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Instantons play a role in many physical problems. 
In QFT, whenever semiclassics “works”,

N=1 SUSY theories: nonperturbative superpotentials. 
N=2 SUSY theories: Seiberg-Witten curves. 
Phenomenological models of chiral symmetry breaking in QCD.

… see talks by Cherman, Schaefer

Mass gap, confinement & center stability:

 QCD(adj)/SYM & deformed Yang-Mills theory on R    xS  , at small L1,2 1
L

already at weak coupling, a major difficulty: 
“How to define & calculate multi-instanton contributions?”

key to understanding important physics, e.g.:

Motivation:

…



already at weak coupling, a major difficulty: 
“How to define & calculate multi-instanton contributions?”
Not merely a question of calculating exponentially suppressed effects. 
Instanton—anti-instanton (I-I*), for example, contributions have been 
found to give the leading effect in many cases. 
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“neutral bions” are particularly bizarre: they are MM* “molecules”

(neutral bions are responsible for  
center stability and also  cancel 
magnetic bion vacuum energy in 
SYM)
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neutral bions

magnetic bions

neutral bions
magnetic bionsMM* in some sense 

 “classical” (live in Euclidean) 
 - no time and no quantum fluctuations 
 to stabilize, not, e.g. positronium!

Turns out, the MM* amplitude makes sense. 
Despite the attractive-only interactions,
a “stable molecule” exists! We know from:

“neutral bions” are particularly bizarre: they are MM* “molecules”

1. supersymmetry, exact W -> V=|W’|^2

2. analytic continuation:
   MM* “live” at complex separation
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1. supersymmetry, exact W -> V=|W’|^2
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MM* objects is <0, ensuring E_vac = 0. 
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Turns out, the MM* amplitude makes sense. 
Despite the attractive-only interactions,
a “stable molecule” exists! We know from:

“neutral bions” are particularly bizarre: they are MM* “molecules”

1. supersymmetry, exact W -> V=|W’|^2

Even more bizzare, the “fugacity” of the 
MM* objects is <0, ensuring E_vac = 0. 

Complexification crucial. Hypothesis that MM* lie on a different “Lefshetz thimble” from the 
perturbative vacuum - distinguished by a phase (“HTA”)…?

In semiclassics, any “lump” of 
positive fugacity lowers
vacuum energy (e.g. double 
well). In SYM, there are “lumps”
of both positive and negative 
fugacity, with equal and
opposite contributions to E_vac.

Motivation:

2. analytic continuation:
   MM* “live” at complex separation

(neutral bions are responsible for  
center stability and also  cancel 
magnetic bion vacuum energy in 
SYM)
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already at weak coupling, a major difficulty: 
“How to define & calculate multi-instanton contributions?”

Instanton—anti-instanton (I-I*), for example, contributions have been 
found to give the leading effect in many cases. 
Ex. 1: SYM, mass gap….
Ex. 2: “Resurgent” cancellations: imaginary parts due to Borel 
resummation of perturbation theory vs imaginary parts of I-I* 

high orders of perturbation theory 
double-well QM, non Borel-summable:

II* contribution: 
requires analytic continuation 

 Bogomolnyi, Zinn-Justin

ambiguity of Borel sum of pert. series:

Not merely a question of calculating exponentially suppressed effects. 

Motivation:
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Complexification seems crucial. Hypothesis/dream/ is that MM* lie on a 
different “Lefshetz thimble” from the perturbative vacuum and are distinguished 
from it by a phase associated with the thimble… “like” in 1dim integrals:

space interpretation. But the end-points of this unphysical region, ✓ = 0 and ✓ = ⇡,

correspond to V+(x) and V�(x), which are physical theories. However, in the cases

studied in this work, the two potentials are related either by parity (mirror images

of one another) or a simple shift, and the path integral representation and the set of

non-perturbative saddle points associated with them are identical.

Turning on ✓ gives the analytic continuation of the bounce into a complex saddle.

