has real and complex bion

solutions [37, 38]. The crucial difference is that the bions in the sine-Gordon model do not have

phase modulus. This is merely one manifestation of the fundamental difference of the topology

of the target space: S1 for the sine-Gordon model and CP 1 = S2 for the CP 1 model. This fact

particularly gives a marked difference when we consider quantum theory[63]. Consequently, the

non-perturbative contributions to the ground state energy in the sine-Gordon model is different

from that in the CP 1 model. In the sine-Gordon model, the Gaussian approximation for the bion

contributions which is valid in the limit g → 0 with fixed λ = mϵg2, gives

− lim
β→∞

1

β

Z1

Z0
= 2

√
8ω5

πg2(ω2 −m2)
(1 + e±2πiϵ) exp

[
−2ω

g2
− 2ϵ log

ω +m

ω −m

]
, (V.1)

while the complexified quasi moduli integral, which is valid in the limit g → 0 with fixed ϵ, gives

− lim
β→∞

1

β

Z1

Z0
=

m

π
(1 + e±2πiϵ)Γ(2ϵ) exp

[
−2m

g2
+ (2ϵ− 1) log

g2

4m

]
, (V.2)

corresponding to θ = arg g2 = −,+ for upper and lower sign respectively. These results do not

agree with the corresponding non-perturbative corrections (III.44) and (IV.62) in the CP 1 model.

The mismatch of the ground state energies is due to the difference of the Hamiltonian HCP 1 in

Eq. (II.24) for the CP 1 model and that obtained from the Lagrangian (IV.21) for the sine-Gordon

model

H l=0
CP 1 = −g2

(
∂2θ +

1

tan θ
∂θ

)
+

m2

4g2
sin2 θ − ϵm cos θ = HSG − g2

tan θ
∂θ. (V.3)

The nonperturbative corrections (V.1) and (V.2) vanish in the limit ϵ = 1
2 . This is in accord with

the fact that ϵ = 1
2 is the supersymmetric limit of the sine-Gordon model.

As opposed to the CP 1 model, the ambiguity in (V.1) and (V.2) does not vanish in the near

supersymmetric regime ϵ ≈ 1
2 . To compare it with the ambiguity in the perturbative part, let us

consider the leading order correction to the ground state energy in the near supersymmetric limit:

E(1) = E(1)
pert + E(1)

bion, (V.4)

where E(1) stands for the leading order coefficient in the small δϵ ≡ ϵ− 1
2 expansion of the ground

state energy

E(1) ≡ lim
ϵ→ 1

2

∂ϵE. (V.5)

Perturbative part Saddle-point part
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θ is the phase of the complexified coupling g2 = |g2|eiθ.
The imaginary ambiguity of the bion contribution de-
pends on an infinitely small sign of this phase. It is no-
table that the contribution in (.13) vanishes at ϵ = 1,
which is consistent with the supersymmetry.
The results on the bion solutions are easily extended

to CPN−1 models. In complexified CPN−1 models with
fermionic degrees of freedom, we have N real bion and N
complex bion solutions. The real bions for this case are
given by

ϕi =

√
ω2
i

Nmiϵg2
eiφ0

sinhωi(τ − τ0)
, (.14)

with ωi = mi

√
1 +Nϵg2/mi. The complex bions are

given by

ϕi =

√
ω2
i

Nmiϵg2
eiφ0

coshωi(τ − τ0)
, ϕ̃i = −ϕ̄i . (.15)

For this case, the effective potential between the BPS
components in bion configuration is modified as

Veff ≈ 2mi

g2
− 4mi

g2
e−miτr cosφr + 2ϵ′miτr , (.16)

with ϵ′ = 1 + 1
2 (ϵ − 1)N . By performing the Lefschetz

thimble integral (quasi moduli integral) based on this
effective potential, we derive the contributions from N
real and complex bions to the ground state energy

Ebion = −
N−1∑

i=1

2mi

(
g2

2mi

)2(ϵ′−1)
sin ϵ′π

π
Γ (ϵ′)

2
e
− 2mi

g2

×
{

eπiϵ for θ = −0
e−πiϵ for θ = +0

.(.17)

Again, the imaginary ambiguity of the bion contribution
depends on a sign of the phase of complexified coupling
constant g2 = |g2|eiθ. The contribution vanishes at ϵ′ =
ϵ = 0, which agrees with the supersymmetry.

Contribution from Perturbative vacuum : We
here focus on the CP 1 model. To derive a perturba-
tive series of the ground state energy, we redefine the
wave function and the coordinate as ψ = e−x2

Ψ(x), |ϕ| =
ηx, η ≡ g√

m
. Then, the Hamiltonian becomes

H̃

m
= −1

4
(1 + η2x2)2

{
∂2x + (1− 4x2)

1

x
∂x

}
+ V (x),(.18)

where the potential is

V (x) = (1− x2)(1 + η2x2)2 +
x2

(1 + η2x2)2
− ϵ

1− η2x2

1 + η2x2
.(.19)

We expand the energy and the wave function with re-
spect to η as E

m =
∑∞

l=0 Alη2l,Ψ =
∑∞

l=0 Ψl(x)η2l. The

Schrödinger equation (H̃ − E)Ψ = 0 is expanded by

l

= 1+

= 0+

= 2+
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Fig. 2: The asymptotic behavior of the ratio

Al/
[

1
2l−1

Γ(l+2(1−ϵ))
Γ(1−ϵ)2

]
(l ≤ 100) for 0 ≤ ϵ ≤ 2. δ is a

regularization parameter (δ = 10−10).

Al and Ψl with Ψl = 0 for l < 0. Setting Ψ0 = 1,
we solve equations order by order, and find that Ψl are
polynomials of the form Ψl =

∑2l
k=0 Bl,kx2k. Then, the

Schrödinger equation reduces to the recursion relation
called Bender-Wu recursion relation,

0 =
4∑

i=0

(
4
i

)[
(k − i+ 1)2Bl−i,k−i+1

− (2k − 2i+ 1)Bl−i,k−i +Bl−i,k−i−1

]

+
l∑

i=1

Ai(Bl−i,k + 2Bl−i−1,k−1

+ Bl−i−2,k−2)−Bl,k−1 + ϵ(Bl,k −Bl−2,k−2),(.20)

where Bl,k = 0 if l < 0, k < 0, k > 2l.
We now obtain Al in Epert = m

∑∞
l=0 Alη2l. As shown

in Fig. 2 it has the asymptotic behavior

Al ∼ − 1

2l−1

Γ(l + 2(1− ϵ))

Γ(1− ϵ)2
. (.21)

Now, we introduce Borel transform and Borel resum-
mation. The Borel resummation of Epert gives an an-
alytic function which has Epert as an asymptotic se-
ries. Firstly, the Borel transform B[Epert](t) of the series
Epert(η2) =

∑∞
l=0 Elη2l is defined as

B[Epert](t) =
∞∑

l=0

Fl

l!
tl , (.22)

where t ∈ C is a Borel parameter. Note, in the present
case (and lots of other examples), the Borel transform
B[Epert] has singularities on the real and positive axis on
the Borel plane of t. Now, the (lateral) Borel resumma-
tion is defined as

S±Epert(η
2) =

1

η2

∫ e±iδ∞

0
B[Epert](t)e

−t/η2dt , (.23)

with δ is a infinitely small number. Since the Borel trans-
form has singularities on the real and positive axis, we

cf.)inspired by Sulejmanpasic, Unsal (16)
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need to choose contours above or below the real axis,
which are indicated by ± here. In the present case, the
lateral Borel resummation S±Epert gives a finite but am-
biguous result, whose imaginary ambiguity is given by

ImS±Epert = ∓ 2πm

Γ(1− ϵ)2

(
g2

2m

)2(ϵ−1)

e
− 2m

g2 , (.24)

with − in the right hand side for θ = +0 and + for
θ = −0 with g2 = |g2|eiθ. We note that the direction θ

of the Laplace integral
∫ eiθ∞
0 in the Borel resummation

is equivalent to the phase of the coupling constant g2 =
|g2|eiθ. Instead of exhibitig the whole Borel resummation
S±E, we exhibit the result as an expansion of ϵ− 1 ≡ δϵ
for later convenience,

S±Epert = δϵ
[
g2 −m

]
+ δϵ2

[
......

]
. (.25)

Cancellation of Imaginary ambiguities : By use
of the relation sin ϵπ

π Γ (ϵ) = 1
Γ(1−ϵ) , the imaginary ambi-

guity from the perturbative contribution in CP 1 model
is rewritten as

ImS±Epert = ±2m

π
sin2 ϵπ Γ(ϵ)2

(
g2

2m

)2(ϵ−1)

e
− 2m

g2 ,(.26)

with + for θ = −0 and − for θ = +0. This is nothing
but the contribution from the real and complex bion so-
lutions with the opposite sign. Therefore, the imaginary
ambiguity from the perturbative and non-perturbative
contributions in CP 1 model completely cancel out as

ImS±Epert + ImEbion = 0. (.27)

The cancellation of the imaginary ambiguities in the
trans-series is one of the good indicators on validity of
application of the resurgence theory to the physical the-
ory since the physical quantity should be real.

