Manifest Resurgence Structure in Sine-Gordon and CPN models

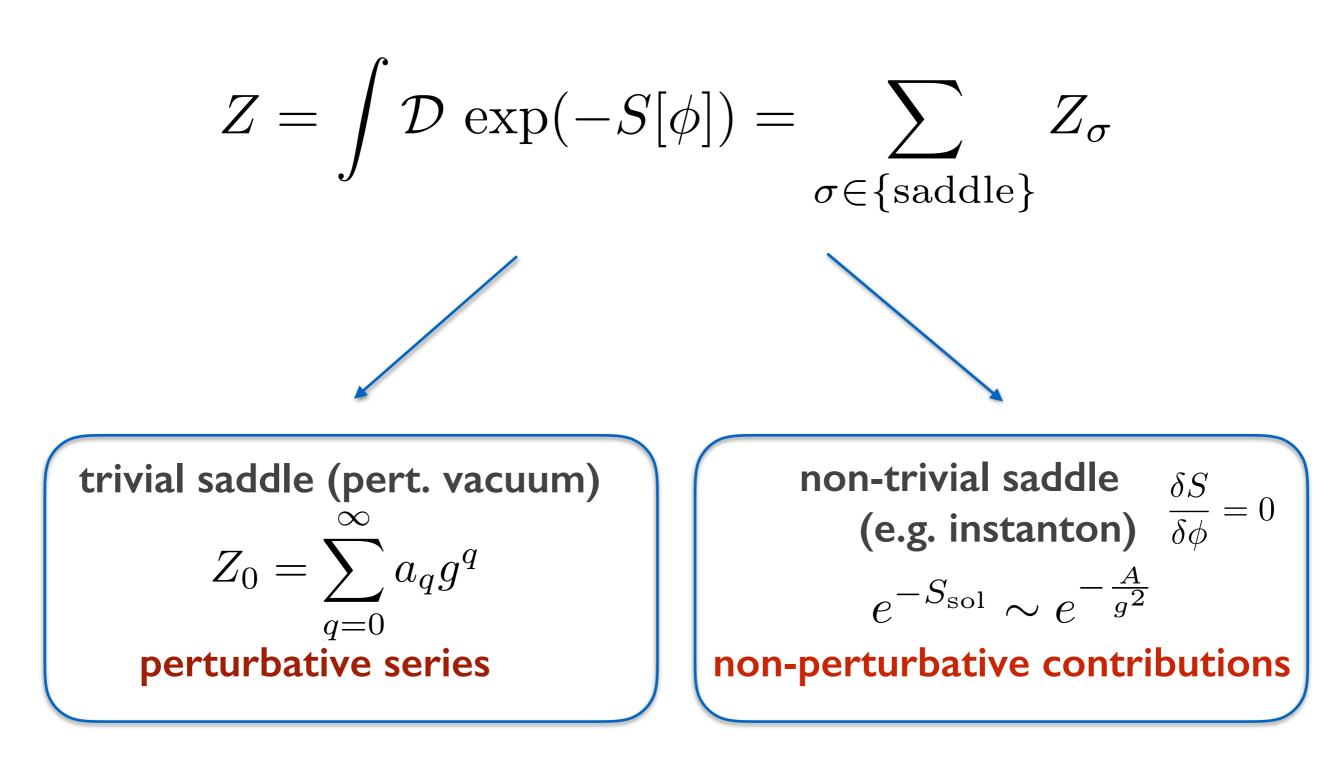
Tatsuhiro Misumi (Akita U. / Keio U.)

Toshiaki Fujimori (Keio U.) Syo Kamata (Fudan U.) Muneto Nitta (Keio U.) Norisuke Sakai (JPS / Keio U.)

Based on PRD 94, 105002 [1607.04205] & a paper in preparation

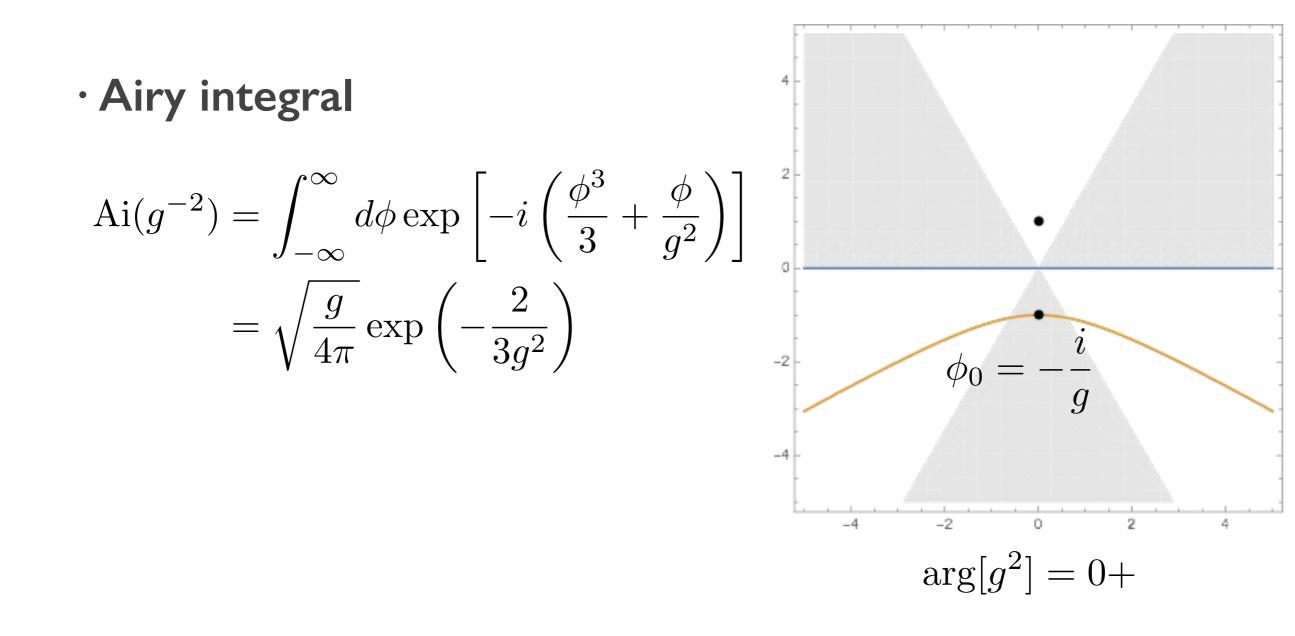
Resurgence at Kavli IPMU@ IPMU, 12/16/16

Path integral & Saddle Points



Complex Saddle Points needed

Saddle points out of original integration path can also contribute to the integral



Complex Saddle Points needed

complex saddle points in QM path integral

Behtash, Dunne, Schäfer, Sulejmanpasic, Ünsal (15)

complex bion

instanton-anti instanton pair
with ``complex separation''

Extended resurgence

(including complex saddles)

$$Z = Z_0 + Z_1 + \cdots$$
 pert. Saddles

full partition function : real and no ambiguity

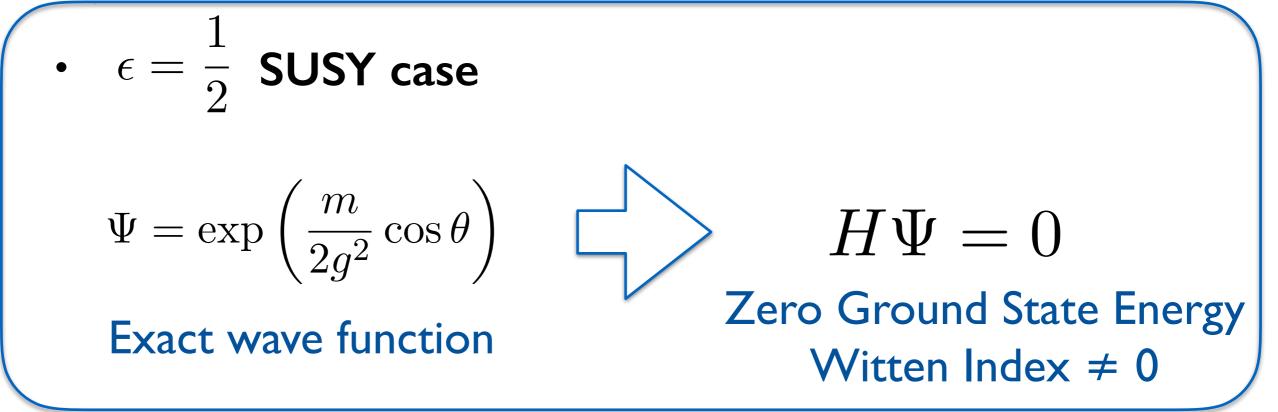
cancelation of all the imaginary ambiguities

Final goal is field theory (CPN models) but as an exercise we begin with sine-Gordon QM

SG Hamiltonian

$$\begin{split} H_{SG} &= -g^2 \partial_{\theta}^2 + \frac{m^2}{4g^2} \sin^2 \theta - \epsilon m \cos \theta \\ &= H_{\mathbb{C}P^1}^{l=0} + \frac{g^2}{\tan \theta} \partial_{\theta} \qquad \epsilon : \# \text{ of } \end{split}$$

 ϵ :# of fermion d.o.f.