These complex saddles are plotted in Fig. 14 and Fig. 23. The continuation to ✓ = ⇡

results in complex smooth saddles for the tilted DW case and complex singular saddle

for the double-SG example. One interesting aspect of the analytic continuation for the

DW system is that one can show that the monodromies associated with the solutions

are non-trivial. In fact, as p changes its phase by 2⇡, the potential V+(x) turns back

to itself, but the two complex bion solutions are interchanged. Thus, the solutions has

a monodromy of order 2, reflecting the two-fold ambiguity in the choice of the exact

solutions.

1.4 What is surprising (and what is not)?

The necessity of complexification is not surprising from the point of view of the steepest

descent method for ordinary integration. Since the path integral is a particular form

of infinitely many ordinary integrals, complexification is in fact a natural step. What

is interesting and surprising is the important new e↵ects that appear in functional

integrals.

As is well known, complexification is both a necessary and su�cient step to capture

a complete steepest descent cycle decomposition for ordinary integration. Let f(x) be

a real function, and consider an exponential type integral I(~) =
R1
�1 dx e�

1

~f(x) which

exists for ~ > 0. (We will also consider the continuation ~ ! ~ei✓.) To tackle the

integration via the steepest descent method, the first step is to complexify:

(f(x),R) �! (f(z),� 2 C) . (1.14)

Since C has twice the real dimension of R the integration is restricted to a certain

middle-dimensional cycle � in C. The standard procedure is:

I(~) =
Z 1

�1
dx e�

1

~f(x) �!
|{z}

steepest descent method

X

�

n�

Z

J�

dz e�
1

~f(z) , (1.15)

where J� is the steepest descent cycle attached to the critical point z� of f(z), i.e.,

f 0(z�) = 0 and the interval
R

[�1,1]
=

P

� n�

R

J�
=

R

�
is a sum over the homology cycle

decomposition of the pair (f(z),C) despite the fact that the original integration is over

– 12 –

I will show a “simple,” yet not completely trivial, example supporting the need 
of complexification, in N=2 SUSY QM. 

Motivation:

The choice of this example is motivated by QFT: Seiberg-Witten theory on 
R^3xS^1. In 2011 work with Unsal, we asked “Why don’t I-I* molecules on the 
compact (nonzero holonomy) Coulomb branch of the theory contribute a 
potential?”

… see talks by Tanizaki, Dunne, Basar

Now, in a supersymmetric theory, every kid knows the answer: potential has to 
come from W - which is forbidden by N=2 SUSY - or too many zero modes. 
Nonetheless, without invoking SUSY machinery, we are still not sure of the 
answer - see end of talk. 

The goal of the work I will present is to examine the same question in the simpler 
context of N=2 SUSY QM, hoping that lessons will be useful… - see end of talk.



Subject of talk:

N=2 SUSY QM = 4d WZ model reduced to 2d

of hidden topological angle phase di↵erence between the two distinct thimbles.

This paper is organized as follows. The reader interested in the main features of the result

will be satisfied with reading Section 2 only. There, we present the model and sketch the can-

cellation of the instanton–anti-instanton contribution to the vacuum energy described above,

stressing the importance of integration over Lefshetz thimbles. Section 3 gives significantly

more detail on the derivation of the main result. We conclude in Section 4.

2 Basics of N = 2 supersymmetric quantum mechanics

We consider N = 2 supersymmetric (SUSY) quantum mechanics (QM). It is obtained by di-

mensional reduction of the 4D Wess-Zumino model of a single chiral superfield z and arbitrary

superpotential W (z) down to quantum mechanics. The Euclidean Lagrangian is

gLE = |ż(t)|2 + |W 0(z)|2 +
⇣
�̄1 �2

⌘ 
�@t +

 
0 W 00(z)

W 00(z) 0

!! 
�1

�̄2

!
, (2.1)

where

z(t) = x(t) + iy(t) (2.2)

is the complex coordinate of the particle and �1,2(t), �̄1,2(t) are Grassmann-valued coordinates

of the particle.1 Further below, we specialize to the case of the double-well potential with

k = 2, and W (z) = 1
3z

3 � za2, taking a real without loss of generality. The frequency around

the minima of the bosonic potential, z± = ±a, is ! = 2a. Upon rescaling, it is seen that

anharmonic terms are multiplied by
p

g of dimension !
3
2 . In this paper, we focus on the

semiclassical limit g ⌧ !3. The action is invariant under the SUSY transformation