Exact ground-state energy as trans-series : We
will obtain the exact result of the ground state energy and
write it in a form of trans-series in the CP 1 model. For
ϵ = 1, the ground state wave functionΨ0, which preserves
the supersymmetry, is given as the zero energy solution of
the Schrödinger equation HΨ0 = 0 . The exact solution
of the ground state wave function is written as

Ψ0 = exp

(
m

2g2
1− ϕϕ̄

1 + ϕϕ̄

)
. (.28)

The non-perturbative corrections in the near supersym-
metric case ϵ ≈ 1 is obtained by expanding the energy
with respect to small δϵ ≡ ϵ− 1

E =
⟨0|δH|0⟩
⟨0|0⟩ +

⟨δψ|δH|δψ⟩
⟨0|0⟩ +O(δϵ3), (.29)

where the perturbative Hamiltonian is given by
δH = H − Hϵ=1. We exactly calculate the leading

and next-leading order coefficients in the small δϵ expan-
sion of the ground state energy by using the explicit form
of the ground state wave function (.28) as

E = δϵ

[
g2 −m coth

m

g2

]

+ δϵ2
[
g2 −m

coth m
g2

sinh2 m
g2

(Ei( 2mg2 ) + Ei(− 2m
g2 )

2

− γ − log
2m

g2

)]
+ O(δϵ3)

= δϵE(1) + δϵ2 E(2) + O(δϵ3) , (.30)

with γ being the Euler constant. We note that Eq. (.30)
is non-perturbative as a function of the coupling constant
g. Now, we express the perturbative contribution and the
complex saddle-point contribution as an expansion of δϵ,

Ebion = δϵ
[
− 2me

− 2m
g2

]

+ δϵ2
[
4me

− 2m
g2 (γ + log

2m

g2
± iπ

2
)
]
+ O(δϵ3)

= δϵE(1)
bion + δϵ2 E(2)

bion + O(δϵ3), (.31)

S±Epert = δϵ
[
g2 −m

]
+ δϵ2

[
......

]
+O(δϵ3)

= δϵS±E
(1)
pert + δϵ2S±E

(2)
pert + O(δϵ3) . (.32)

Finally, we find out that the exact ground state energy
(.30) turn out to be composed of the perturbative and
non-perturbative parts in each order of δϵ as

E(1) = S±E
(1)
pert + E(1)

bion ,

E(2) = S±E
(2)
pert + E(2)

bion . (.33)

These are the explicit trans-series equations (.1) which
we expected.

These results can be checked by using the original form
of asymptotic expansion, or without using the Borel re-
summation. For example, the coefficient of δϵ2 in the
exact result E(2) is decomposed into a part which can be
expressed as a series of g2/m and a part which cannot be
expressed by that. The former part is expanded as

∼
∑

l=0

m
(l − 1)!

2l−1

(
g2

m

)l+1

, (.34)

which is a δϵ2 coefficient of the perturbative series Epert

in (.21). The latter part is

∼ 4me
− 2m

g2

(
γ + log

2m

g2

)
, (.35)

which is the leading δϵ2 coefficient of the non-
perturbative contribution in (.13) except the imaginary
ambiguity. These results on CP 1 model can be extended
to CPN−1 model.
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is invariant under the shift of the Euclidean time τ → τ − τ0, the corresponding “energy” is a

conserved quantity

E ≡ 1

g2
∂τϕ∂τ ϕ̄

(1 + ϕϕ̄)2
− V (ϕϕ̄). (III.6)

The action is also invariant under the phase rotation ϕ→ eiφϕ, so that the corresponding angular

momentum is a conserved charge

l ≡ i

g2
∂τϕϕ̄− ∂τ ϕ̄ϕ

(1 + ϕϕ̄)2
. (III.7)

Since we are interested in saddle point configurations with finite action, we impose the boundary

condition so that ϕ is at the minimum of the potential for τ → ±∞:

lim
τ→±∞

ϕ = lim
τ→±∞

ϕ̄ = 0. (III.8)

Then it follows that the saddle point configuration cannot have the angular momentum l, i.e. the

phase of ϕ is a constant of motion. In addition, “the energy conservation law” implies that

1

g2
∂τϕ∂τ ϕ̄

(1 + ϕϕ̄)2
− V (ϕϕ̄) = ϵm = E|ϕ=0. (III.9)

We can integrate the energy conservation law to obtain “the real bion solution”.

ϕ = eiφ0

√
ω2

ω2 −m2

1

i sinhω(τ − τ0)
, (III.10)

where ω is given by

ω ≡ m

√
1 +

2ϵg2

m
. (III.11)

The parameters τ0 and φ0 are integration constants, i.e. moduli parameters. The orbit of this

solution in CP 1 is a great circle starting from the south pole (ϕ = 0, minimum of the potential)

and passing through the north pole at τ = τ0. The phase modulus φ0 is related to the longitude

of the great circle. Thus the moduli space of real bion is a cylinder

Mbion = R× S1. (III.12)

These parameters will be eventually integrated to incorporate the contribution of all the bion

solutions to the partition function. Precisely speaking, the first factor should be interpreted as an

infinitely large S1 with radius β → ∞, along which the moduli integration gives a factor of β to

the single bion contribution Z1.

 Euclidean e.o.m



· kink-antikink pair  
kink antikink

relative distance (stabilized)

Solution of E.O.M.

'�1 / e!(⌧�⌧+) � e�!(⌧�⌧�)

⌧+ � ⌧� =

1
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�

(              )

14

The real bion solution can be viewed as a kink-antikink solution with fixed relative position and

phase, since it can be rewritten into the kink-antikink form

ϕ =
(
a+e

ωτ + a−e
−ωτ

)−1
, a+ = e−ωτ+−iφ+ , a− = eωτ−−iφ− , (III.13)

where the positions and phases are given by

τ± = τ0 ±
1

2ω
log

4ω2

ω2 −m2
, φ± = φ0 ∓

π

2
. (III.14)

The Lagrangian for this saddle point configuration takes the form

L = 4mϵ
[
f(τ − τ0) coshω(τ − τ0)

]2
−mϵ, (III.15)

where the function f(τ) is given by

f(τ) ≡ ω2

ω2 + (ω2 −m2) sinh2 ωτ
. (III.16)

Neglecting the vacuum value of the Lagrangian, we obtain the action for the real bion as

Srb = 4mϵ

∫ ∞

−∞
dτ
[
f(τ − τ0) coshω(τ − τ0)

]2
=

2ω

g2
+ 2ϵ log

ω +m

ω −m
. (III.17)

This implies that the real bion can give a non-perturbative correction of order e−Srb ∼ e
− 2ω

g2 .

However, as we have seen in the previous section, the ground state energy does not receive any

correction for ϵ = 1, and hence there should be other saddle point configurations which cancel the

contribution of the real bion solution.

B. Complex bion solution

The absence of non-perturbative correction at ϵ = 1 implies that there are other saddle points

which should be taken into account. However, the configuration (III.10) is the general solution

satisfying the boundary condition (III.8). The only way to obtain other saddle point configurations

is to extend the configuration space by complexifying the degrees of freedom. Such a procedure is

a straightforward generalization of the complexification of integration contour for ordinary finite

dimensional integrals, which is a necessary step in the saddle point method [37].

In the case of the complex field ϕ, we independently complexify its real and imaginary parts:

(ϕ, ϕ̄) = (ϕR + iϕI , ϕR − iϕI) −→ (ϕC
R + iϕC

I , ϕC
R − iϕC

I ). (III.18)

: position : phase are moduli parameters⌧0 �0

!2 = m2 + �' =

r
!2

�

ei�0

i sinh!(⌧ � ⌧0)

solution



real bion solution

“real” bion : saddle point on original integration contour 

: kink profile

' =

r
!2

�

ei�0

i sinh!(⌧ � ⌧0)

⌧+ � ⌧� =

1

!
log

4!2

�

⌧+⌧�

|'|2

1 + |'|2



·  does not vanish in the supersymmetric case  

There should be other saddle points 
which cancel the real bion contribution

contribution of real bion

exp[�Srb] = exp


�2!

g2

✓
1 +

�

m!
log

! �m

! +m

◆�

� = mg2



· Analytically continued holomorphic action

Complexification

holomorphic

complexification of CP1

· real and imaginary parts of complex'

' = 'R + i'I '̄ = 'R � i'I ! '̃

CP 1 ⇠=
SU(2)

U(1)
! SU(2)C

U(1)C
⇠= T ⇤CP 1

S[', '̄] ! S[', '̃]
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Consequently, ϕ̄ becomes an independent complex degree of freedom which is not related to ϕ by

complex conjugation. In the following, we denote ϕ̃ for the complexification of ϕ̄ to avoid confusion

ϕ̄ → ϕ̃ ̸= complex conjugate of ϕ. (III.19)

Then we regard the action S[ϕ, ϕ̃] as an analytically continued holomorphic functional of the

complexified degrees of freedom

S[ϕ, ϕ̃] =

∫
dτ

[
1

g2
∂τϕ∂τ ϕ̃

(1 + ϕϕ̃)2
+ V (ϕϕ̃)

]
. (III.20)

We also impose the boundary condition (III.8) with ϕ̃ replacing ϕ̄. By deforming integration

contour, the integral can be expressed as a sum of contributions from a set of saddle points of the

complexified action S[ϕ, ϕ̃].

Since the action is extended as a holomorphic functional, it is invariant under the symmetries

of the original action with complexified transformation parameters. Furthermore, the complexified

equations of motion take the same forms as those of the original action and hence the configura-

tion (III.10) is still the general solution satisfying the boundary condition (III.8). The important

difference in the complexified case is that the integration constants τ0 and φ0 are now complex

parameters, i.e. the solution (ϕ, ϕ̃) is a holomorphic function of the moduli parameters τ0 and φ0.

The solution (III.10) smoothly varies under small shifts of moduli parameters τ0 and φ0. Such

solutions are simply related to the real bion solution by the complexified symmetry transformations,

and the value of the corresponding action remains the same. Thus the moduli space of bion

configurations is also complexified: Mbion → MC
bion. The integration contour of the moduli integral

for the partition function can be any middle dimensional contour in the complexifed moduli space

MC
bion as long as it is related to the original real contour Mbion by a continuous deformation.

However, for our purpose, we do not need to consider the deformation of the integration contour and

the moduli integral will be performed over Mbion in the next section. Thus, the bion configurations

with the complexified moduli do not give a physically distinct contribution, until the shift in the

complexified transformation meets a singularity and produces a jump in the value of the action.