SG Hamiltonian

$$\begin{split} H_{SG} &= -g^2 \partial_{\theta}^2 + \frac{m^2}{4g^2} \sin^2 \theta - \epsilon m \cos \theta \\ &= H_{\mathbb{C}P^1}^{l=0} + \frac{g^2}{\tan \theta} \partial_{\theta} \qquad \epsilon : \# \text{ of } \end{split}$$

 ϵ :# of fermion d.o.f.

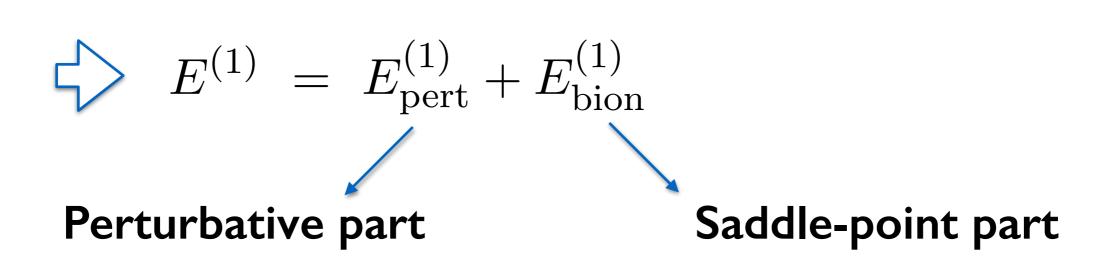
• $\epsilon \approx \frac{1}{2}$ near-SUSY case [Fujimori, Kamata, TM, Nitta, Sakai(16)] $\delta H = H - H|_{\epsilon = \frac{1}{2}}$ $E = \frac{\langle 0|\delta H|0\rangle}{\langle 0|0\rangle} + \frac{\langle \delta \psi|\delta H|\delta \psi\rangle}{\langle 0|0\rangle} + O(\delta\epsilon^3)$ Hamiltonian $\delta\epsilon = \epsilon - \frac{1}{2}$ Nonzero Ground State Energy

• Near-SUSY Energy

[Fujimori, Kamata, TM, Nitta, Sakai(16)]

$$E = E^{(1)}\delta\epsilon + E^{(2)}\delta\epsilon^2 + \mathcal{O}(\delta\epsilon^3)$$

$$\sum E^{(1)} = -m \frac{I_1(m/g^2)}{I_0(m/g^2)} = -g^2 m \partial_m \log I_0(m/g^2)$$



Perturbative part as asympt. expansion

$$E_{\text{pert}}^{(1)} = -g^2 m \partial_m \log e^{\frac{m}{g^2}} \sqrt{\frac{g^2}{2\pi m}} \sum_{n=0}^{\infty} \frac{[(2n-1)!!]^2}{n!} \left(\frac{g^2}{8m}\right)^n$$

$$\bigvee E_{\text{pert}}^{(1)} = -g^2 m \frac{\partial}{\partial m} \log \left[I_0(m/g^2) \pm \frac{i}{\pi} K_0(m/g^2) \right] \quad \text{Borel} \\ \text{resum.}$$

This is consistent with the known perturbative calculation!

Verbaarschot, West, Wu (90)

Behtash, Dunne, Schäfer, Sulejmanpasic, Ünsal (15)

Saddle point parts

$$E_{\text{bion}}^{(1)} = E^{(1)} - E_{\text{pert}}^{(1)} = g^2 m \frac{\partial}{\partial m} \log \left[1 \pm \frac{i}{\pi} \frac{K_0(m/g^2)}{I_0(m/g^2)} \right]$$

$$E_{\text{bion}}^{(1)} = \boxed{\mp 2ime^{-\frac{2m}{g^2}}} + \mathcal{O}\left(e^{-\frac{4m}{g^2}}\right)$$

single bions multi bions

This is exactly consistent with contributions from real and complex bions!

Contributions from real and complex bions

$$E_{\rm bion} = -\lim_{\beta \to \infty} \frac{1}{\beta} \frac{Z_1}{Z_0} \approx -\lim_{\beta \to \infty} \frac{1}{\beta} \int d\tau_0 d\tau_r \sqrt{\frac{\det \Delta_0}{\det'' \Delta_{k\bar{k}}}} \exp(-V_{\rm SG})$$

Contributions from real and complex bions

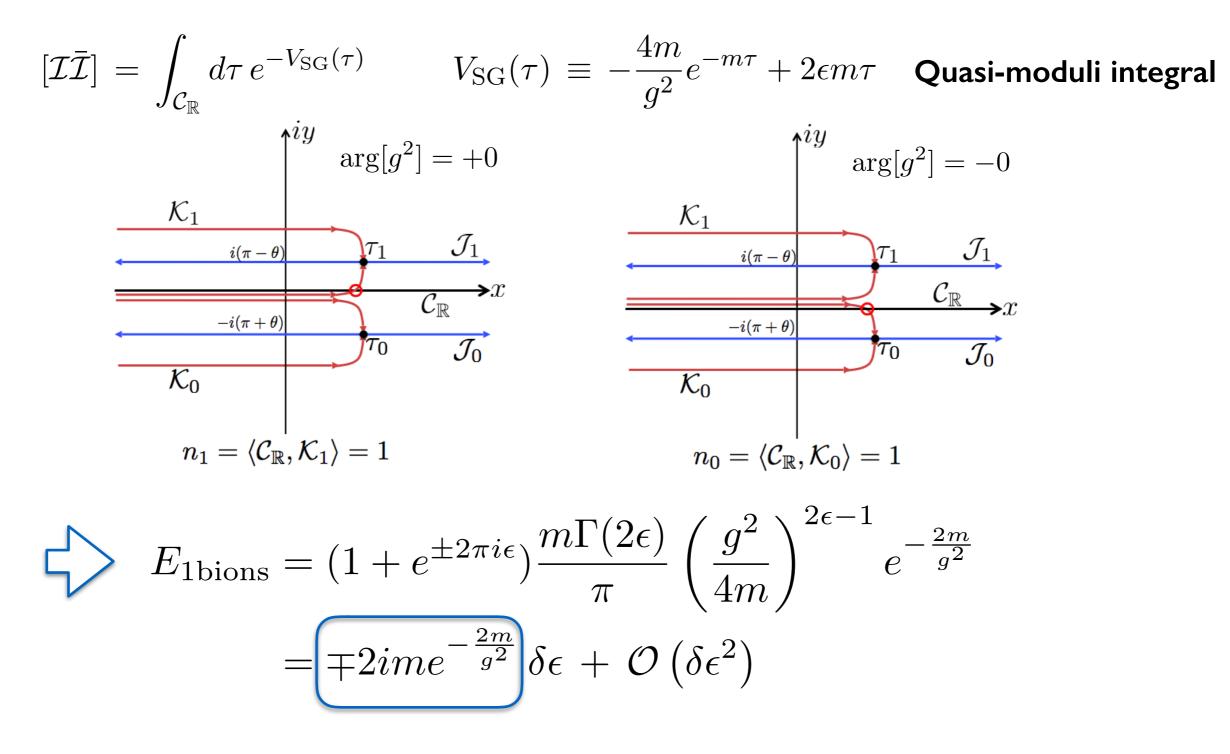
$$[\mathcal{I}\bar{\mathcal{I}}] = \int_{\mathcal{C}_{\mathbb{R}}} d\tau \, e^{-V_{\mathrm{SG}}(\tau)} \qquad V_{\mathrm{SG}}(\tau) \equiv -\frac{4m}{g^2} e^{-m\tau} + 2\epsilon m\tau \quad \text{Quasi-moduli integral}$$

Relative distance between instantons is only nearly-massless mode
The complex quasi-moduli integral corresponds to thimble integral

Saddle points
$$\tau_{\sigma} \equiv \frac{1}{m} \left[\log \frac{2m}{\epsilon g^2} + (2\sigma - 1)\pi i - i\theta \right]$$
 $\theta = \arg[g^2]$
 $\sigma = 0, 1$