�z =
p

2(✏2�1 � ✏1�2) , �z̄ =
p

2(✏̄1�̄2 � ✏̄2�̄1) , (2.3a)

��1 =
p

2(�ż✏̄2 � W 0✏1) , ��̄1 =
p

2( ˙̄z✏2 � W 0✏̄1) , (2.3b)

��2 =
p

2(ż✏̄1 � W 0✏2) , ��̄2 =
p

2(� ˙̄z✏1 � W 0✏̄2) . (2.3c)

The critical points of the superpotential, assumed nondegenerate, W 0(zi) = 0, zi, i =

1, . . . k (k = 2 for our cubic W ) are the classical minima of the bosonic potential |W 0(z)|2. It

has been known for a long time that all classical ground states remain quantum-mechanical

ground states [39] (see also Ch. 10 in [40]). To quickly review the argument, recall that

the Witten index is invariant under continuous deformations of the potential, in particular

under rescaling of the superpotential W ! �W . Taking first � ! 1, the theory is well ap-

proximated by k distinct SUSY quantum harmonic oscillators. In a harmonic approximation,

quantizing the system on the left and the right well, we obtain

HL,R = |⇧z|2 + (±2a)2|z|2 + (±2a)(a†1a
†
2 + a1a2) , (2.4)

1As opposed to field theory, the Grassmann fields do not represent separate particles, but instead endow a

2D quantum particle at (x, y) with a spin degree of freedom, which is spin 1
2 ⌦ 1

2 because of N = 2 structure.

– 4 –

where a†i , ai (i = 1, 2) are fermion creation/annihilation operators. The harmonic ground

states on the left well and right well are given by

|L,0ib ⌦ (| ""i + | ##i) , |R,0ib ⌦ (| ""i � | ##i) , (2.5)

both of which are bosonic, and there are no fermionic partners. Fermionic states involving

| "#i, | #"i are excited states. Since in a supersymmetric theory, all positive energy states

are Bose/Fermi paired by supersymmetry, and states can only ascend/descend in Bose/Fermi

pairs, the two bosonic ground states can never be lifted. Thus the Witten index is nonzero

(IW = 2) and supersymmetry is unbroken. Further, none of the classical ground states can

be lifted by perturbative or nonperturbative (instanton or multi-instanton) e↵ects, thus they

all remain true ground states of the full quantum theory.

Di↵erence between N = 1 and N = 2 QM, and a puzzle: Note the sharp contrast

between N = 1 supersymmetry, with real superpotential W (x) and the N = 2 theory with

holomorphic superpotential W (z), e.g.

W (x) =
k+1Y

i=1

(x � xi) vs. W (z) =
k+1Y

i=1

(z � zi) (2.6)

In the N = 1 case, the harmonic zero energy ground states in any two consecutive harmonic

wells are always alternating, if one is bosonic, the other is strictly fermionic. Consequently,

since a Bose-Fermi paired zero energy state can happily move up simultaneously, in N = 1

supersymmetry, lifting happens generically. In the N = 2, this is never the case. All harmonic

grounds states are either fermionic or bosonic, and hence, the zero energy levels can never be

lifted. Consequently, if the number of critical points is k, the Witten index is,

|IW | = k (mod 2) N = 1,

|IW | = k N = 2. (2.7)

The lifting of the harmonic zero energy states cannot happen perturbatively, but may happen

non-perturbatively. In the N = 1 case, this provides the k low-lying states with energies

⇠ e�2S0/g (where S0/g is the instanton action) or zero. Strictly, the energies of low lying levels

arise from a multi-instanton e↵ect, and not an instanton. On the other hand, in the N = 2

case, instantons and multi-instantons seem to do nothing. This is the curious incident that

we would like to understand by semi-classical methods, instead of relying on supersymmetry.