The singular solution can be obtained by a shift, for instance by an amount

τ0 → τ̃0 = τ0 +
1

ω

πi

2
, (III.21)

under which the solution becomes

ϕ = eiφ0

√
ω2

ω2 −m2

1

coshω(τ − τ0)
, ϕ̃ = −e−iφ0

√
ω2

ω2 −m2

1

coshω(τ − τ0)
. (III.22)

Complex bion solution

• The action is invariant under time and phase 
transformation with complexified parameters 

• A solution distinct from real bion is obtained by 
complexified shift giving a jump of the action

solution



kink antikink

· kink-antikink pair  

Complex bion solution

' =

r
!2

�

ei�0

cosh!(⌧ � ⌧0)
'̃ = �'⇤

'�1 / e!(⌧�⌧+) + e�!(⌧�⌧�)
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(a) Σ(τ) for real bion (b) Σ(τ) for complex bion

Fig. 4: Kink profiles of for real and complex bions. The complex bion solution has singularities at which

Σ(τ) diverges. Note that Σ(τ) can also be complex in the complexified model.

As we will see below, this configuration has singularities at which the action density diverges. Since

ϕ̃ is no longer the complex conjugate of ϕ, this is a solution of the complexified model and hence

we call this configuration “complex bion solution”.

It is worth noting that the shifted solution can also be rewritten into the kink-antikink form

ϕ =
(
eω(τ−τ+)−iφ+ + e−ω(τ−τ−)−iφ−

)−1
, ϕ̃ =

(
eω(τ−τ+)+iφ+ + e−ω(τ−τ−)+iφ−

)−1
, (III.23)

with complexified position parameters τ±:

τ± = τ0 ±
1

2ω

(
log

4ω2

ω2 −m2
+ πi

)
, φ± = φ0 −

π

2
, (III.24)

where we have used the fact that the shift τ0 → τ0 +
1
ω
πi
2 can be rewritten as the combination of

the shifts ωτ+ ± iφ+ → ωτ+ ± iφ+ + πi
2 (mod 2πi) and ωτ− ± iφ− → ωτ− ± iφ− + πi

2 (mod 2πi).

Therefore, the complex bion solution can also be viewed as a kink-antikink solution with complex

relative distance

τr ≡ τ+ − τ− =
1

ω

(
log

4ω2

ω2 −m2
+ πi

)
. (III.25)

Fig. 4 shows the kink-like profiles of the function Σ(τ) in Eq.(II.19), which takes the following form

in the complexified theory

Σ = m
ϕϕ̃

1 + ϕϕ̃
. (III.26)

(              )

 : “complex relative distance”
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(a) Σ(τ) for real bion (b) Σ(τ) for complex bion

Fig. 4: Kink profiles of for real and complex bions. The complex bion solution has singularities at which

Σ(τ) diverges. Note that Σ(τ) can also be complex in the complexified model.

As we will see below, this configuration has singularities at which the action density diverges. Since

ϕ̃ is no longer the complex conjugate of ϕ, this is a solution of the complexified model and hence

we call this configuration “complex bion solution”.

It is worth noting that the shifted solution can also be rewritten into the kink-antikink form

ϕ =
(
eω(τ−τ+)−iφ+ + e−ω(τ−τ−)−iφ−

)−1
, ϕ̃ =

(
eω(τ−τ+)+iφ+ + e−ω(τ−τ−)+iφ−

)−1
, (III.23)

with complexified position parameters τ±:

τ± = τ0 ±
1

2ω

(
log

4ω2

ω2 −m2
+ πi

)
, φ± = φ0 −

π

2
, (III.24)

where we have used the fact that the shift τ0 → τ0 +
1
ω
πi
2 can be rewritten as the combination of

the shifts ωτ+ ± iφ+ → ωτ+ ± iφ+ + πi
2 (mod 2πi) and ωτ− ± iφ− → ωτ− ± iφ− + πi

2 (mod 2πi).

Therefore, the complex bion solution can also be viewed as a kink-antikink solution with complex

relative distance

τr ≡ τ+ − τ− =
1

ω

(
log

4ω2

ω2 −m2
+ πi

)
. (III.25)

Fig. 4 shows the kink-like profiles of the function Σ(τ) in Eq.(II.19), which takes the following form

in the complexified theory

Σ = m
ϕϕ̃

1 + ϕϕ̃
. (III.26)

solution



Complex bion solution
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The value of the Lagrangian in Eq.(III.15) for the shifted solution (τ0 → τ̃0) is given in terms

of the function f defined in Eq.(III.16) as

L = 4mϵ
[
f (τ − τ̃0) coshω(τ − τ̃0)

]2
= −4mϵ

[
ω2 sinhω(τ − τ0)

ω2 − (ω2 −m2) cosh2 ω(τ − τ0)

]2
, (III.27)

where we have neglected the vacuum value of the Lagrangian. Since it has second order poles at

τ±pole = τ0 ±
1

ω
arccosh

√
ω2

ω2 −m2
, (III.28)

the shifted solution is a singular solution. To regularize the acton, let us turn on small imaginary

part of the coupling constant: θ ≡ arg g2. Fig. 5 shows the kink profile of the regularized complex

bion. Neglecting the vacuum value of the Lagrangian, we obtain the action for the complex bion

Fig. 5: Kink profile of regularized complex bion

solution as

Scb = 4mϵ

∫ ∞

−∞
dτ
[
f (τ − τ̃0) coshω(τ − τ̃0)

]2
= 4mϵ

∫

C
dτ
[
f (τ − τ0) coshω(τ − τ0)

]2
.(III.29)

The integrand in the last expression is the same as that for the real bion whereas the integration

contour C is the line Im τ = − 1
ω
π
2 instead of the real axis, and hence the difference of Srb and

Scb can be calculated by deforming the integration contour from the real axis to C. Although the

action is invariant under any smooth deformation of the contour, its value jumps when one of the

poles crosses the contour. By evaluating the residue at the pole, we can show that the difference

of the action for the real and complex bion is given by

Scb = Srb ± 2πiϵ. (III.30)

As shown in Fig. 6, the difference of the action Scb − Srb is given by the residue at either τ+pole or

τ−pole depending on the sign of arg g2. Thus, the contribution of the complex bion has an ambiguity

L・Lagrangian

17

The value of the Lagrangian in Eq.(III.15) for the shifted solution (τ0 → τ̃0) is given in terms

of the function f defined in Eq.(III.16) as

L = 4mϵ
[
f (τ − τ̃0) coshω(τ − τ̃0)

]2
= −4mϵ

[
ω2 sinhω(τ − τ0)

ω2 − (ω2 −m2) cosh2 ω(τ − τ0)

]2
, (III.27)

where we have neglected the vacuum value of the Lagrangian. Since it has second order poles at

τ±pole = τ0 ±
1

ω
arccosh

√
ω2

ω2 −m2
, (III.28)

the shifted solution is a singular solution. To regularize the acton, let us turn on small imaginary

part of the coupling constant: θ ≡ arg g2. Fig. 5 shows the kink profile of the regularized complex

bion. Neglecting the vacuum value of the Lagrangian, we obtain the action for the complex bion
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solution as

Scb = 4mϵ

∫ ∞

−∞
dτ
[
f (τ − τ̃0) coshω(τ − τ̃0)

]2
= 4mϵ

∫

C
dτ
[
f (τ − τ0) coshω(τ − τ0)

]2
.(III.29)

The integrand in the last expression is the same as that for the real bion whereas the integration

contour C is the line Im τ = − 1
ω
π
2 instead of the real axis, and hence the difference of Srb and

Scb can be calculated by deforming the integration contour from the real axis to C. Although the

action is invariant under any smooth deformation of the contour, its value jumps when one of the

poles crosses the contour. By evaluating the residue at the pole, we can show that the difference

of the action for the real and complex bion is given by

Scb = Srb ± 2πiϵ. (III.30)

As shown in Fig. 6, the difference of the action Scb − Srb is given by the residue at either τ+pole or

τ−pole depending on the sign of arg g2. Thus, the contribution of the complex bion has an ambiguity

two poles

' =

r
!2

�

ei�0

cosh!(⌧ � ⌧0)
'̃ = �'⇤

Singular solution

solution
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Kink profile of bion

complexification

height Σ
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''̃

1 + ''̃
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Kink profile of bion

arg[g2] 6= 0

complexification

height Σ
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''̃

1 + ''̃



Contribution of complex bion

indicates contribution of complex bion has  
imaginary ambiguity depending on arg g^2 
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(a) θ = arg g2 > 0 (b) θ = arg g2 < 0

Fig. 6: The integration contour for Scb − Srb in the complex τ plane. Depending on the sign of arg g2, the

difference of the action Scb − Srb is given by the residue at either τ+pole or τ−pole.

for a generic value of ϵ. In the supersymmetic case ϵ = 1, the difference Scb−Srb is 2πi, and hence

there is no ambiguity exp(−Scb) = exp(−Srb).

From the periodicity of the solution and the Lagrangian under the shift of the imaginary part

of τ0, we find that there are only two distinct classes of solutions : real and complex bion solutions

as exact solutions of the complexified equation of motion in the CP 1 qunatum mechanics. To see

that the contributions of the real and complex bions cancel out for ϵ = 1, we have to evaluate the

one-loop determinant in the bion background.