Thimbles
$$au(t) = \frac{1}{m} \log \left[\frac{2m}{\epsilon g^2} \frac{\sin(a - be^{-\epsilon m t} - \theta)}{be^{-\epsilon m t}} \right] - \frac{i}{m} (a - be^{-\epsilon m t})$$

Contributions from real and complex bions



Explicit resurgence structure in SG QM

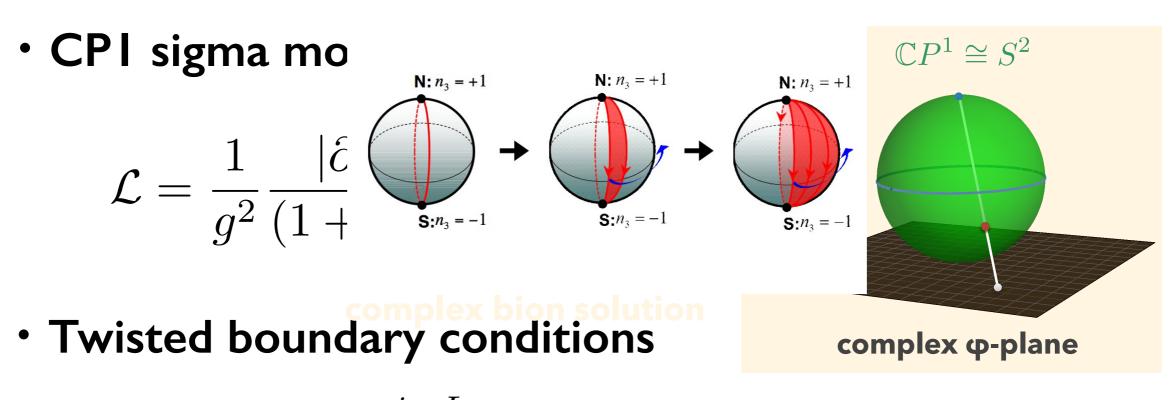
$$E^{(1)} = E^{(1)}_{\text{pert}} + E^{(1)}_{\text{bion}}$$

Imaginary ambiguities cancel between pert and nonpert parts, and we end up with the exact result !

 $E_{\text{pert}}^{(1)} = -g^2 m \frac{\partial}{\partial m} \log \left[I_0(m/g^2) \pm \frac{i}{\pi} K_0(m/g^2) \right]$ $E_{\text{bion}}^{(1)} = \mp 2ime^{-\frac{2m}{g^2}} + \mathcal{O}\left(e^{-\frac{4m}{g^2}}\right)$ single bions multi bions

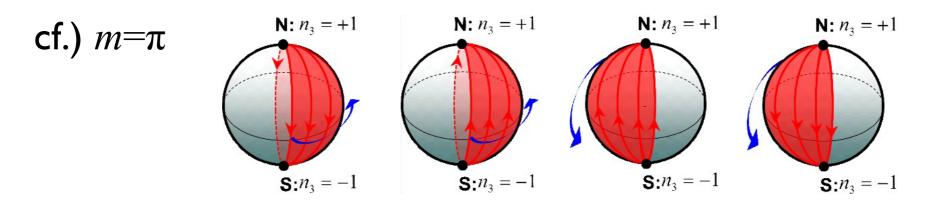
CP^N-I models

CPI Sigma model



$$\varphi(y+L) = e^{\imath m L} \varphi(y)$$
 $m=\pi$: Z_2 twisted b.c

→ BPS Fractional instantons



CPI QM via dimensional reduction

• CPI QM Lagrangian

$$L = \frac{1}{g^2} G \Big[\partial_t \varphi \partial_t \bar{\varphi} - m^2 \varphi \bar{\varphi} + i \bar{\psi} \mathcal{D}_t \psi + \epsilon m (1 + \varphi \partial_\varphi \log G) \bar{\psi} \psi \Big]$$
$$G = \frac{\operatorname{dim} \operatorname{hension} \mathcal{D}_t \psi}{(1 + \varphi \bar{\varphi})^2}, \quad \mathcal{D}_t \psi = \Big[\partial_t + \partial_t \varphi \partial_\varphi \log G \Big] \psi$$

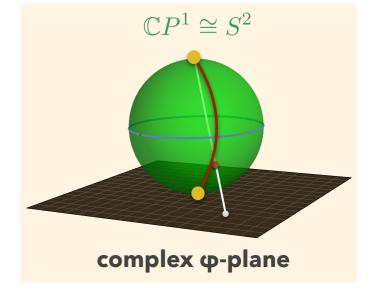
Potential with two minima due to t.b.c.

North and South poles

kink (tunneling)

• Kink solutions

Tunneling between two minima



Eliminating fermion

 \cdot Fermionic part of Lagrangian

$$L = \cdots + i\psi\partial_t\psi + F(|\varphi|)\overline{\psi}\psi$$

• Fermion number $f = \bar{\psi}\psi$: conserved charge

$$Z = Z_{f=0} + Z_{f=1}$$

• Partition function of f=0 sector

$$Z_{f=0} = \int \mathcal{D}\varphi \exp\left[-\int d\tau (L+V_f)\right]$$

induced potential

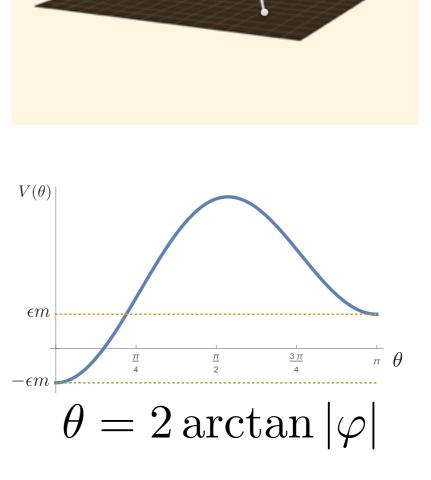
CP^I Quantum Mechanics

 \cdot Euclidean effective action

$$S_E = \frac{1}{g^2} \int d\tau \left[\frac{|\dot{\varphi}|}{(1+|\varphi|^2)^2} + V(|\varphi|) \right]$$

 \cdot Induced potential

$$\begin{split} V(|\varphi|) &= \frac{m^2 |\varphi|^2}{(1+|\varphi|^2)^2} - \lambda \frac{1-|\varphi|^2}{1+|\varphi|^2} \\ & \text{twisted b.c.} \quad \begin{array}{c} \text{fermion} \\ \lambda &= \epsilon m g^2 \end{split} \end{split}$$

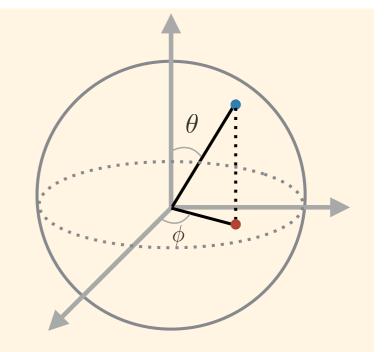


 $\mathbb{C}P^1 \cong S^2$

Properties of Potential

In spherical coordinate

$$V = \frac{V m^2}{4} \frac{\sin^2 \theta}{\sin^2 \theta} - \frac{\epsilon m g^2 \cos \theta}{-\epsilon g^2 \cos \theta}$$



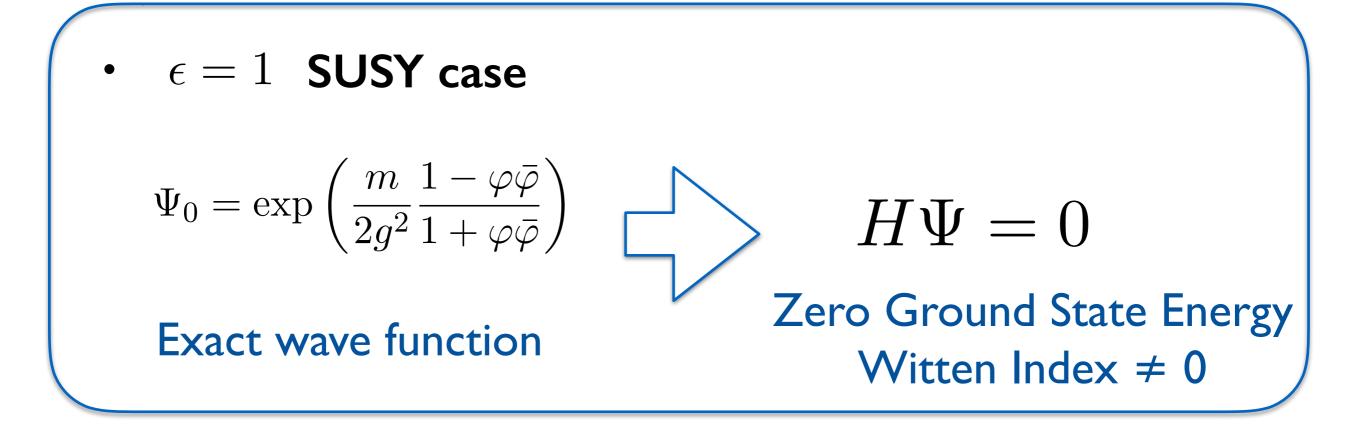
- E number of fermion d.o.f.
 - $\epsilon = \frac{1}{\epsilon} = 1$ supersymmetric $\epsilon = 0$ bosonic

