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Path integral & Saddle Points
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Complex Saddle Points needed

Saddle points out of original integration path
can also contribute to the integral

- Airy integral
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Complex Saddle Points needed

Behtash, Dunne, Schafer,
Sulejmanpasic, Unsal (15)

complex saddle points in QM path integral

:{> complex bion | INstanton-anti instanton pair
with ~"complex separation

Extended resurgence (including complex saddles)

pert Saddles full partition function

: real and no ambiguity
cancelation of all the imaginary ambiguities



Final goal is field theory (CPN models)
but as an exercise we begin with sine-Gordon QM



Sine-Gordon QM

* SG Hamiltonian
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Sine-Gordon QM

* SG Hamiltonian
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R 5 near-SUSY case [Fujimori, Kamata, TM, Nitta, Sakai(1 6)]
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Sine-Gordon QM

* Near-SUSY Energy

[Fujimori, Kamata, TM, Nitta, Sakai(16)]

E = EWge + EP§2 + O(563)
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Perturbative part
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Sine-Gordon QM

* Perturbative part as asympt. expansion
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This is consistent with the known perturbative calculation!
Verbaarschot, West, Wu (90)

Behtash, Dunne, Schifer, Sulejmanpasic, Unsal (15)



Sine-Gordon QM

* Saddle point parts
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This is exactly consistent with contributions from
real and complex bions!




Sine-Gordon QM

* Contributions from real and complex bions
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Sine-Gordon QM

* Contributions from real and complex bions

_ dm
Z7] = / dr e V5c(7) Via(T) = —?G_mT—FQEmT Quasi-moduli integral
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* Relative distance between instantons is only nearly-massless mode

* The complex quasi-moduli integral corresponds to thimble integral
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Sine-Gordon QM

* Contributions from real and complex bions
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Sine-Gordon QM

* Explicit resurgence structure in SG QM

E(l) — Eéle?rt + Ek()ilc))n

Imaginary ambiguities cancel between pert and nonpert parts,
and we end up with the exact result !
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can be obtained from multi-bion solutions
will be announced in a forthcoming paper




CPAN-1 models



CPI Sigma model

* CPI sigma model on R| x S| CP' = §?
£ ]‘ ‘8'u§0|2
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* Twisted boundary conditions complex ¢p-plane
p(y + L) =™ p(y) m=n : 7> twisted b.c.

— BPS Fractional instantons
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cf.) m=n




CPl QM via dimensional reduction

* CP1 QM Lagrangian
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* Potential with two minima due to t.b.c.

North and South poles

* Kink solutions

Tunneling between two minima complex p-plane



Eliminating fermion

* Fermionic part of Lagrangian

L=+ + F(|op| )11}

- Fermion number f =¥ :conserved charge
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- Partition function of /=0 sector

Zo = / Dy exp |- / dr(L + Vf):

induced potential




CP' Quantum Mechanics

- Euclidean effective action
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* Induced potential
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Properties of Potential

In spherical coordinate

m2

V = Tsiné’ — emg* cos 6

¢ . number of fermion d.o.f.

e =1 supersymmetric

e = () bosonic



Exact Results



Exact ground state energy in CP|

* CP| Hamiltonian [Fujimori, Kamata, TM, Nitta, Sakai(16)]

o 0
2 | —

r' e =1 SUSY case \

H=—g¢*(1+ ¢p)

T — m 1 — pp
O TP 22 T+ og HY =0
Zero Ground State Energy
Witten Index #= 0 J

K Exact wave function




Exact ground state energy in CP|

* CP| Hamiltonian [Fujimori, Kamata, TM, Nitta, Sakai(16)]
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Exact ground state energy in CP|

* Near-SUSY Energy

E = EWge + EP§2 + O(563)
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Exact ground state energy in CP|

EW = g* — mcoth % — W + g

q pert bion
* Perturbative part
Eélelt = —m + 92 finite order unlike SG

exact agreement with the perturbative calculation

* Saddle-point part
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no Im ambiguity unlike SG

consistent with real and complex bion contributions?



Exact ground state energy in CP|
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o Per.tu r.bative par.t cf.)inspired by Sulejmanpasic, Unsal (16)
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exact agreement with the perturbative calculation

* Saddle-point part
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single bions multi bions

no Im ambiguity unlike SG

consistent with real and complex bion contributions?



Exact ground state energy in CP|

EW = g* — mcoth % — E(l)t + g

g per bion
o Per.tu r.bative par.t cf.)inspired by Sulejmanpasic, Unsal (16)
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exact agreement with the perturbative calculation

* Saddle-point part
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no Im ambiguity unlike SG

consistent with real and complex bion contributions?



Real and complex saddle results



Saddle point equation

- Euclidean action
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Solution of E.O.M.

solution
(
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are moduli parameters

- kink-antikink pair
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real bion solution

: kink profile

w2 et 9o

LA i sinh w(7 — 79)
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“real’ bion : saddle point on original integration contour



contribution of real bion
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- does not vanish in the supersymmetric case \ = mg?
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There should be other saddle points
which cancel the real bion contribution




Complexification

- real and imaginary parts of ¥ f‘> complex
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complexification of CP!