C. One-loop determinant in bion backgrounds

In this section, we compute the contributions of the bion configurations by evaluating the one-

loop determinant for the fluctuations around the bion backgrounds. For this purpose, we expand

the action with respect to the fluctuations ξa (a = 1, 2) defined by

⎛

⎝ ϕ

ϕ̃

⎞

⎠ =

⎛

⎝ ϕsol

ϕ̃sol

⎞

⎠+ g

⎛

⎝ e1 e2

ē1 ē2

⎞

⎠

⎛

⎝ ξ1

ξ2

⎞

⎠ , (III.31)

where the background bion solution is given by

ϕsol = eiφ0

√
ω2

ω2 −m2

1

i sinhω(τ − τ0)
, ϕ̃sol = −e−iφ0

√
ω2

ω2 −m2

1

i sinhω(τ − τ0)
, (III.32)

with

Im τ0 =

⎧
⎨

⎩
0 for real bion

πi
2ω for complex bion

, (III.33)
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difference of the action Scb − Srb is given by the residue at either τ+pole or τ−pole.
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of τ0, we find that there are only two distinct classes of solutions : real and complex bion solutions

as exact solutions of the complexified equation of motion in the CP 1 qunatum mechanics. To see

that the contributions of the real and complex bions cancel out for ϵ = 1, we have to evaluate the

one-loop determinant in the bion background.
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where the background bion solution is given by

ϕsol = eiφ0

√
ω2

ω2 −m2

1

i sinhω(τ − τ0)
, ϕ̃sol = −e−iφ0

√
ω2

ω2 −m2

1
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2ω for complex bion
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there is no ambiguity exp(−Scb) = exp(−Srb).

From the periodicity of the solution and the Lagrangian under the shift of the imaginary part

of τ0, we find that there are only two distinct classes of solutions : real and complex bion solutions

as exact solutions of the complexified equation of motion in the CP 1 qunatum mechanics. To see

that the contributions of the real and complex bions cancel out for ϵ = 1, we have to evaluate the

one-loop determinant in the bion background.

C. One-loop determinant in bion backgrounds

In this section, we compute the contributions of the bion configurations by evaluating the one-

loop determinant for the fluctuations around the bion backgrounds. For this purpose, we expand

the action with respect to the fluctuations ξa (a = 1, 2) defined by

⎛

⎝ ϕ

ϕ̃

⎞

⎠ =

⎛

⎝ ϕsol

ϕ̃sol

⎞

⎠+ g

⎛

⎝ e1 e2

ē1 ē2

⎞

⎠

⎛

⎝ ξ1

ξ2

⎞

⎠ , (III.31)

where the background bion solution is given by

ϕsol = eiφ0

√
ω2

ω2 −m2

1

i sinhω(τ − τ0)
, ϕ̃sol = −e−iφ0

√
ω2

ω2 −m2

1

i sinhω(τ − τ0)
, (III.32)

with

Im τ0 =

⎧
⎨

⎩
0 for real bion

πi
2ω for complex bion

, (III.33)

Scb � Srb =

I
d⌧LE Scb = Srb ± 2⇡i✏

cf.)SG case by Behtash, Sulejmanpasic, Schaefer, Unsal (15)
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Quadratic fluctuations around saddle points
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Leading non-perturbative correction

· Gaussian integration one loop determinant

· asymptotic form in the limit               with fixed

· correction to ground state energy
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· supersymmetric case

SUSY case

· cancelation of real and complex bion contributions

· consistent with the exact result
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nearly flat directions appear
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in such a limit. Since the truncation at the quadratic order is not valid for nearly massless modes,

their contributions are not fully captured in the one-loop determinant. Here, we look for such quasi

zero modes which become nearly massless for small g and λ.

First, note that the exact zero modes given in (III.37) can be obtained by differentiating the

background solution with respect to the overall position and phase (τ0,φ0). They can be viewed

as superpositions of the position and phase modes localized on the constituent kink and antikink.

As can be seen from Eqs. (III.14) and (III.24), the constituent kink and antikink are isolated from

each other in the weak coupling limit λ→ 0:

τ+ − τ− ≈ 1

m
log

2m2

λ
→ ∞ (λ→ 0), (III.45)

and hence any superposition of the position and phase modes becomes massless. This fact implies

that the relative modes corresponding to the relative position and phase are nearly massless in the

weak coupling regime λ ≈ 0. As with the case of the overall zero modes, such relative modes can

also be represented as the derivatives of the background bion solutions with respect to the relative

position τr ≡ τ+ − τ− and phase φr ≡ φ+ − φ−:

ξτr =
1

g

⎛

⎝ e1 e2

ē1 ē2

⎞

⎠
−1⎛

⎝ ∂τrϕsol

∂τr ϕ̃sol

⎞

⎠ , ξφr =
1

g

⎛

⎝ e1 e2

ē1 ē2

⎞

⎠
−1⎛

⎝ ∂φrϕsol

∂φr ϕ̃sol

⎞

⎠ , (III.46)

where ϕsol and ϕ̃sol depends on the positions τ± and phases and φ± as

ϕsol =
(
eω(τ−τ+)−iφ+ + e−ω(τ−τ−)−iφ−

)−1
, ϕ̃sol =

(
eω(τ−τ+)+iφ+ + e−ω(τ−τ−)+iφ−

)−1
,(III.47)

and (τ±,φ±) are set to the values in Eqs. (III.14) and (III.24) after differentiating the solution

with respect to the relative parameters (τr,φr). The relative modes ξτr and ξφr are approximate

normalizable eigenmodes in the weak coupling regime λ ≈ 0, whose eigenvalues are approximately

given by

∆ξτr ≈ λξτr , ∆ξφr ≈ −λξφr . (III.48)

Note that the negative eigenvalue of ξφr implies that the bion solution is unstable under a real

variation of φr.

A numerical analysis implies that the other fluctuation modes seem to have frequencies higher

than ω and hence they are non-normalizable modes with continuous spectra. Their contribution to

the path integral can be taken into account by using the one-loop determinant as in the previous

subsection.
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· nearly flat directions : quasi-moduli parameters

effective action on complexified quasi-moduli space

relative kink  distance       and phase no other quasi-moduli 
numerically checked

Quasi-Moduli (Thimble) Integral

(for well-separated kinks)

⌧ �

contribution from real and complex bion

25

where ∆kk̄ is the differential operator in the background of the kink-antikink configuration. For

g ≈ 0, the flow for each massive eigenmode in ξ can be approximated as a straight line and

the integration along such flows gives the one-loop determinant of ∆kk̄. For the quasi moduli

parameters, the gradient flow of the action reduces to that of the effective potential Veff :

dηi

dt
= G′ij̄ ∂Veff

∂ηj
, (IV.13)

where η1 = τr, η2 = φr and G′
ij̄ is the metric on the quasi moduli space

G′
ij̄ ≡ 1

g2

∫
dτ

1

(1 + |ϕkk̄|2)2
∂ϕkk̄

∂ηi
∂ϕkk̄

∂ηj
. (IV.14)

In the weak coupling limit λ → 0, the saddle point configurations can be viewed as well-

separated kink-antikink pairs, so that the path integral is dominated by the contributions from

the well-separated region. In such a case, ϕkk̄ and ϕ̃kk̄ can be well approximated by the simple

kink-antikink ansatz (III.47). Therefore, the flows around the saddle points can be determined by

using the following asymptotic form of the effective potential obtained by substituting the ansatz

(III.47) into the action:

Veff ≈ 2m

g2
− 4m

g2
e−mτr cosφr + 2ϵmτr. (IV.15)

Therefore, the bion contributions for small g and λ can be obtained by applying the Lefschetz

thimble method to the quasi moduli integral

Z1

Z0
≈
∫

dτ0dφ0 dτrdφr

√

det

(
G
2π

)
det

(
G′

2π

)
det ∆0

det′′∆kk̄
exp (−Veff) . (IV.16)

Since the spectrum of ∆kk̄ for a well-separated kink-antikink configuration can be approximated

as two copies of that of a single kink, we find that
√

det ∆0

det′′∆kk̄
=

∫
Dξ exp

(
−1

2

∫
dτ ξT∆kk̄ξ

)
∫
Dξ exp

(
−1

2

∫
dτ ξT∆ 0 ξ

) ≈ det∆0

det′∆k
. (IV.17)

The one-loop determinant in the single kink background det′∆k can be obtained by using the

formula (III.40) as

det∆0

det′∆k
=

1

detGk

(
4m2

g2

)2

, (IV.18)

where Gk is the metric on the single kink moduli space. The overall and the relative moduli space

metrics also reduce to the two copies of the single kink metric

√
detG detG′ ≈ detGk. (IV.19)

TM, Sakai, Nitta (14)
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The physical interpretation of these saddle point will discussed below. To find the thimble Jσ and

its dual Kσ, let us redefine the coordinates as

τ+ = τ +
i

m
φ, τ− = τ − i

m
φ. (IV.46)

Then we can rewrite the effective potential V into two copies of the effective kink-antikink potential

in the sine-Gordon model (IV.22):

V =
VSG(τ+) + VSG(τ−)

2
, (IV.47)

Thus, the solution of the flow equation

dτ

dt
=

1

2m

∂V

∂τ
,

dφ

dt
=

m

2

∂V

∂φ
. (IV.48)

can be easily obtained as

τi =
1

m
log

[
2m

ϵg2
sin(ai − bie−ϵmt − θ)

bie−ϵmt

]
− i

m
(ai − bie

−ϵmt) , (IV.49)

where i = (+,−) and ai and bi are integration constants. The flows on the dual thimbles associated

with the critical points (IV.45) can be obtained by setting the integration constants as

a+ = a+σ ≡ −π + θ, a− = a−σ ≡ −(2σ − 1)π + θ , (IV.50)

Eliminating the parameters b1 and b2, we obtain the following equations for the dual thimbles

mτR − φI = log

[
2m

ϵg2
sin(mτI + φR + a+σ)

mτI + φR + a+σ

]
, −π ≤ mτI + φR + a+σ ≤ π, (IV.51)

mτR + φI = log

[
2m

ϵg2
sin(mτI − φR + a−σ)

mτI − φR + a−σ

]
, −π ≤ mτI − φR + a−σ ≤ π. (IV.52)

The thimbles can also be determined by using the result for the sine-Gordon case (IV.37) as

Im τ+ = −a+σ = π − θ, Im τ− = −a−σ = (2σ − 1)π − θ. (IV.53)

Therefore, the thimbles are the planes specified by

mτI = σπ − θ, φR = −(σ − 1)π. (IV.54)

The thimbles and dual thimbles projected onto (φR,φI , τI) are shown in Fig. 9. They have the

same structure as in the sine-Gordon case on the two dimensional slices τI + φR = −a+σ and

τI − φR = −a−σ.