Exact Results

• CPI Hamiltonian

[Fujimori, Kamata, TM, Nitta, Sakai(16)]

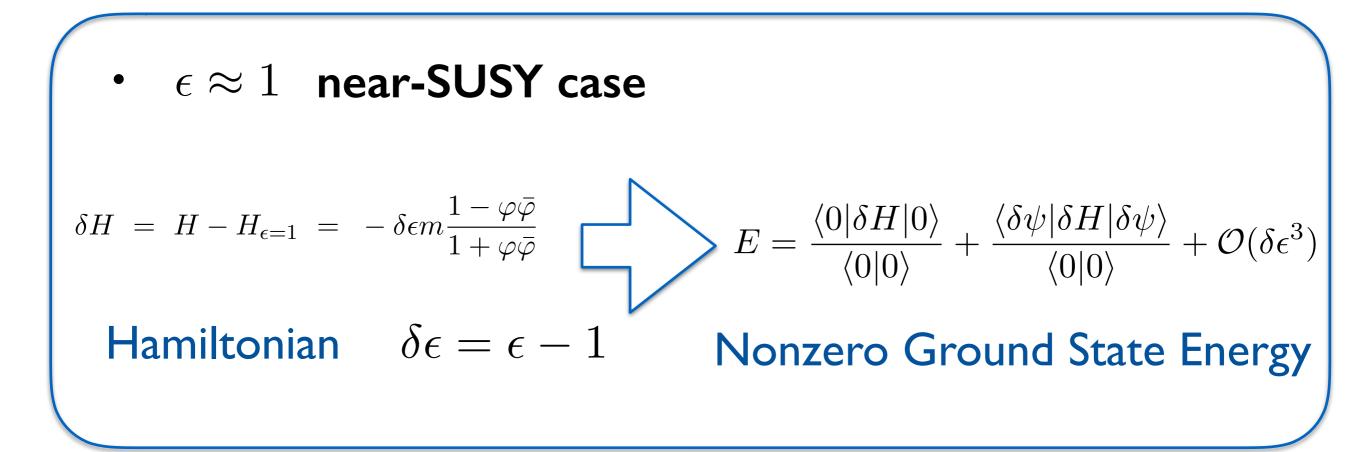
$$H = -g^2 (1 + \varphi \bar{\varphi})^2 \frac{\partial}{\partial \varphi} \frac{\partial}{\partial \bar{\varphi}} + V(\varphi \bar{\varphi})$$



• CPI Hamiltonian

[Fujimori, Kamata, TM, Nitta, Sakai(16)]

$$H = -g^2 (1 + \varphi \bar{\varphi})^2 \frac{\partial}{\partial \varphi} \frac{\partial}{\partial \bar{\varphi}} + V(\varphi \bar{\varphi})$$



• Near-SUSY Energy

$$E = E^{(1)}\delta\epsilon + E^{(2)}\delta\epsilon^{2} + \mathcal{O}(\delta\epsilon^{3})$$

$$E^{(1)} = -m\langle \frac{1-\varphi\bar{\varphi}}{1+\varphi\bar{\varphi}}\rangle_{\epsilon=1}$$

$$= g^{2} - m\coth\frac{m}{g^{2}}$$

$$E^{(1)} = E^{(1)}_{pert} + E^{(1)}_{bion}$$
Perturbative part Saddle-point part

$$E^{(1)} = g^2 - m \coth \frac{m}{g^2} = E^{(1)}_{\text{pert}} + E^{(1)}_{\text{bion}}$$

Perturbative part

$$E_{
m pert}^{(1)} = -m + g^2$$
 finite order unlike SG

exact agreement with the perturbative calculation

Saddle-point part

$$E_{\text{bion}}^{(1)} = -2m \sum_{k=1}^{\infty} e^{-\frac{2km}{g^2}} = -2me^{-\frac{2m}{g^2}} + \mathcal{O}(e^{-\frac{4m}{g^2}})$$

single bions multi bions
no lm ambiguity unlike SG

consistent with real and complex bion contributions?

$$E^{(1)} = g^2 - m \coth \frac{m}{g^2} = E^{(1)}_{\text{pert}} + E^{(1)}_{\text{bion}}$$

Perturbative part

$$E_{\rm pert}^{(1)} = -m + g^2$$

cf.)inspired by Sulejmanpasic, Unsal (16)

$$A_l \sim -\frac{1}{2^{l-1}} \frac{\Gamma(l+2(1-\epsilon))}{\Gamma(1-\epsilon)^2}$$

exact agreement with the perturbative calculation

Saddle-point part

$$E_{\text{bion}}^{(1)} = -2m \sum_{k=1}^{\infty} e^{-\frac{2km}{g^2}} = -2me^{-\frac{2m}{g^2}} + \mathcal{O}(e^{-\frac{4m}{g^2}})$$

single bions multi bions
no lm ambiguity unlike SG

consistent with real and complex bion contributions?

$$E^{(1)} = g^2 - m \coth \frac{m}{g^2} = E^{(1)}_{\text{pert}} + E^{(1)}_{\text{bion}}$$

Perturbative part

$$E_{\rm pert}^{(1)} = -m + g^2$$

cf.)inspired by Sulejmanpasic, Unsal (16)

$$\operatorname{Im} \mathcal{S}_{\pm} E_{\text{pert}} = \mp \frac{2\pi m}{\Gamma(1-\epsilon)^2} \left(\frac{g^2}{2m}\right)^{2(\epsilon-1)} e^{-\frac{2m}{g^2}}$$

exact agreement with the perturbative calculation

• Saddle-point part

$$E_{\text{bion}}^{(1)} = -2m \sum_{k=1}^{\infty} e^{-\frac{2km}{g^2}} = -2me^{-\frac{2m}{g^2}} + \mathcal{O}(e^{-\frac{4m}{g^2}})$$

single bions multi bions
no lm ambiguity unlike SG

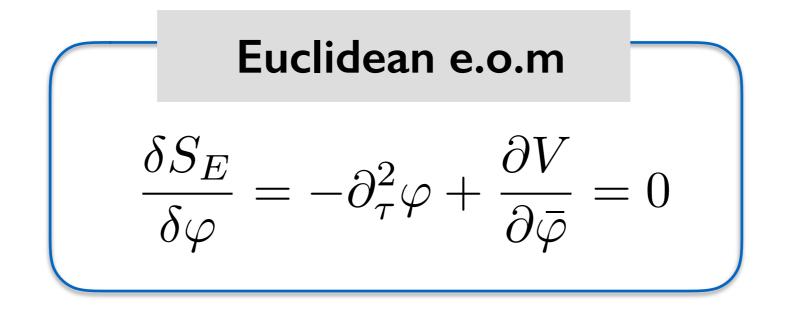
consistent with real and complex bion contributions?