- Analytically continued holomorphic action

> Sle.@l - Sle,@ holomorphic




Complex bion solution

-
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solution
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* The action is invariant under time and phase
transformation with complexified parameters

* A solution distinct from real bion is obtained by
complexified shift giving a jump of the action




Complex bion solution

solution
4 )

(2 el 90
7V coshw(7 — 19) 7

\_ W,

ASY
|

- kink-antikink pair | ™1 o @(T7TH) 4 gmw(T—T-)
(6x=c0-73) kink antikink

1 4w? .
T T = log R “complex relative distance”




Complex bion solution

solution
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Kink profile of bion

~ height 2 ™
ol o PP
1+ |¢]? PR e ol 1%
complexification
\_ J

complex bion




Kink profile of bion

~ height 2 ™
ol o PP
1+ |¢]? PR e ol 1%
complexification
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Re(X)
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arglg’] 0 > regularized complex bion



Contribution of complex bion

cf.)SG case by Behtash, Sulejmanpasic, Schaefer, Unsal (15)

Scb — Srb — %dTLE > ( S, = Sip, = 27ie ]
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indicates contribution of complex bion has
imaginary ambiguity depending on arg g2




Fluctuations around saddle points

Quadpratic fluctuations around saddle points

S = Ssol + /dT5<I>TA5<I> + -
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Leading non-perturbative correction

Gaussian integration

one loop determinant

-
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- asymptotic form in the limit ¢ — 0 with fixed )\



SUSY case
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* supersymmetric case ¢ = 1

:> Ebion =0

- cancelation of real and complex bion contributions

- consistent with the exact result

We are just lucky.....
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near SUSY case
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near SUSY case
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- near supersymmetric case € ~ |
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:> incompatible with the exact result
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g> > 0 with fixed €= m—g2 :> nearly flat directions appear

Gaussian approximation is not valid



Quasi-Moduli (Thimble) Integral

- nearly flat directions : quasi-moduli parameters

no other quasi-moduli

relative kink distance 7 and phase ¢ .
numerically checked

- contribution from real and complex bion N
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Quasi-Moduli (Thimble) Integral

- nearly flat directions : quasi-moduli parameters

no other quasi-moduli

relative kink distance 7 and phase ¢ .
numerically checked

— complexified quasi-moduli integral  —
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\_ Y,

effective action on complexified quasi-moduli space
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Lefschetz Thimble Method

- decomposition of integration contour

Cr = Z Ng S o 0 : set of saddle points
O
~
thimble Js  :upward flow d_90 _ 0Ser
dt 0w
dual thimble K, :downward flow flow equation
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intersection pairing intersection number



Quasi-Moduli Integral

- application of Lefschetz thimble method 0 = arg[QQ]
saddle points N
o = —log Z’; (om0, @ = — (0~ (mod2m
Y
o = (0 :real bion o = 41 :complex bion
solution of flow eq. h
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Thimble J- and Dual Thimble £,

- Thimbles are surfaces in 4d space
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Quasi Moduli Integral

Zq.m. — Z nO'ZO'

- integral along Jo
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- intersection nhumber of original contour and Kg

(-1,1,0) for 8= -0
(n—lanOa nl) —
(0,—-1,1) for 8 =+40

Stokes phenomenon > ambiguity




Saddle-point Contribution

r contribution to ground state energy
2 2(e—1) .
SIN €7 _2m
Erion = —2m (9_> I (6)2 e 9
2m T

y e for 6 = —0
e~ ™€  for @ = +0 °

\_

exactly zero at €=1(SUSY)
exactly cancels the perturbative imaginary ambiguity
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Saddle-point Contribution

contribution to ground state energy
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precise agreement with exact result!
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Comparison and Resurgence



Exact ground state energy in CP|

EW = ¢%2 — mcoth % gV 4+ gl

pert bion
9

* Perturbative part

finite order unlike SG

exact agreement with the perturbative calculation

* Saddle-point part
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bion
single bions multi bions

no Im ambiguity unlike SG

exact agreement with real and complex bion contributions!



Exact ground state energy in CP|

1) 2 m_ (1) (1)
EW =g —mcoth — = F o + B

q bion
* Perturbative part
Eélelt = —m + 92 finite order unlike SG

exact agreement with the perturbative calculation

* Saddle-point part
B = —QmZG_Qg_? — 9me” # + O(e_i_?)
k=1

bion
multi bions

l

can be exactly obtained from multi-bion quasi-moduli integral
will be announced in a forthcoming paper




Complete Resurgence Structure

- Exact result as expansion of O€

- -
E = oe¢ 92—771(:0‘th—2
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Richer resurgence (cancellation) structure including multi-bion
saddle contributions: See our forthcoming paper




Summary

| Non-perturbative contribution from real and complex
bion solutions in CPN quantum mechanics

2 SUSY exact results are reproduced

3 Near SUSY result is exactly reproduced from perturbative
and saddle-point contributions.

fForthcoming paper contains \

- Perturbative results based on Bender-Wu recursion relation

- A humber of exact Multi-bion solutions

K.RiCh and full resurgence structure at O€”2 order j




What we can do further

 Upgrade the solutions to 2D CPN sigma model

* Other exactly solvable models (near-SUSY, QES)

cf.) Kozcaz, Sulejmanpasic, Tanizaki, Unsal (16)

e Extension to Multi-variable QM