Our hope is to learn something important about the nature of the semi-classical method,

which is more widely applicable than the supersymmetric techniques.

2.1 The curious incident of instantons in N = 2 QM, and the necessity of thim-

bles

Although the non-lifting of the zero energy grounds states in N = 2 QM is well known,

it may at first appear strange to someone not familiar with the constraints of (extended)
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Witten index=number of critical points of W(z)
E_vac=0, as opposed to N=1 SUSY QM

four real supercharges

of hidden topological angle phase di↵erence between the two distinct thimbles.
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will be satisfied with reading Section 2 only. There, we present the model and sketch the can-

cellation of the instanton–anti-instanton contribution to the vacuum energy described above,

stressing the importance of integration over Lefshetz thimbles. Section 3 gives significantly

more detail on the derivation of the main result. We conclude in Section 4.
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2 + a1a2) , (2.4)
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x

ypotential |W’|^2: plot for a=1

here, ground states all bosonic (ITEP) or all fermionic (IPMU) 
number of SUSY ground states = number of critical points
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2 Basics of N = 2 supersymmetric quantum mechanics

We consider N = 2 supersymmetric (SUSY) quantum mechanics (QM). It is obtained by di-

mensional reduction of the 4D Wess-Zumino model of a single chiral superfield z and arbitrary

superpotential W (z) down to quantum mechanics. The Euclidean Lagrangian is

gLE = |ż(t)|2 + |W 0(z)|2 +
⇣
�̄1 �2

⌘ 
�@t +

 
0 W 00(z)

W 00(z) 0

!! 
�1

�̄2

!
, (2.1)

where

z(t) = x(t) + iy(t) (2.2)

is the complex coordinate of the particle and �1,2(t), �̄1,2(t) are Grassmann-valued coordinates

of the particle.1 Further below, we specialize to the case of the double-well potential with

k = 2, and W (z) = 1
3z

3 � za2, taking a real without loss of generality. The frequency around

the minima of the bosonic potential, z± = ±a, is ! = 2a. Upon rescaling, it is seen that

anharmonic terms are multiplied by
p

g of dimension !
3
2 . In this paper, we focus on the

semiclassical limit g ⌧ !3. The action is invariant under the SUSY transformation

�z =
p

2(✏2�1 � ✏1�2) , �z̄ =
p

2(✏̄1�̄2 � ✏̄2�̄1) , (2.3a)

��1 =
p

2(�ż✏̄2 � W 0✏1) , ��̄1 =
p

2( ˙̄z✏2 � W 0✏̄1) , (2.3b)

��2 =
p

2(ż✏̄1 � W 0✏2) , ��̄2 =
p

2(� ˙̄z✏1 � W 0✏̄2) . (2.3c)

The critical points of the superpotential, assumed nondegenerate, W 0(zi) = 0, zi, i =

1, . . . k (k = 2 for our cubic W ) are the classical minima of the bosonic potential |W 0(z)|2. It

has been known for a long time that all classical ground states remain quantum-mechanical

ground states [39] (see also Ch. 10 in [40]). To quickly review the argument, recall that

the Witten index is invariant under continuous deformations of the potential, in particular

under rescaling of the superpotential W ! �W . Taking first � ! 1, the theory is well ap-

proximated by k distinct SUSY quantum harmonic oscillators. In a harmonic approximation,

quantizing the system on the left and the right well, we obtain

HL,R = |⇧z|2 + (±2a)2|z|2 + (±2a)(a†1a
†
2 + a1a2) , (2.4)