Real and complex saddle results

Saddle point equation

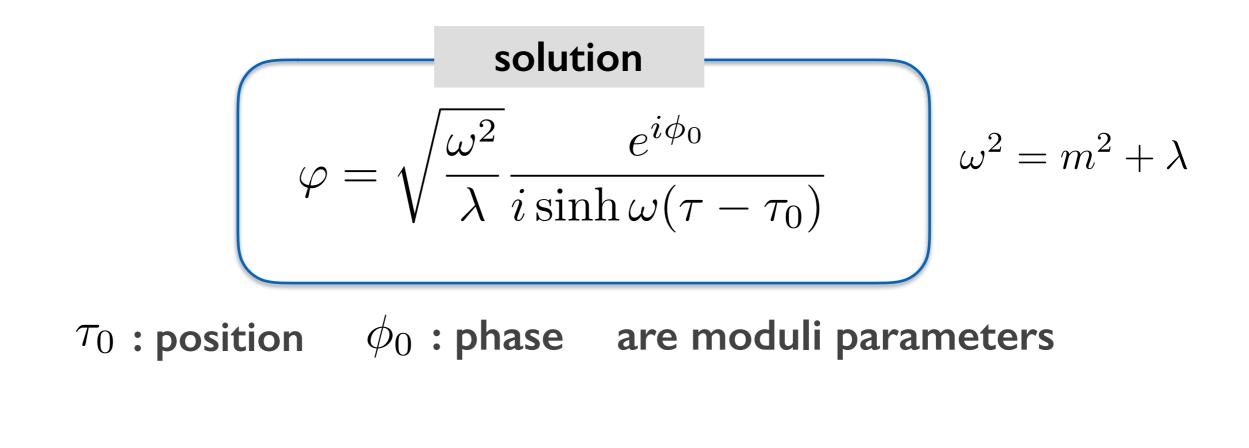
 \cdot Euclidean action

$$S_E = \frac{1}{g^2} \int d\tau \left[\frac{|\dot{\varphi}|^2}{(1+|\varphi|^2)^2} + \frac{m^2 |\varphi|^2}{(1+|\varphi|^2)^2} - \lambda \frac{1-|\varphi|^2}{1+|\varphi|^2} \right]$$



• symmetry : time and phase shift $igned{}$ conservation law $\frac{1}{g^2} \frac{\partial_{\tau} \varphi \partial_{\tau} \bar{\varphi}}{(1 + \varphi \bar{\varphi})^2} - V(\varphi \bar{\varphi}) = \epsilon m = E|_{\varphi=0}$

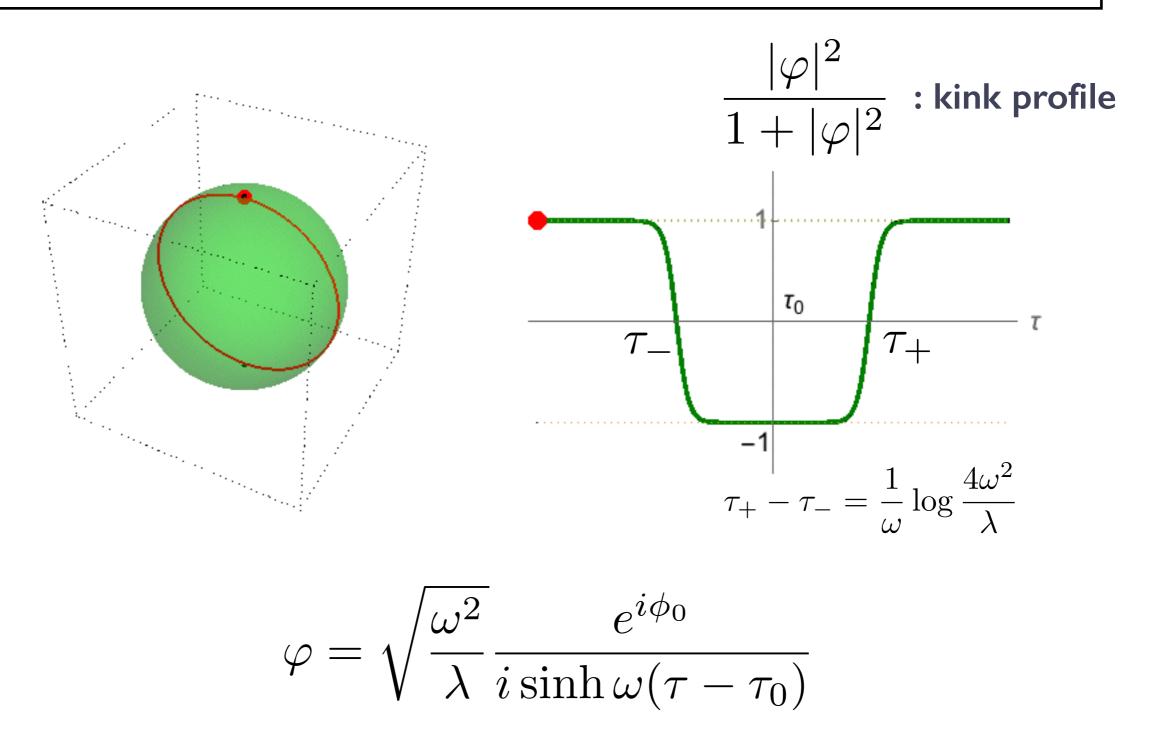
Solution of E.O.M.



$$\begin{array}{c|c} \cdot \text{ kink-antikink pair } & \varphi^{-1} \propto e^{\omega(\tau - \tau_{+})} - e^{-\omega(\tau - \tau_{-})} \\ & \left(\phi_{\pm} = \phi_{0} \mp \frac{\pi}{2}\right) & \text{ kink } & \text{ antikink } \end{array}$$

$$\tau_{+} - \tau_{-} = \frac{1}{\omega} \log \frac{4\omega^{2}}{\lambda} \quad \text{ relative distance (stabilized)}$$

real bion solution



"real" bion : saddle point on original integration contour

contribution of real bion

$$\exp[-S_{\rm rb}] = \exp\left[-\frac{2\omega}{g^2}\left(1 + \frac{\lambda}{m\omega}\log\frac{\omega - m}{\omega + m}\right)\right]$$

• does not vanish in the supersymmetric case $\lambda = mg^2$

There should be other saddle points which cancel the real bion contribution

Complexification

 \cdot real and imaginary parts of $\, \varphi \,$

$$\varphi = \varphi_{\rm R} + i\varphi_{\rm I} \qquad \bar{\varphi} = \varphi_{\rm R} - i\varphi_{\rm I} \rightarrow \tilde{\varphi}$$

$$\mathbb{C}P^1 \cong \frac{SU(2)}{U(1)} \to \frac{SU(2)^{\mathbb{C}}}{U(1)^{\mathbb{C}}} \cong T^* \mathbb{C}P^1$$

complexification of CP¹

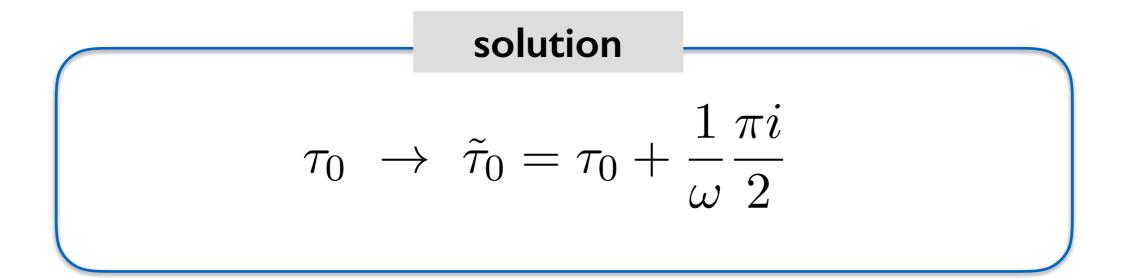
 \cdot Analytically continued holomorphic action

$$S[\varphi,\bar{\varphi}] \rightarrow S[\varphi,\tilde{\varphi}]$$

holomorphic

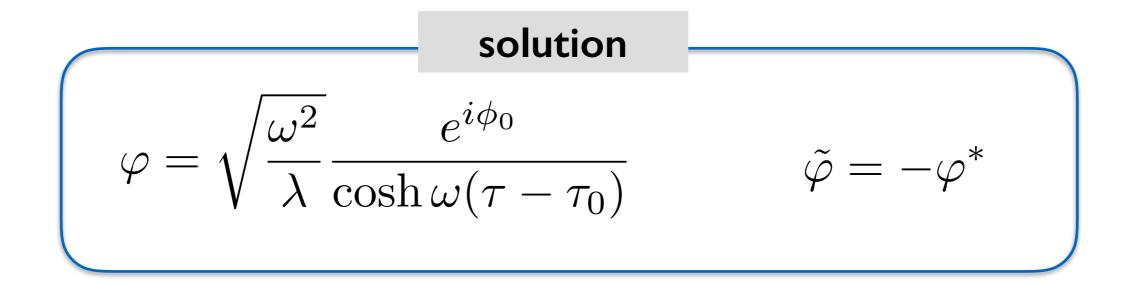
complex

Complex bion solution



- The action is invariant under time and phase transformation with complexified parameters
- A solution distinct from real bion is obtained by complexified shift giving a jump of the action