As with case of the sine-Gordon quantum mechanics, the dual thimbles K1 and K0 intersect

the original integration contour for θ = +0 while the dual thimbles K−1 and K′
0 cross the original

� = 0 � = ±1

✓ = arg[g2]
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(a) original contour (b) extended contour

Fig. 8: Integration contours on the complex φ-plane.

phase φ,

[IĪ] =

∫ π

−π
dφ

∫ ∞

−∞
dτ e−V (τ,φ), V (τ,φ) = −4m

g2
cosφ e−mτ + 2ϵmτ . (IV.41)

b. Thimbles and Dual Thimbles

In the integral in question, we first consider the following deformation of the integration contour

for the phase φ [54]. As shown in Fig. 8, we extend the integration path on the φ-plane to make

it an integration cycle without boundary in the complex φ plane. Since the contributions from

the paths attached to φ = ±π (the boundaries of the original path) cancel with each other, the

extended contour gives the same value of the bion contribution [IĪ].

We next introduce a small phase for the coupling constant as g2 → g2eiθ, and complexify both

τ and φ as

τ = τR + iτI ∈ C, φ = φR + iφI ∈ C. (IV.42)

The saddle points are given by the equations,

∂V

∂τ
=

4m2 cosφ

g2
e−mτ−iθ + 2ϵm = 0 (IV.43)

∂V

∂φ
=

4m sinφ

g2
e−mτ−iθ = 0 . (IV.44)

The solutions are labeled by a integer σ ∈ Z

τσ =
1

m
log

2m

ϵg2
+

i

m
(σπ − θ), φσ = − (σ − 1)π (mod 2π) . (IV.45)

saddle points

solution of flow eq.
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(a) θ = −0
(b) θ = +0

Fig. 9: Integration contour, Lefschetz thimbles and dual thimbles for (a) θ = −0 (seen from upper left)

and (b) θ = +0 (seen from lower right). The orange lines are the original extended integration contours,

while four colored (red, blue, yellow and green) lines and surfaces indicate the thimbles and their duals,

respectively. Note that since the integration contour and Lefschetz thimbles are direct products of the τR

direction and lines in (φR,φI , τI), their projected images are lines in the three-dimensional space.

contour for θ = −0. Note that K0 and K′
0 are the identical thimble related by the shift φR →

φR + 2π. By taking into account how the original integration contour is decomposed into the

thimbles (see Fig. 10), the sign of the intersection numbers can be determined as

(n−1 , n0 , n1) =

⎧
⎨

⎩
(−1 , 1 , 0 ) for θ = −0

( 0 , −1 , 1 ) for θ = +0
. (IV.55)

Therefore, the bion contribution has the ambiguity depending on the sign of θ

[IĪ] =

⎧
⎨

⎩
Zσ=0 − Zσ=−1 for θ = −0

Zσ=1 − Zσ=0 for θ = +0
. (IV.56)

c. Integral along Lefschetz Thimbles

Now let us evaluate the integral over the thimbles. Changing the coordinates as

τ → τ ′ = τ − τσ φ→ φ′ = φ− φσ. (IV.57)

we find that the potential becomes

V = 2ϵ

(
mτ ′ + e−mτ ′ cosφ′ + log

2m

ϵg2
+ σπi− iθ

)
. (IV.58)

3d projection ✓ = arg[g2] < 0

(⌧,�) 2 C2
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The physical interpretation of these saddle point will discussed below. To find the thimble Jσ and

its dual Kσ, let us redefine the coordinates as

τ+ = τ +
i

m
φ, τ− = τ − i

m
φ. (IV.46)

Then we can rewrite the effective potential V into two copies of the effective kink-antikink potential

in the sine-Gordon model (IV.22):

V =
VSG(τ+) + VSG(τ−)

2
, (IV.47)

Thus, the solution of the flow equation

dτ

dt
=

1

2m

∂V

∂τ
,

dφ

dt
=

m

2

∂V

∂φ
. (IV.48)

can be easily obtained as

τi =
1

m
log

[
2m

ϵg2
sin(ai − bie−ϵmt − θ)

bie−ϵmt

]
− i

m
(ai − bie

−ϵmt) , (IV.49)

where i = (+,−) and ai and bi are integration constants. The flows on the dual thimbles associated

with the critical points (IV.45) can be obtained by setting the integration constants as

a+ = a+σ ≡ −π + θ, a− = a−σ ≡ −(2σ − 1)π + θ , (IV.50)

Eliminating the parameters b1 and b2, we obtain the following equations for the dual thimbles

mτR − φI = log

[
2m

ϵg2
sin(mτI + φR + a+σ)

mτI + φR + a+σ

]
, −π ≤ mτI + φR + a+σ ≤ π, (IV.51)

mτR + φI = log

[
2m

ϵg2
sin(mτI − φR + a−σ)

mτI − φR + a−σ

]
, −π ≤ mτI − φR + a−σ ≤ π. (IV.52)

The thimbles can also be determined by using the result for the sine-Gordon case (IV.37) as

Im τ+ = −a+σ = π − θ, Im τ− = −a−σ = (2σ − 1)π − θ. (IV.53)

Therefore, the thimbles are the planes specified by

mτI = σπ − θ, φR = −(σ − 1)π. (IV.54)

The thimbles and dual thimbles projected onto (φR,φI , τI) are shown in Fig. 9. They have the

same structure as in the sine-Gordon case on the two dimensional slices τI + φR = −a+σ and

τI − φR = −a−σ.

As with case of the sine-Gordon quantum mechanics, the dual thimbles K1 and K0 intersect

the original integration contour for θ = +0 while the dual thimbles K−1 and K′
0 cross the original
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The physical interpretation of these saddle point will discussed below. To find the thimble Jσ and

its dual Kσ, let us redefine the coordinates as

τ+ = τ +
i

m
φ, τ− = τ − i

m
φ. (IV.46)

Then we can rewrite the effective potential V into two copies of the effective kink-antikink potential

in the sine-Gordon model (IV.22):

V =
VSG(τ+) + VSG(τ−)

2
, (IV.47)

Thus, the solution of the flow equation

dτ

dt
=

1

2m

∂V

∂τ
,

dφ

dt
=

m

2

∂V

∂φ
. (IV.48)

can be easily obtained as

τi =
1

m
log

[
2m

ϵg2
sin(ai − bie−ϵmt − θ)

bie−ϵmt

]
− i

m
(ai − bie

−ϵmt) , (IV.49)

where i = (+,−) and ai and bi are integration constants. The flows on the dual thimbles associated

with the critical points (IV.45) can be obtained by setting the integration constants as

a+ = a+σ ≡ −π + θ, a− = a−σ ≡ −(2σ − 1)π + θ , (IV.50)

Eliminating the parameters b1 and b2, we obtain the following equations for the dual thimbles

mτR − φI = log

[
2m

ϵg2
sin(mτI + φR + a+σ)

mτI + φR + a+σ

]
, −π ≤ mτI + φR + a+σ ≤ π, (IV.51)

mτR + φI = log

[
2m

ϵg2
sin(mτI − φR + a−σ)

mτI − φR + a−σ

]
, −π ≤ mτI − φR + a−σ ≤ π. (IV.52)

The thimbles can also be determined by using the result for the sine-Gordon case (IV.37) as

Im τ+ = −a+σ = π − θ, Im τ− = −a−σ = (2σ − 1)π − θ. (IV.53)

Therefore, the thimbles are the planes specified by

mτI = σπ − θ, φR = −(σ − 1)π. (IV.54)

The thimbles and dual thimbles projected onto (φR,φI , τI) are shown in Fig. 9. They have the

same structure as in the sine-Gordon case on the two dimensional slices τI + φR = −a+σ and

τI − φR = −a−σ.

As with case of the sine-Gordon quantum mechanics, the dual thimbles K1 and K0 intersect

the original integration contour for θ = +0 while the dual thimbles K−1 and K′
0 cross the original

thimble Jσ

dual thimble Kσ
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(a) θ = −0
(b) θ = +0

Fig. 9: Integration contour, Lefschetz thimbles and dual thimbles for (a) θ = −0 (seen from upper left)

and (b) θ = +0 (seen from lower right). The orange lines are the original extended integration contours,

while four colored (red, blue, yellow and green) lines and surfaces indicate the thimbles and their duals,

respectively. Note that since the integration contour and Lefschetz thimbles are direct products of the τR

direction and lines in (φR,φI , τI), their projected images are lines in the three-dimensional space.

contour for θ = −0. Note that K0 and K′
0 are the identical thimble related by the shift φR →

φR + 2π. By taking into account how the original integration contour is decomposed into the

thimbles (see Fig. 10), the sign of the intersection numbers can be determined as

(n−1 , n0 , n1) =

⎧
⎨

⎩
(−1 , 1 , 0 ) for θ = −0

( 0 , −1 , 1 ) for θ = +0
. (IV.55)

Therefore, the bion contribution has the ambiguity depending on the sign of θ

[IĪ] =

⎧
⎨

⎩
Zσ=0 − Zσ=−1 for θ = −0

Zσ=1 − Zσ=0 for θ = +0
. (IV.56)

c. Integral along Lefschetz Thimbles

Now let us evaluate the integral over the thimbles. Changing the coordinates as

τ → τ ′ = τ − τσ φ→ φ′ = φ− φσ. (IV.57)

we find that the potential becomes

V = 2ϵ

(
mτ ′ + e−mτ ′ cosφ′ + log

2m

ϵg2
+ σπi− iθ

)
. (IV.58)

· integral along  Jσ
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(a) integration contour for φ (b) deformation of contour

Fig. 10: Deformation of integration contour. (a) The integration contour can be decomposed into two paths

(orange and blue). One of them corresponds to the thimble with n = 0 and the other can be continuously

deformed into the thimble with n = 1. The shaded regions in the right figure corresponds to the region

where ReV < T ≪ ReVcritical with some real number T .