1As opposed to field theory, the Grassmann fields do not represent separate particles, but instead endow a

2D quantum particle at (x, y) with a spin degree of freedom, which is spin 1
2 ⌦ 1

2 because of N = 2 structure.
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where a†i , ai (i = 1, 2) are fermion creation/annihilation operators. The harmonic ground

states on the left well and right well are given by

|L,0ib ⌦ (| ""i + | ##i) , |R,0ib ⌦ (| ""i � | ##i) , (2.5)

both of which are bosonic, and there are no fermionic partners. Fermionic states involving

| "#i, | #"i are excited states. Since in a supersymmetric theory, all positive energy states

are Bose/Fermi paired by supersymmetry, and states can only ascend/descend in Bose/Fermi

pairs, the two bosonic ground states can never be lifted. Thus the Witten index is nonzero

(IW = 2) and supersymmetry is unbroken. Further, none of the classical ground states can

be lifted by perturbative or nonperturbative (instanton or multi-instanton) e↵ects, thus they

all remain true ground states of the full quantum theory.

Di↵erence between N = 1 and N = 2 QM, and a puzzle: Note the sharp contrast

between N = 1 supersymmetry, with real superpotential W (x) and the N = 2 theory with

holomorphic superpotential W (z), e.g.

W (x) =
k+1Y

i=1

(x � xi) vs. W (z) =
k+1Y

i=1

(z � zi) (2.6)

In the N = 1 case, the harmonic zero energy ground states in any two consecutive harmonic

wells are always alternating, if one is bosonic, the other is strictly fermionic. Consequently,

since a Bose-Fermi paired zero energy state can happily move up simultaneously, in N = 1

supersymmetry, lifting happens generically. In the N = 2, this is never the case. All harmonic

grounds states are either fermionic or bosonic, and hence, the zero energy levels can never be

lifted. Consequently, if the number of critical points is k, the Witten index is,

|IW | = k (mod 2) N = 1,

|IW | = k N = 2. (2.7)

The lifting of the harmonic zero energy states cannot happen perturbatively, but may happen

non-perturbatively. In the N = 1 case, this provides the k low-lying states with energies

⇠ e�2S0/g (where S0/g is the instanton action) or zero. Strictly, the energies of low lying levels

arise from a multi-instanton e↵ect, and not an instanton. On the other hand, in the N = 2

case, instantons and multi-instantons seem to do nothing. This is the curious incident that

we would like to understand by semi-classical methods, instead of relying on supersymmetry.

Our hope is to learn something important about the nature of the semi-classical method,

which is more widely applicable than the supersymmetric techniques.

2.1 The curious incident of instantons in N = 2 QM, and the necessity of thim-

bles

Although the non-lifting of the zero energy grounds states in N = 2 QM is well known,

it may at first appear strange to someone not familiar with the constraints of (extended)
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Witten index=number of critical points of W(z)
E_vac=0, as opposed to N=1 SUSY QM

x

y plot for a=1

here, ground states all bosonic (ITEP) or all fermionic (IPMU) 
number of SUSY ground states = number of critical points

BPS (anti)instantonsThe BPS equations which give an (anti-)instanton solution are

ż = ±W 0 . (3.3)

This equation is solved by

z = ⌥a tanh(at) . (3.4)

We will call the solution with the upper sign an instanton, and the one with the lower

sign an anti-instanton. The instanton solution breaks half of the supersymmetries (2.3). In

particular, an instanton background is invariant under SUSY with parameters ✏̄1 = ✏2, ✏̄2 =

�✏1, but under the remaining SUSY transformations with ✏ = ✏̄1 = �✏2 and ✏̃ = ✏̄2 = ✏1, the

fermionic fields become

��1 = �2
p

2ż✏̃ , ��̄1 = �2
p

2 ˙̄z✏ , (3.5)

��2 = 2
p

2ż✏ , ��̄2 = �2
p

2 ˙̄z✏̃ . (3.6)