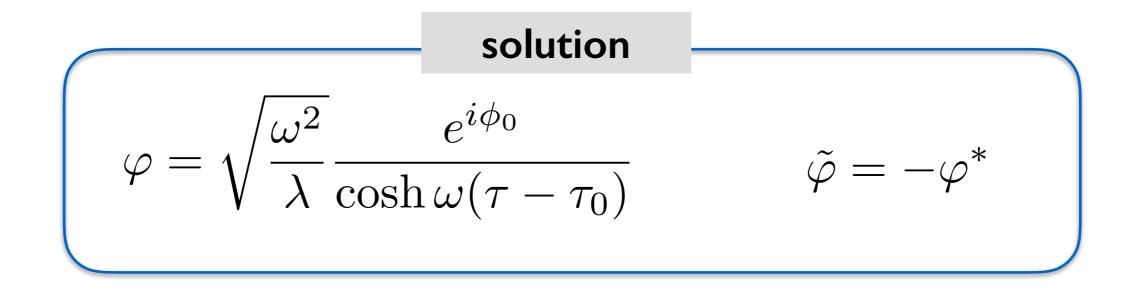
Complex bion solution



$$egin{array}{lll} egin{array}{lll} egin{array}{llll} egin{array}{lll} egin{array}{llll} egin{ar$$

$$\tau_{+} - \tau_{-} = \frac{1}{\omega} \left(\log \frac{4\omega^2}{\omega^2 - m^2} + \pi i \right)$$
: "complex relative distance"

Complex bion solution

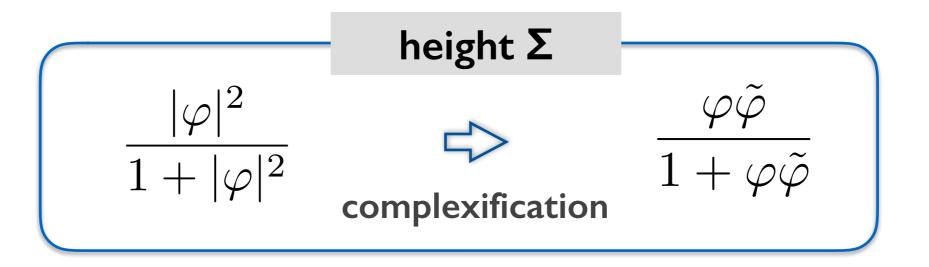


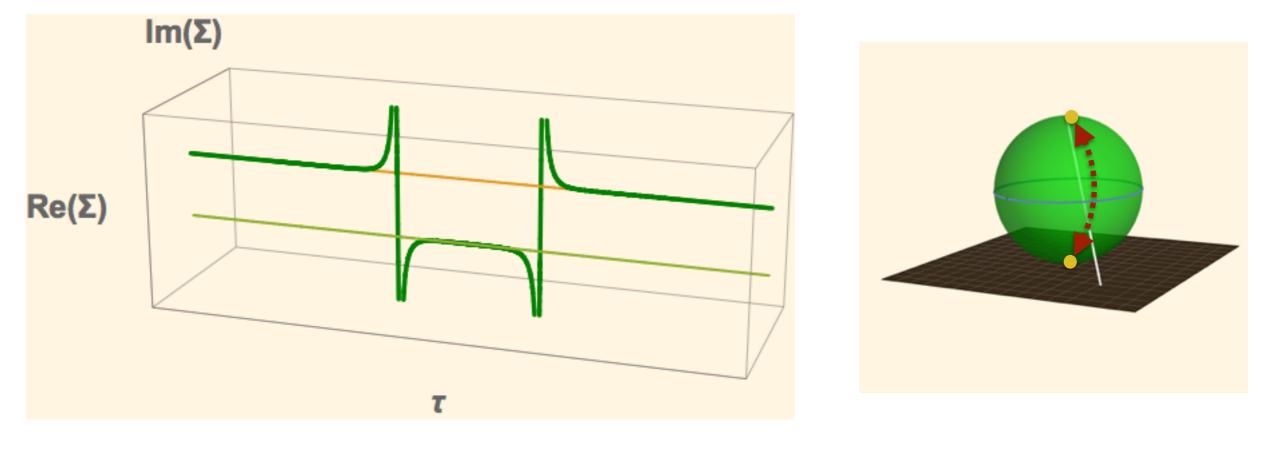
• Lagrangian
$$L = -4m\epsilon \left[\frac{\omega^2 \sinh \omega (\tau - \tau_0)}{\omega^2 - (\omega^2 - m^2) \cosh^2 \omega (\tau - \tau_0)}\right]^2$$

$$\tau_{\rm pole}^{\pm} = \tau_0 \pm \frac{1}{\omega} {\rm arccosh} \sqrt{\frac{\omega^2}{\omega^2 - m^2}} \qquad \text{two poles}$$

Singular solution

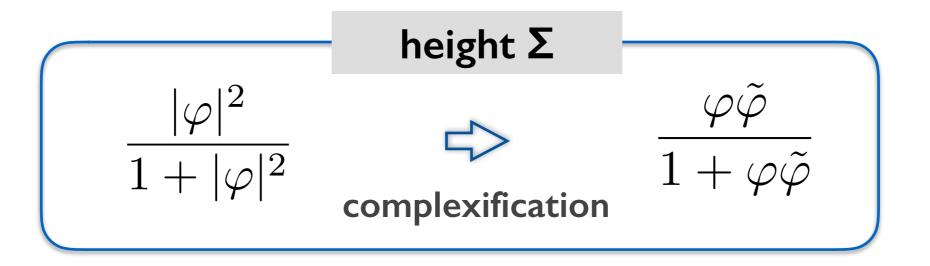
Kink profile of bion

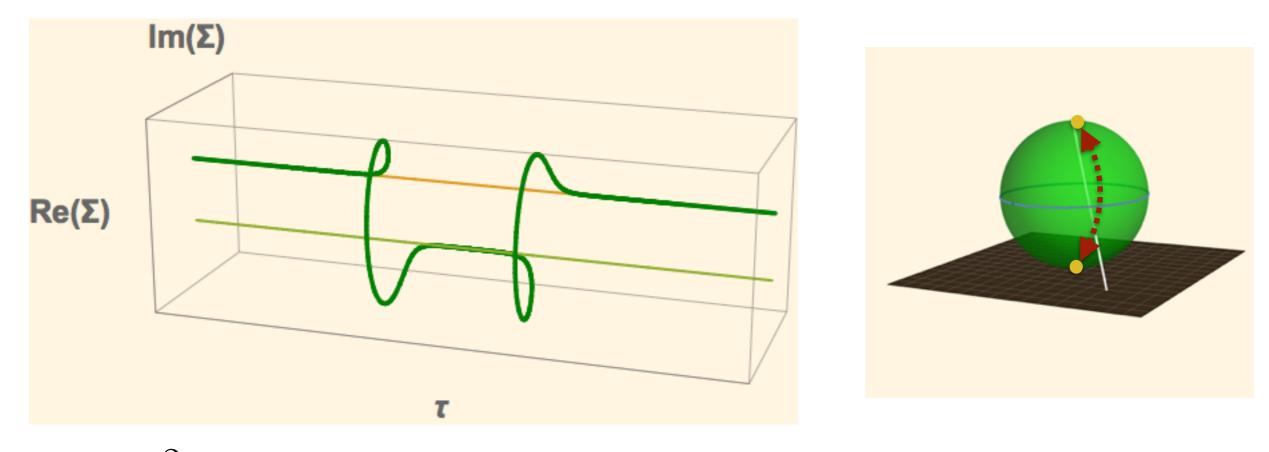




complex bion

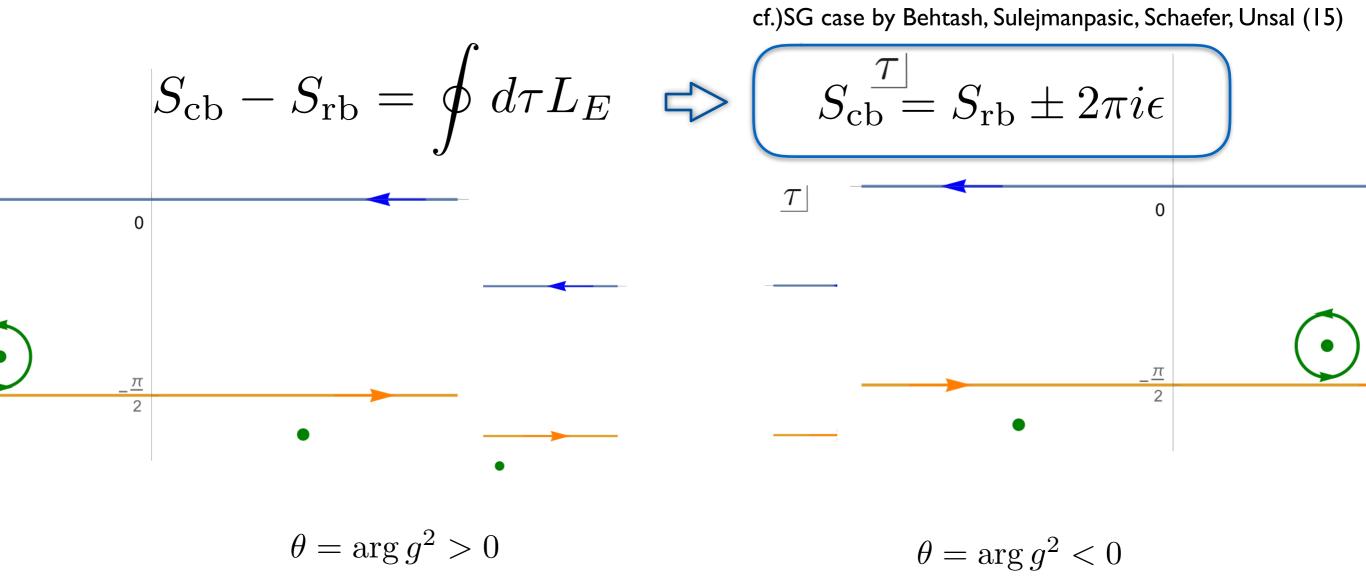
Kink profile of bion





 $\arg[g^2] \neq 0 \quad \Longrightarrow \quad \text{regularized complex bion}$

Contribution of complex bion



indicates contribution of complex bion has imaginary ambiguity depending on arg g^2