The thimble Jσ corresponds to the two dimensional plane τ ′ ∈ R, φ′ ∈ iR. We can check that the

potential satisfies

ReV ≥ 2ϵ

(
1 + log

2m

ϵg2

)
, ImV = (σπ − θ)ϵ = const., (IV.59)

for τ ′ ∈ R, φ′ ∈ iR. Integrating over the thimbles, we obtain

Zσ =

∫

R
dτ ′
∫

iR
dφ′ e−V =

i

2m

(
g2eiθ

2m

)2ϵ

e−2πiϵσ Γ (ϵ)2 . (IV.60)

Therefore, the bion contribution is given by

[IĪ] =
1

m

(
g2eiθ

2m

)2ϵ

sin ϵπ Γ (ϵ)2 ×

⎧
⎨

⎩
eπiϵ for θ = −0

e−πiϵ for θ = +0
. (IV.61)

This result is consistent with the one obtained by applying the Bogomolny–Zinn-Justin prescription

for the divergent region τ → −∞, |φ| ≤ π/2 [36]. In this calculation of the complex integral, the

region where the integrand is divergent is avoided by deforming the integration contour as shown in

Fig. 10. This is how one extracts a finite result from the ill-defined integral in the BZJ prescription.

Thus, based on the Lefschetz thimble decomposition of the quasi moduli integral together with the

complexification of the coupling, we obtain an unambiguous definition of the ill-defined moduli

integral.

Zq.m. =
X

�

n�Z�



exactly zero at ε=1(SUSY) 
exactly cancels the perturbative imaginary ambiguity

Saddle-point Contribution

2

by use of the Bender-Wu recursion relation [25], we ob-
tain the perturbative series for the ground-state energy in
CPN−1 quantum mechanics, whose Borel resummation
contains an imaginary ambiguity for non-supersymmetric
cases. We check the cancellation between the two imagi-
nary ambiguities from the complexified solutions and the
perturbative Borel resummation. Thirdly, we obtain the
exact ground state energy at the near-supersymmetric
regime in the standard Schroedinger equation formalism.
We find out that the exact ground state energy are re-
garded as the full trans-series composed of the perturba-
tive and non-perturbative (real and complex bion) contri-
butions. This is a clear manifestation on the resurgence
structure in CPN−1 quantum mechanics.

Setup of CPN−1 quantum mechanics : The La-
grangian of the CP 1 Lorentzian quantum mechanics with
a fermion takes the form

L = 1
g2 G

[
∂tϕ∂tϕ̄−m2ϕϕ̄

+ iψ̄Dtψ + ϵm(1 + ϕ∂ϕ logG)ψ̄ψ
]
, (.2)

where G is the Fubini-Study metric G = 1
(1+ϕϕ̄)2 and

Dt is the covariant derivative Dtψ = [∂t+∂tϕ∂ϕ logG]ψ.
The parameter ϵ indicates the strength of the interaction
between the bosonic and fermionic degrees of freedom.
ϵ = 1 corresponds to a supersymmetric case. By pro-
jecting quantum states onto the subspace of the Hilbert
space with a fixed fermion number, we obtain the follow-
ing purely bosonic Lagrangian

L =
1

g2
∂tϕ∂tϕ̄

(1 + ϕϕ̄)2
− V (ϕϕ̄), (.3)

V (ϕϕ̄) ≡ 1

g2
m2ϕϕ̄

(1 + ϕϕ̄)2
− ϵm

1− ϕϕ̄

1 + ϕϕ̄
, (.4)

where we have chosen the fermion number so that the su-
persymmetric ground state for ϵ = 1 is contained in the
subspace of the Hilbert space. The associated Hamilto-
nian H of the bosonic theory is written as

H = −g2(1 + ϕϕ̄)2
∂

∂ϕ

∂

∂ϕ̄
+ V (ϕϕ̄). (.5)

Here, we also exhibit the Euclidean action as

SE =

∫
dτ

[
1

g2
∂τϕ∂τ ϕ̄

(1 + ϕϕ̄)2
+ V (ϕϕ̄)

]
. (.6)

The CPN−1 models contains ϕi (i = 1, ..., N) compo-
nents with mi (i = 1, ..., N) and the Fubini-study met-

ric Gij̄ = ∂2

∂ϕi∂ψ̄j̄ log(1 +
∑N

k |ϕk|2). The projected La-

grangian of CPN−1 models is written as

L =
1

g2
Gij̄

[
∂tϕ

i∂tϕ̄
j −mimjϕ

iϕ̄j
]
− ϵ∆µ , (.7)

with µ =
∑N

j=1
mj |ϕj |2
1+|ϕj |2 and ∆ = Gj̄i∂i∂̄j̄ . The complex-

ification of the variables are also parallel to that of the
CP 1 model.

(a) Σ(τ) for real bion (b) Σ(τ) for complex
bion

Fig. 1: Kink profile of real bion and regularized complex bion.

Contribution from Bion solutions : We first con-
sider the CP 1 model. As shown in [24], the complexified
CP 1 model with fermion degrees of freedom has two ex-
act solutions, a real bion and a complex bion: The real
bion solution in CP 1 quantum mechanics is derived based
on the energy conservation low as

ϕ = eiφ0

√
ω2

ω2 −m2

1

i sinhω(τ − τ0)
, (.8)

where ω is ω ≡ m
√

1 + 2ϵg2

m . The parameters τ0 and φ0
are moduli parameters. We here complexfy the variable
as

(ϕ, ϕ̄) −→ (ϕ, ϕ̃) = (ϕC
R + iϕC

I , ϕC
R − iϕC

I ) , (.9)

which means that the two complex variables ϕ, ϕ̃ are in-
dependent. Then, the complex bion solution is obtained
by the similar procedure to the real bion solution as

ϕ = eiφ0

√
ω2

ω2 −m2

1

coshω(τ − τ0)
, ϕ̃ = −ϕ̄ . (.10)

The vacuum transition in these solutions is depicted by
use of the function Σ(τ) = m ϕϕ̃

1+ϕϕ̃ in Fig. 1.
The contributions from these solutions are calculated

by performing the Lefschetz thimble integral associated
with the saddle points. The leading order bion contribu-
tion to the ground state energy for small g and λ is given
by the quasi moduli integral

Ebion ≈ −8m4

πg4

∫
dτrdφr exp (−Veff) . (.11)

Veff ≈ 2m

g2
− 4m

g2
e−mτr cosφr + 2ϵmτr. (.12)

where τr and φr are the relative distance and the relative
phase between local BPS components in the bion con-
figurations. These two parameters correspond to quasi-
moduli parameters, which are nearly massless modes
around the real and complex bion solutions. We then
obtain the contribution to the ground-state energy from
the real and complex bion solutions

Ebion = −2m

(
g2

2m

)2(ϵ−1)
sin ϵπ

π
Γ (ϵ)2 e

− 2m
g2

×
{

eπiϵ for θ = −0
e−πiϵ for θ = +0

. (.13)

3

θ is the phase of the complexified coupling g2 = |g2|eiθ.
The imaginary ambiguity of the bion contribution de-
pends on an infinitely small sign of this phase. It is no-
table that the contribution in (.13) vanishes at ϵ = 1,
which is consistent with the supersymmetry.
The results on the bion solutions are easily extended

to CPN−1 models. In complexified CPN−1 models with
fermionic degrees of freedom, we have N real bion and N
complex bion solutions. The real bions for this case are
given by

ϕi =

√
ω2
i

Nmiϵg2
eiφ0

sinhωi(τ − τ0)
, (.14)

with ωi = mi

√
1 +Nϵg2/mi. The complex bions are

given by

ϕi =

√
ω2
i

Nmiϵg2
eiφ0

coshωi(τ − τ0)
, ϕ̃i = −ϕ̄i . (.15)

For this case, the effective potential between the BPS
components in bion configuration is modified as

Veff ≈ 2mi

g2
− 4mi

g2
e−miτr cosφr + 2ϵ′miτr , (.16)

with ϵ′ = 1 + 1
2 (ϵ − 1)N . By performing the Lefschetz

thimble integral (quasi moduli integral) based on this
effective potential, we derive the contributions from N
real and complex bions to the ground state energy

Ebion = −
N−1∑

i=1

2mi

(
g2

2mi

)2(ϵ′−1)
sin ϵ′π

π
Γ (ϵ′)

2
e
− 2mi

g2

×
{

eπiϵ for θ = −0
e−πiϵ for θ = +0

.(.17)

Again, the imaginary ambiguity of the bion contribution
depends on a sign of the phase of complexified coupling
constant g2 = |g2|eiθ. The contribution vanishes at ϵ′ =
ϵ = 0, which agrees with the supersymmetry.