The fermions depending on ✏ and ✏̃ can be, respectively, combined into two-component spinors,

omitting the Grassmann factors of ✏, ✏̃:

⇠ = N

 
ż

� ˙̄z

!
, ⇠̄ = N

 
ż
˙̄z

!
. (3.7)

where we introduced a normalization factor N (it is easily seen that N2 = 3/(8a3) for unit-

normalized fermions). The fermions ⇠ and ⇠̄ are respective zeromodes of the Weyl operator

D and its hermitean conjugate

D = @t +

 
0 W 00(z)

W 00(z) 0

!
, D† = �@t +

 
0 W 00(z)

W 00(z) 0

!
. (3.8)

Thus, an instanton always has two zeromodes of opposite chirality (in accordance with the

index theorem, dimKerDD† � dimKerD†D = 0 for any background). This has important

consequences in what follows, allowing zero modes to get lifted by perturbative e↵ects.

3.1 Strategy and guide to calculation

In this section we will calculate the two contributions to the instanton–anti-instanton ampli-

tude [IĪ]. The two contributions that need to be calculated are

• The fermion correlated amplitude [IĪ]F (Top of Fig. 1),

• The Yukawa-scalar-exchange correlated amplitude [IĪ]Y (Bottom of Fig. 1).

The most important part of [IĪ]F amplitude calculation is that the instanton fermion

zeromode is lifted by the presence of the anti–instanton. We therefore must carefully compute

the lowest mode of the fermion operator in the instanton–anti-instanton background. The

way we do this is by applying the standard degenerate perturbation theory. In short the
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gLE = |ż(t)|2 + |W 0(z)|2 +
⇣
�̄1 �2

⌘ 
�@t +

 
0 W 00(z)

W 00(z) 0

!! 
�1

�̄2

!
, (2.1)

where

z(t) = x(t) + iy(t) (2.2)

is the complex coordinate of the particle and �1,2(t), �̄1,2(t) are Grassmann-valued coordinates

of the particle.1 Further below, we specialize to the case of the double-well potential with

k = 2, and W (z) = 1
3z

3 � za2, taking a real without loss of generality. The frequency around

the minima of the bosonic potential, z± = ±a, is ! = 2a. Upon rescaling, it is seen that

anharmonic terms are multiplied by
p

g of dimension !
3
2 . In this paper, we focus on the

semiclassical limit g ⌧ !3. The action is invariant under the SUSY transformation

�z =
p

2(✏2�1 � ✏1�2) , �z̄ =
p

2(✏̄1�̄2 � ✏̄2�̄1) , (2.3a)

��1 =
p
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supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner
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supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner
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How can this ever make sense? [the index - or Witten - “can’t lie”!?]. Some hints:

- a difference between N=1 and N=2 is the presence of extra scalars
- the Pfaffian became a Det in the x-only background, with y-background ignored



supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner
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y-

Yukawa squared =

The Weyl operator is D = DI + 2y(t)⌧2, where DI = @t + 2x1(t)⌧1 is the Weyl operator

in the instanton background. In the same way as before, we compute the lowest Dirac

eigenvalue by computing the matrix element of the Dirac operator (taken in the instanton

plus y-fluctuation background) in the zero mode basis

" = �i

Z
dt  

T
1 /D 1 = �i2

Z
dt ⇠̄ T y⌧2⇠ = 4N2

Z
dt ẋ1(t)

2 y(t) =
3a

2

Z
dt

y(t)

cosh4(at)
,

(3.20)

where  1 are unit-normalized four-component spinors (3.12) composed of the ⇠, ⇠̄ zero modes

from (3.7) (the value of N is given there) and x1(t) is the instanton solution (3.4). In other

words, we find that an instanton at position t1 couples to the background y-field as

[I]y =
3a

2

Z
dt

y(t)

cosh4(a(t � t1))
e�S0dµI . (3.21)