Fluctuations around saddle points

Quadratic fluctuations around saddle points

$$S = S_{\text{sol}} + \int d\tau \delta \Phi^T \Delta \delta \Phi + \cdots$$

$$\int \mathbf{G}_{\text{aussian Integral}} \delta \Phi = \begin{pmatrix} \delta \varphi \\ \delta \tilde{\varphi} \end{pmatrix}$$

Determinant of differential operator Δ

$$\frac{Z_1}{Z_0} = \beta \frac{16i\omega^4}{g^2 \lambda} [e^{-S_{\rm rb}} - e^{-S_{\rm cb}}] + \mathcal{O}(\beta^0)$$
$$\mathbf{\beta}: \text{inverse temperature}$$

Leading non-perturbative correction

· Gaussian integration

one loop determinant

$$\frac{Z_1}{Z_0} = \beta \frac{16i\omega^4}{g^2\lambda} [e^{-S_{\rm rb}} - e^{-S_{\rm cb}}] + \mathcal{O}(\beta^0)$$

• correction to ground state energy $E_{\text{bion}} = -\lim_{\beta \to \infty} \frac{1}{\beta} \frac{Z_1}{Z_0}$

$$E_{\text{bion}} = i(1 - e^{\pm 2\pi\epsilon i}) \frac{16\omega^4}{g^2\lambda} \left(\frac{\omega + m}{\omega - m}\right)^{2\epsilon} \exp\left[-\frac{2\omega}{g^2}\right] \qquad \epsilon = \frac{\lambda}{mg^2}$$

 \cdot asymptotic form in the limit $g^2
ightarrow 0$ with fixed λ

SUSY case

$$E_{\text{bion}} = i(1 - e^{\pm 2\pi\epsilon i}) \frac{16\omega^4}{g^2\lambda} \left(\frac{\omega + m}{\omega - m}\right)^{2\epsilon} \exp\left[-\frac{2\omega}{g^2}\right]$$

 \cdot supersymmetric case $\epsilon = 1$

$$\Box \qquad E_{\rm bion} = 0$$

 \cdot cancelation of real and complex bion contributions

 \cdot consistent with the exact result

We are just lucky.....

$$g^2
ightarrow 0$$
 with fixed λ v.s. $g^2
ightarrow 0$ with fixed ϵ

near SUSY case

$$E_{\text{bion}} = i(1 - e^{\pm 2\pi\epsilon i}) \frac{16\omega^4}{g^2\lambda} \left(\frac{\omega + m}{\omega - m}\right)^{2\epsilon} \exp\left[-\frac{2\omega}{g^2}\right]$$

 \cdot near supersymmetric case $\epsilon pprox 1$

$$E \approx 0 + A(\omega, m, g) e^{-\frac{2m}{g^2}} \delta \epsilon + \cdots$$

incompatible with the exact result

•
$$g^2 \to 0$$
 with fixed $\epsilon = \frac{\lambda}{mg^2}$ rearly flat directions appear
 $\tau_+ - \tau_- \approx \frac{1}{m} \log \frac{2m^2}{\lambda} \to \infty \quad (\lambda \to 0)$

any superposition of position and phase gets massless

near SUSY case

$$E_{\text{bion}} = i(1 - e^{\pm 2\pi\epsilon i}) \frac{16\omega^4}{g^2\lambda} \left(\frac{\omega + m}{\omega - m}\right)^{2\epsilon} \exp\left[-\frac{2\omega}{g^2}\right]$$

 \cdot near supersymmetric case $\epsilon pprox 1$

$$E \approx 0 + A(\omega, m, g) e^{-\frac{2m}{g^2}} \delta \epsilon + \cdots$$

incompatible with the exact result

•
$$g^2 \rightarrow 0$$
 with fixed $\epsilon = \frac{\lambda}{mg^2}$ $rightarrow$ nearly flat directions appear

Gaussian approximation is not valid

Quasi-Moduli (Thimble) Integral

· nearly flat directions : quasi-moduli parameters

relative kink distance au and phase ϕ

no other quasi-moduli numerically checked

contribution from real and complex bion

$$\frac{Z_1}{Z_0} \approx \int d\tau_0 d\phi_0 \, d\tau_r d\phi_r \sqrt{\det\left(\frac{\mathcal{G}}{2\pi}\right) \det\left(\frac{\mathcal{G}'}{2\pi}\right) \frac{\det \Delta_0}{\det'' \Delta_{k\bar{k}}}} \exp\left(-V_{\text{eff}}\right)$$

effective action on complexified quasi-moduli space TM, Sakai, Nitta (14)

$$S_{
m eff}pprox -rac{4m}{g^2}\cos\phi\,e^{-m au}+2\epsilon m au$$
 (for well-separated kinks)

Quasi-Moduli (Thimble) Integral

· nearly flat directions : quasi-moduli parameters

relative kink distance au and phase ϕ

no other quasi-moduli numerically checked

complexified quasi-moduli integral $Z_{\rm q.m.} = \int d\tau d\phi \, \exp\left[-S_{\rm eff}\right]$

effective action on complexified quasi-moduli space

$$S_{
m eff} pprox - rac{4m}{g^2} \cos \phi \, e^{-m au} + 2 \epsilon m au$$
 (for well-separated kinks)

Lefschetz Thimble Method

 \cdot decomposition of integration contour

$$\mathcal{C}_{\mathbb{R}} = \sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma}$$

 $\sigma: \mathsf{set} \text{ of saddle points}$

thimble	\mathcal{J}_{σ}	: upward flow	$\frac{d\varphi}{dt} = \frac{\partial S_{\text{eff}}}{\partial \varphi}$
dual thimble	\mathcal{K}_{σ}	: downward flow	flow equation

$$\langle \mathcal{K}_{\sigma}, \mathcal{J}_{\sigma'} \rangle = \delta_{\sigma\sigma'}$$
 \Longrightarrow $n_{\sigma} = \langle \mathcal{C}_{\mathbb{R}}, \mathcal{K}_{\sigma} \rangle$
intersection pairing intersection number

Quasi-Moduli Integral

 \cdot application of Lefschetz thimble method $heta=rg[g^2]$

saddle points

$$\tau_{\sigma} = \frac{1}{m} \log \frac{2m}{\epsilon g^2} + \frac{i}{m} (\sigma \pi - \theta), \qquad \phi_{\sigma} = -(\sigma - 1)\pi \pmod{2\pi}$$