Contribution from Perturbative vacuum : We
here focus on the CP 1 model. To derive a perturba-
tive series of the ground state energy, we redefine the
wave function and the coordinate as ψ = e−x2

Ψ(x), |ϕ| =
ηx, η ≡ g√

m
. Then, the Hamiltonian becomes

H̃

m
= −1

4
(1 + η2x2)2

{
∂2x + (1− 4x2)

1

x
∂x

}
+ V (x),(.18)

where the potential is

V (x) = (1− x2)(1 + η2x2)2 +
x2

(1 + η2x2)2
− ϵ

1− η2x2

1 + η2x2
.(.19)

We expand the energy and the wave function with re-
spect to η as E

m =
∑∞

l=0 Alη2l,Ψ =
∑∞

l=0 Ψl(x)η2l. The

Schrödinger equation (H̃ − E)Ψ = 0 is expanded by

l

= 1+

= 0+

= 2+
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Fig. 2: The asymptotic behavior of the ratio

Al/
[

1
2l−1

Γ(l+2(1−ϵ))
Γ(1−ϵ)2

]
(l ≤ 100) for 0 ≤ ϵ ≤ 2. δ is a

regularization parameter (δ = 10−10).

Al and Ψl with Ψl = 0 for l < 0. Setting Ψ0 = 1,
we solve equations order by order, and find that Ψl are
polynomials of the form Ψl =

∑2l
k=0 Bl,kx2k. Then, the

Schrödinger equation reduces to the recursion relation
called Bender-Wu recursion relation,

0 =
4∑

i=0

(
4
i

)[
(k − i+ 1)2Bl−i,k−i+1

− (2k − 2i+ 1)Bl−i,k−i +Bl−i,k−i−1

]

+
l∑

i=1

Ai(Bl−i,k + 2Bl−i−1,k−1

+ Bl−i−2,k−2)−Bl,k−1 + ϵ(Bl,k −Bl−2,k−2),(.20)

where Bl,k = 0 if l < 0, k < 0, k > 2l.
We now obtain Al in Epert = m

∑∞
l=0 Alη2l. As shown

in Fig. 2 it has the asymptotic behavior

Al ∼ − 1

2l−1

Γ(l + 2(1− ϵ))

Γ(1− ϵ)2
. (.21)

Now, we introduce Borel transform and Borel resum-
mation. The Borel resummation of Epert gives an an-
alytic function which has Epert as an asymptotic se-
ries. Firstly, the Borel transform B[Epert](t) of the series
Epert(η2) =

∑∞
l=0 Elη2l is defined as

B[Epert](t) =
∞∑

l=0

Fl

l!
tl , (.22)

where t ∈ C is a Borel parameter. Note, in the present
case (and lots of other examples), the Borel transform
B[Epert] has singularities on the real and positive axis on
the Borel plane of t. Now, the (lateral) Borel resumma-
tion is defined as

S±Epert(η
2) =

1

η2

∫ e±iδ∞

0
B[Epert](t)e

−t/η2dt , (.23)

with δ is a infinitely small number. Since the Borel trans-
form has singularities on the real and positive axis, we

3

θ is the phase of the complexified coupling g2 = |g2|eiθ.
The imaginary ambiguity of the bion contribution de-
pends on an infinitely small sign of this phase. It is no-
table that the contribution in (.13) vanishes at ϵ = 1,
which is consistent with the supersymmetry.
The results on the bion solutions are easily extended

to CPN−1 models. In complexified CPN−1 models with
fermionic degrees of freedom, we have N real bion and N
complex bion solutions. The real bions for this case are
given by

ϕi =

√
ω2
i

Nmiϵg2
eiφ0

sinhωi(τ − τ0)
, (.14)

with ωi = mi

√
1 +Nϵg2/mi. The complex bions are

given by

ϕi =

√
ω2
i

Nmiϵg2
eiφ0

coshωi(τ − τ0)
, ϕ̃i = −ϕ̄i . (.15)

For this case, the effective potential between the BPS
components in bion configuration is modified as

Veff ≈ 2mi

g2
− 4mi

g2
e−miτr cosφr + 2ϵ′miτr , (.16)

with ϵ′ = 1 + 1
2 (ϵ − 1)N . By performing the Lefschetz

thimble integral (quasi moduli integral) based on this
effective potential, we derive the contributions from N
real and complex bions to the ground state energy

Ebion = −
N−1∑

i=1

2mi

(
g2

2mi

)2(ϵ′−1)
sin ϵ′π

π
Γ (ϵ′)

2
e
− 2mi

g2

×
{

eπiϵ for θ = −0
e−πiϵ for θ = +0

.(.17)

Again, the imaginary ambiguity of the bion contribution
depends on a sign of the phase of complexified coupling
constant g2 = |g2|eiθ. The contribution vanishes at ϵ′ =
ϵ = 0, which agrees with the supersymmetry.

Contribution from Perturbative vacuum : We
here focus on the CP 1 model. To derive a perturba-
tive series of the ground state energy, we redefine the
wave function and the coordinate as ψ = e−x2

Ψ(x), |ϕ| =
ηx, η ≡ g√

m
. Then, the Hamiltonian becomes

H̃

m
= −1

4
(1 + η2x2)2

{
∂2x + (1− 4x2)

1

x
∂x

}
+ V (x),(.18)

where the potential is

V (x) = (1− x2)(1 + η2x2)2 +
x2

(1 + η2x2)2
− ϵ

1− η2x2

1 + η2x2
.(.19)

We expand the energy and the wave function with re-
spect to η as E

m =
∑∞

l=0 Alη2l,Ψ =
∑∞

l=0 Ψl(x)η2l. The

Schrödinger equation (H̃ − E)Ψ = 0 is expanded by

l
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(l ≤ 100) for 0 ≤ ϵ ≤ 2. δ is a

regularization parameter (δ = 10−10).

Al and Ψl with Ψl = 0 for l < 0. Setting Ψ0 = 1,
we solve equations order by order, and find that Ψl are
polynomials of the form Ψl =

∑2l
k=0 Bl,kx2k. Then, the

Schrödinger equation reduces to the recursion relation
called Bender-Wu recursion relation,

0 =
4∑

i=0

(
4
i

)[
(k − i+ 1)2Bl−i,k−i+1

− (2k − 2i+ 1)Bl−i,k−i +Bl−i,k−i−1

]

+
l∑

i=1

Ai(Bl−i,k + 2Bl−i−1,k−1

+ Bl−i−2,k−2)−Bl,k−1 + ϵ(Bl,k −Bl−2,k−2),(.20)

where Bl,k = 0 if l < 0, k < 0, k > 2l.
We now obtain Al in Epert = m

∑∞
l=0 Alη2l. As shown

in Fig. 2 it has the asymptotic behavior

Al ∼ − 1

2l−1

Γ(l + 2(1− ϵ))

Γ(1− ϵ)2
. (.21)

Now, we introduce Borel transform and Borel resum-
mation. The Borel resummation of Epert gives an an-
alytic function which has Epert as an asymptotic se-
ries. Firstly, the Borel transform B[Epert](t) of the series
Epert(η2) =

∑∞
l=0 Elη2l is defined as

B[Epert](t) =
∞∑

l=0

Fl

l!
tl , (.22)

where t ∈ C is a Borel parameter. Note, in the present
case (and lots of other examples), the Borel transform
B[Epert] has singularities on the real and positive axis on
the Borel plane of t. Now, the (lateral) Borel resumma-
tion is defined as

S±Epert(η
2) =

1

η2

∫ e±iδ∞

0
B[Epert](t)e

−t/η2dt , (.23)

with δ is a infinitely small number. Since the Borel trans-
form has singularities on the real and positive axis, we

cf.)CPN

contribution to ground state energy



Saddle-point Contribution

contribution to ground state energy

2

by use of the Bender-Wu recursion relation [25], we ob-
tain the perturbative series for the ground-state energy in
CPN−1 quantum mechanics, whose Borel resummation
contains an imaginary ambiguity for non-supersymmetric
cases. We check the cancellation between the two imagi-
nary ambiguities from the complexified solutions and the
perturbative Borel resummation. Thirdly, we obtain the
exact ground state energy at the near-supersymmetric
regime in the standard Schroedinger equation formalism.
We find out that the exact ground state energy are re-
garded as the full trans-series composed of the perturba-
tive and non-perturbative (real and complex bion) contri-
butions. This is a clear manifestation on the resurgence
structure in CPN−1 quantum mechanics.

Setup of CPN−1 quantum mechanics : The La-
grangian of the CP 1 Lorentzian quantum mechanics with
a fermion takes the form

L = 1
g2 G

[
∂tϕ∂tϕ̄−m2ϕϕ̄

+ iψ̄Dtψ + ϵm(1 + ϕ∂ϕ logG)ψ̄ψ
]
, (.2)

where G is the Fubini-Study metric G = 1
(1+ϕϕ̄)2 and

Dt is the covariant derivative Dtψ = [∂t+∂tϕ∂ϕ logG]ψ.
The parameter ϵ indicates the strength of the interaction
between the bosonic and fermionic degrees of freedom.
ϵ = 1 corresponds to a supersymmetric case. By pro-
jecting quantum states onto the subspace of the Hilbert
space with a fixed fermion number, we obtain the follow-
ing purely bosonic Lagrangian

L =
1

g2
∂tϕ∂tϕ̄

(1 + ϕϕ̄)2
− V (ϕϕ̄), (.3)

V (ϕϕ̄) ≡ 1

g2
m2ϕϕ̄

(1 + ϕϕ̄)2
− ϵm

1− ϕϕ̄

1 + ϕϕ̄
, (.4)

where we have chosen the fermion number so that the su-
persymmetric ground state for ϵ = 1 is contained in the
subspace of the Hilbert space. The associated Hamilto-
nian H of the bosonic theory is written as

H = −g2(1 + ϕϕ̄)2
∂

∂ϕ

∂

∂ϕ̄
+ V (ϕϕ̄). (.5)

Here, we also exhibit the Euclidean action as

SE =

∫
dτ

[
1

g2
∂τϕ∂τ ϕ̄

(1 + ϕϕ̄)2
+ V (ϕϕ̄)

]
. (.6)

The CPN−1 models contains ϕi (i = 1, ..., N) compo-
nents with mi (i = 1, ..., N) and the Fubini-study met-

ric Gij̄ = ∂2

∂ϕi∂ψ̄j̄ log(1 +
∑N

k |ϕk|2). The projected La-

grangian of CPN−1 models is written as

L =
1

g2
Gij̄

[
∂tϕ

i∂tϕ̄
j −mimjϕ

iϕ̄j
]
− ϵ∆µ , (.7)

with µ =
∑N

j=1
mj |ϕj |2
1+|ϕj |2 and ∆ = Gj̄i∂i∂̄j̄ . The complex-

ification of the variables are also parallel to that of the
CP 1 model.