One can interpret this result as follows: Formally, the fermion zero mode structure of an

instanton is ⇠ e�S0�1�2(t1)dµI and the Yukawa term in the action is
R

dt�̄1�̄2y. The instan-

ton amplitude is thus modified into (3.21) where the kernel is the square of the zero mode

wave-function. Note that the support of the kernel is a|t � t1| . 1, and thus, the modified

instanton amplitude is roughly [I]y ⇠ y(t1)e�S0dµI , where fermion zeromodes are converted

into a scalar. However, we will need the exact kernel and expressions in order to show our

main results. Repeating the same for the anti-instanton, we find the same coupling of y(t)

to an anti-instanton at t2. Because the average hy(t)i = 0, the single-instanton events do not

contribute to the ground state energy.

On the other hand, the I-Ī scalar-correlated event may and does contribute to the ground

state energy. The contribution is

[IĪ]Y =
9a2

4

Z
dt

Z
dt0

hy(t)y(t0)i
cosh4(a(t � t1)) cosh4(a(t0 � t2))

e�2S0�SintdµIdµĪ , (3.22)

where hy(t)y(t0)i is the scalar propagator in the I-Ī background. The other factors in (3.22)—

measure, nonzero mode determinants, action—are the same as in the [IĪ]F fermion-correlated

event whose contribution is given in (3.17). Notice that (3.22) can be equivalently viewed

as due to two Yukawa-coupling insertions, taken in the I/Ī zeromode basis, and a scalar

propagator from I to Ī—as pictorially shown in the bottom diagram of Fig. 1.

y-propagator in the I-Ī background: What remains is to find the y-propagator in the

I-Ī background and compute the integral in (3.22). To begin, note that to quadratic order

in y, we have the action in the I-Ī background x(t) of (3.9)

Sy =
1

g

Z
dt y(�@2

t + (2x2 + 2a2))y , (3.23)

so that ⌦
y(t)y(t0)

↵
=

g

2

1

�@2
t + (2x2 + 2a2)

=
g

2
G(t, t0; t1, t2) , (3.24)

– 13 –

classical I-I*  
attraction, as before

Main part of talk:

1

Problem Set 1 for PHY350

�
1

W 00�
2

= �
1

(x(t) + iy(t))�
2

⌧

144 e�4⌧ e
32
g e

�2⌧ Y

n 6=0

!
n

x(t, ⌧) = x
I

(t) + x
I⇤(t� ⌧) + 1

x
I

= � tanh t

x
I

⇤
= tanh t

H
L,R

= |⇧
z

|2 + (2)

2|z|2 + (±2)(a†
1

a†
2

+ a
1

a
2

)

E
I

¯

I

=

1

⇡g

⇣
⌥i⇡ + log

g

2

⌘
e�

1
3g

�E
Borelsum

= � 3

⇡

✓
⌥ i⇡

3g

◆
e�

1
3g

E
pert

= � 3

⇡

1X

k=0

(3g)kk!

˜L = aN ⇠ N

⇤⌘2

˜LL ⇠ NL

⇤⌘2
=

1

⇤

2⌘
⇠ 1

T
1

⇠ ↵0

M ⇠ ⇤

2⌘

m
W

= ⇤⌘2

ei~↵
⇤
k·~� ! e

2⇡i
N ei~↵

⇤
k·~�

1

Problem Set 1 for PHY350

3

2

Z
dt

y(t)

cosh

4

(t� t
1

)

�
1

W 00�
2

= �
1

(x(t) + iy(t))�
2

⌧

144 e�4⌧ e
32
g e

�2⌧ Y

n 6=0

!
n

x(t, ⌧) = x
I

(t) + x
I⇤(t� ⌧) + 1

x
I

= � tanh t

x
I

⇤
= tanh t

H
L,R

= |⇧
z

|2 + (2)

2|z|2 + (±2)(a†
1

a†
2

+ a
1

a
2

)

E
I

¯

I

=

1

⇡g

⇣
⌥i⇡ + log

g

2

⌘
e�

1
3g

�E
Borelsum

= � 3

⇡

✓
⌥ i⇡

3g

◆
e�

1
3g

E
pert

= � 3

⇡

1X

k=0

(3g)kk!