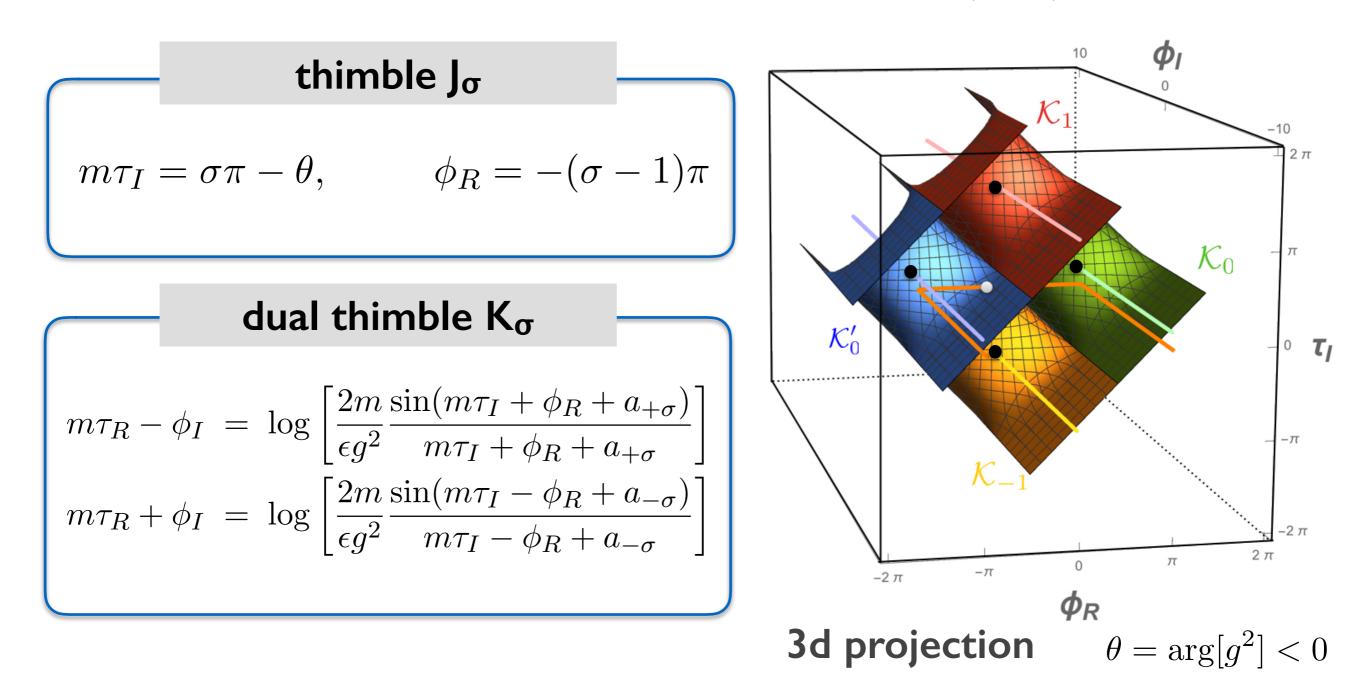
 $\sigma=0$: real bion $\sigma=\pm 1$: complex bion

solution of flow eq.

$$\tau_i = \frac{1}{m} \log \left[\frac{2m}{\epsilon g^2} \frac{\sin(a_i - b_i e^{-\epsilon m t} - \theta)}{b_i e^{-\epsilon m t}} \right] - \frac{i}{m} (a_i - b_i e^{-\epsilon m t})$$

Thimble \mathcal{J}_{σ} and Dual Thimble \mathcal{K}_{σ}

 \cdot Thimbles are surfaces in 4d space $(au,\phi)\in\mathbb{C}^2$



Quasi Moduli Integral

$$Z_{\rm q.m.} = \sum_{\sigma} n_{\sigma} Z_{\sigma}$$

 \cdot integral along $\,J_{\sigma}$

$$Z_{\sigma} = \int_{\mathbb{R}} d\tau' \int_{i\mathbb{R}} d\phi' e^{-V} = \frac{i}{2m} \left(\frac{g^2 e^{i\theta}}{2m}\right)^{2\epsilon} e^{-2\pi i\epsilon\sigma} \Gamma(\epsilon)^2$$

 \cdot intersection number of original contour and K_σ

$$(n_{-1}, n_0, n_1) = \begin{cases} (-1, 1, 0) & \text{for } \theta = -0 \\ (0, -1, 1) & \text{for } \theta = +0 \end{cases}$$

Stokes phenomenon

Saddle-point Contribution

contribution to ground state energy $E_{\text{bion}} = -2m \left(\frac{g^2}{2m}\right)^{2(\epsilon-1)} \frac{\sin \epsilon \pi}{\pi} \Gamma(\epsilon)^2 e^{-\frac{2m}{g^2}} \\ \times \begin{cases} e^{\pi i \epsilon} & \text{for } \theta = -0 \\ e^{-\pi i \epsilon} & \text{for } \theta = +0 \end{cases}$

exactly zero at ε=I(SUSY) exactly cancels the perturbative imaginary ambiguity

cf.)CPN
$$E_{\text{bion}} = -\sum_{i=1}^{N-1} 2m_i \left(\frac{g^2}{2m_i}\right)^{2(\epsilon'-1)} \frac{\sin \epsilon' \pi}{\pi} \Gamma(\epsilon')^2 e^{-\frac{2m_i}{g^2}} \times \begin{cases} e^{\pi i \epsilon} & \text{for } \theta = -0 \\ e^{-\pi i \epsilon} & \text{for } \theta = +0 \end{cases} \quad \epsilon' = 1 + \frac{1}{2}(\epsilon - 1)N$$

Saddle-point Contribution

contribution to ground state energy

$$E_{\text{bion}} = -2m \left(\frac{g^2}{2m}\right)^{2(\epsilon-1)} \frac{\sin \epsilon \pi}{\pi} \Gamma(\epsilon)^2 e^{-\frac{2m}{g^2}} \\ \times \begin{cases} e^{\pi i \epsilon} & \text{for } \theta = -0 \\ e^{-\pi i \epsilon} & \text{for } \theta = +0 \end{cases}$$

$$= \left[-2me^{-\frac{2m}{g^2}}\right]\delta\epsilon + \mathcal{O}(\delta\epsilon^2)$$

precise agreement with exact result!

$$E_{\text{bion}}^{(1)} = -2m \sum_{k=1}^{\infty} e^{-\frac{2m}{g^2}} = -2m e^{-\frac{2m}{g^2}} + \mathcal{O}(e^{-\frac{4m}{g^2}})$$

Comparison and Resurgence

Exact ground state energy in CPI

$$E^{(1)} = g^2 - m \coth \frac{m}{g^2} = E^{(1)}_{\text{pert}} + E^{(1)}_{\text{bion}}$$

Perturbative part

$$E_{\rm pert}^{(1)} = -m + g^2$$
 finite order unlike

exact agreement with the perturbative calculation

SG

• Saddle-point part

$$E_{\text{bion}}^{(1)} = -2m \sum_{k=1}^{\infty} e^{-\frac{2m}{g^2}} = -2me^{-\frac{2m}{g^2}} + \mathcal{O}(e^{-\frac{4m}{g^2}})$$

single bions multi bions
no lm ambiguity unlike SG

exact agreement with real and complex bion contributions!

Exact ground state energy in CPI

$$E^{(1)} = g^2 - m \coth \frac{m}{g^2} = E^{(1)}_{\text{pert}} + E^{(1)}_{\text{bion}}$$

Perturbative part

$$E_{
m pert}^{(1)} = -m + g^2$$
 finite order unlike SG

exact agreement with the perturbative calculation

Saddle-point part

$$E_{\text{bion}}^{(1)} = -2m \sum_{k=1}^{\infty} e^{-\frac{2m}{g^2}} = -2me^{-\frac{2m}{g^2}} + \mathcal{O}(e^{-\frac{4m}{g^2}})$$

multi bions

can be exactly obtained from multi-bion quasi-moduli integral will be announced in a forthcoming paper

Complete Resurgence Structure

· Exact result as expansion of $\delta\epsilon$

$$\begin{split} E &= \quad \delta \epsilon \left[g^2 - m \coth \frac{m}{g^2} \right] \\ &+ \delta \epsilon^2 \bigg[g^2 - m \frac{\coth \frac{m}{g^2}}{\sinh^2 \frac{m}{g^2}} \Big(\frac{\operatorname{Ei}(\frac{2m}{g^2}) + \operatorname{Ei}(-\frac{2m}{g^2})}{2} \\ &- \gamma - \log \frac{2m}{g^2} \Big) \bigg] + \mathcal{O}(\delta \epsilon^3) \\ &= \delta \epsilon \, E^{(1)} + \delta \epsilon^2 \, E^{(2)} + \mathcal{O}(\delta \epsilon^3) \,, \end{split}$$

Richer resurgence (cancellation) structure including multi-bion saddle contributions: See our forthcoming paper

Summary

- I Non-perturbative contribution from real and complex bion solutions in CP^N quantum mechanics
- 2 SUSY exact results are reproduced
- 3 Near SUSY result is exactly reproduced from perturbative and saddle-point contributions.

Forthcoming paper contains

- \cdot Perturbative results based on Bender-Wu recursion relation
- \cdot A number of exact Multi-bion solutions
- \cdot Rich and full resurgence structure at $\delta\epsilon^{2}$ order

What we can do further

Upgrade the solutions to 2D CPN sigma model

• Other exactly solvable models (near-SUSY, QES)

cf.) Kozcaz, Sulejmanpasic, Tanizaki, Unsal (16)

• Extension to Multi-variable QM