(a) Σ(τ) for real bion (b) Σ(τ) for complex
bion

Fig. 1: Kink profile of real bion and regularized complex bion.

Contribution from Bion solutions : We first con-
sider the CP 1 model. As shown in [24], the complexified
CP 1 model with fermion degrees of freedom has two ex-
act solutions, a real bion and a complex bion: The real
bion solution in CP 1 quantum mechanics is derived based
on the energy conservation low as

ϕ = eiφ0

√
ω2

ω2 −m2

1

i sinhω(τ − τ0)
, (.8)

where ω is ω ≡ m
√

1 + 2ϵg2

m . The parameters τ0 and φ0
are moduli parameters. We here complexfy the variable
as

(ϕ, ϕ̄) −→ (ϕ, ϕ̃) = (ϕC
R + iϕC

I , ϕC
R − iϕC

I ) , (.9)

which means that the two complex variables ϕ, ϕ̃ are in-
dependent. Then, the complex bion solution is obtained
by the similar procedure to the real bion solution as

ϕ = eiφ0

√
ω2

ω2 −m2

1

coshω(τ − τ0)
, ϕ̃ = −ϕ̄ . (.10)

The vacuum transition in these solutions is depicted by
use of the function Σ(τ) = m ϕϕ̃

1+ϕϕ̃ in Fig. 1.
The contributions from these solutions are calculated

by performing the Lefschetz thimble integral associated
with the saddle points. The leading order bion contribu-
tion to the ground state energy for small g and λ is given
by the quasi moduli integral

Ebion ≈ −8m4

πg4

∫
dτrdφr exp (−Veff) . (.11)

Veff ≈ 2m

g2
− 4m

g2
e−mτr cosφr + 2ϵmτr. (.12)

where τr and φr are the relative distance and the relative
phase between local BPS components in the bion con-
figurations. These two parameters correspond to quasi-
moduli parameters, which are nearly massless modes
around the real and complex bion solutions. We then
obtain the contribution to the ground-state energy from
the real and complex bion solutions

Ebion = −2m

(
g2

2m

)2(ϵ−1)
sin ϵπ

π
Γ (ϵ)2 e

− 2m
g2

×
{

eπiϵ for θ = −0
e−πiϵ for θ = +0

. (.13)

= �2me
� 2m

g2 �✏ + O(�✏2)

E(1)

bion

= �2m
1X

k=1

e
� 2m

g2 = �2me
� 2m

g2 +O(e
� 4m

g2 )

precise agreement with exact result!



Comparison and Resurgence



Exact ground state energy in CP1

E(1)
pert = �m+ g2

E(1)

bion

= �2m
1X

k=1

e
� 2m

g2 = �2me
� 2m

g2 +O(e
� 4m

g2 )

E(1)

= g2 �m coth

m

g2
= E(1)

pert

+ E(1)

bion

exact agreement with the perturbative calculation

・Perturbative part

・Saddle-point part

finite order unlike SG

exact agreement with real and complex bion contributions!

single bions multi bions

no Im ambiguity unlike SG



Exact ground state energy in CP1

E(1)
pert = �m+ g2

E(1)

bion

= �2m
1X

k=1

e
� 2m

g2 = �2me
� 2m

g2 +O(e
� 4m

g2 )

E(1)

= g2 �m coth

m

g2
= E(1)

pert

+ E(1)

bion

exact agreement with the perturbative calculation

・Perturbative part

・Saddle-point part

finite order unlike SG

multi bions

can be exactly obtained from multi-bion quasi-moduli integral
will be announced in a forthcoming paper



Complete Resurgence Structure
4

need to choose contours above or below the real axis,
which are indicated by ± here. In the present case, the
lateral Borel resummation S±Epert gives a finite but am-
biguous result, whose imaginary ambiguity is given by

ImS±Epert = ∓ 2πm

Γ(1− ϵ)2

(
g2

2m

)2(ϵ−1)

e
− 2m

g2 , (.24)

with − in the right hand side for θ = +0 and + for
θ = −0 with g2 = |g2|eiθ. We note that the direction θ

of the Laplace integral
∫ eiθ∞
0 in the Borel resummation

is equivalent to the phase of the coupling constant g2 =
|g2|eiθ. Instead of exhibitig the whole Borel resummation
S±E, we exhibit the result as an expansion of ϵ− 1 ≡ δϵ
for later convenience,

S±Epert = δϵ
[
g2 −m

]
+ δϵ2

[
......

]
. (.25)

Cancellation of Imaginary ambiguities : By use
of the relation sin ϵπ

π Γ (ϵ) = 1
Γ(1−ϵ) , the imaginary ambi-

guity from the perturbative contribution in CP 1 model
is rewritten as

ImS±Epert = ±2m

π
sin2 ϵπ Γ(ϵ)2

(
g2

2m

)2(ϵ−1)

e
− 2m

g2 ,(.26)

with + for θ = −0 and − for θ = +0. This is nothing
but the contribution from the real and complex bion so-
lutions with the opposite sign. Therefore, the imaginary
ambiguity from the perturbative and non-perturbative
contributions in CP 1 model completely cancel out as

ImS±Epert + ImEbion = 0. (.27)

The cancellation of the imaginary ambiguities in the
trans-series is one of the good indicators on validity of
application of the resurgence theory to the physical the-
ory since the physical quantity should be real.

Exact ground-state energy as trans-series : We
will obtain the exact result of the ground state energy and
write it in a form of trans-series in the CP 1 model. For
ϵ = 1, the ground state wave functionΨ0, which preserves
the supersymmetry, is given as the zero energy solution of
the Schrödinger equation HΨ0 = 0 . The exact solution
of the ground state wave function is written as

Ψ0 = exp

(
m

2g2
1− ϕϕ̄

1 + ϕϕ̄

)
. (.28)

The non-perturbative corrections in the near supersym-
metric case ϵ ≈ 1 is obtained by expanding the energy
with respect to small δϵ ≡ ϵ− 1

E =
⟨0|δH|0⟩
⟨0|0⟩ +

⟨δψ|δH|δψ⟩
⟨0|0⟩ +O(δϵ3), (.29)

where the perturbative Hamiltonian is given by
δH = H − Hϵ=1. We exactly calculate the leading

and next-leading order coefficients in the small δϵ expan-
sion of the ground state energy by using the explicit form
of the ground state wave function (.28) as

E = δϵ

[
g2 −m coth

m

g2

]

+ δϵ2
[
g2 −m

coth m
g2

sinh2 m
g2

(Ei( 2mg2 ) + Ei(− 2m
g2 )

2

− γ − log
2m

g2

)]
+ O(δϵ3)

= δϵE(1) + δϵ2 E(2) + O(δϵ3) , (.30)

with γ being the Euler constant. We note that Eq. (.30)
is non-perturbative as a function of the coupling constant
g. Now, we express the perturbative contribution and the
complex saddle-point contribution as an expansion of δϵ,

Ebion = δϵ
[
− 2me

− 2m
g2

]

+ δϵ2
[
4me

− 2m
g2 (γ + log

2m

g2
± iπ

2
)
]
+ O(δϵ3)

= δϵE(1)
bion + δϵ2 E(2)

bion + O(δϵ3), (.31)

S±Epert = δϵ
[
g2 −m

]
+ δϵ2

[
......

]
+O(δϵ3)

= δϵS±E
(1)
pert + δϵ2S±E

(2)
pert + O(δϵ3) . (.32)

Finally, we find out that the exact ground state energy
(.30) turn out to be composed of the perturbative and
non-perturbative parts in each order of δϵ as

E(1) = S±E
(1)
pert + E(1)

bion ,

E(2) = S±E
(2)
pert + E(2)

bion . (.33)

These are the explicit trans-series equations (.1) which
we expected.

These results can be checked by using the original form
of asymptotic expansion, or without using the Borel re-
summation. For example, the coefficient of δϵ2 in the
exact result E(2) is decomposed into a part which can be
expressed as a series of g2/m and a part which cannot be
expressed by that. The former part is expanded as

∼
∑

l=0

m
(l − 1)!

2l−1

(
g2

m

)l+1

, (.34)

which is a δϵ2 coefficient of the perturbative series Epert

in (.21). The latter part is

∼ 4me
− 2m

g2

(
γ + log

2m

g2

)
, (.35)

which is the leading δϵ2 coefficient of the non-
perturbative contribution in (.13) except the imaginary
ambiguity. These results on CP 1 model can be extended
to CPN−1 model.

   · Exact result as expansion of δε

Richer resurgence (cancellation) structure including multi-bion 
saddle contributions: See our forthcoming paper



1 Non-perturbative contribution from real and complex 
   bion solutions in CPN quantum mechanics

3 Near SUSY result is exactly reproduced from perturbative  
   and saddle-point contributions.

· Perturbative results based on Bender-Wu recursion relation

Summary

Forthcoming paper contains

· A number of exact Multi-bion solutions

2 SUSY exact results are reproduced

· Rich and full resurgence structure at δε^2 order



• Upgrade the solutions to 2D CPN sigma model 

• Other exactly solvable models (near-SUSY, QES) 

• Extension to Multi-variable QM 

What we can do further

cf.) Kozcaz, Sulejmanpasic, Tanizaki, Unsal (16)