˜L = aN ⇠ N

⇤⌘2

˜LL ⇠ NL

⇤⌘2
=

1

⇤

2⌘
⇠ 1

T
1

⇠ ↵0

M ⇠ ⇤

2⌘

m
W

= ⇤⌘2

the zero eigenvalue of an I at t_1 lifted to  
Yukawa x square of zero mode wave-function:

1

Problem Set 1 for PHY350

9

4

Z
dt

Z
dt0

hy(t)y(t0)i
cosh

4

(t) cosh4

(t� ⌧)
e

32
g e

�2⌧ Y

n 6=0

!
n

3

2

Z
dt

y(t)

cosh

4

(t� t
1

)

�
1

W 00�
2

= �
1

(x(t) + iy(t))�
2

⌧

144 e�4⌧ e
32
g e

�2⌧ Y

n 6=0

!
n

x(t, ⌧) = x
I

(t) + x
I⇤(t� ⌧) + 1

x
I

= � tanh t

x
I

⇤
= tanh t

H
L,R

= |⇧
z

|2 + (2)

2|z|2 + (±2)(a†
1

a†
2

+ a
1

a
2

)

E
I

¯

I

=

1

⇡g

⇣
⌥i⇡ + log

g

2

⌘
e�

1
3g

�E
Borelsum

= � 3

⇡

✓
⌥ i⇡

3g

◆
e�

1
3g

E
pert

= � 3

⇡

1X

k=0

(3g)kk!

˜L = aN ⇠ N

⇤⌘2

˜LL ⇠ NL

⇤⌘2
=

1

⇤

2⌘
⇠ 1

T
1

⇠ ↵0

propagator in I-I*!

propagator in I-I* is the technically most challenging part of this calculation - not 
exactly known, only an ~ expression to accuracy                             :
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where G(t, t0; t1, t2) denotes the propagator in the I-Ī background.

The exact computation of G(t, t0; t1, t2) is di�cult, but for well-separated I and Ī it can

be approximated to su�cient accuracy by knowing the exact propagator in a single-instanton

background. For a single instanton located at t0, the y-propagator is

GI(t, t
0, t0) = � 1

12a
e�2a|t�t0|(2 sign(t � t0) + tanh(a(t � t0))(�2 sign(t � t0) + tanh(a(t0 � t0))

⌘ g(t, t0, t0) G0(t � t0) , (3.25)

where we introduced the functions

g(t, t0; t0) = �1

3

�
2 sign(t � t0) + tanh[a(t � t0)]

 
(3.26)

⇥ ��2 sign(t � t0) + tanh[a(t0 � t0)]
 

,

G0 =
1

4a
e�2a|t�t0| . (3.27)

This expression can be derived in many ways; an easy check is to verify that it obeys the

appropriate equation with a delta-function source.

Notice that the y-propagator in an I background GI is always proportional to G0, the free

propagator of the y-field (the same in either vacuum) and that for fixed sign(t�t0) the function

g is approximately constant except for t or t0 near the instanton. Thus, a characteristic feature

of GI is that it exhibits integer jumps (in units of G0) whenever either t or t0 cross t0. When

the points t and t0 are on the right of the instanton, and su�ciently far, indeed, as expected

on intuitive grounds, the y-propagator is just free propagator. On the other hand, when the

points t � t0 and t0 ⇡ t0, the y-propagator is twice free propagator. Finally, if t � t0 and

t0 ⌧ t0, the y-propagator is enhanced by a factor of three with respect to the free propagator.

This e↵ect, we believe, is tied up with the space being one dimensional, where the instanton

eases the propagation of y-fluctuations compared to the vacuum y-fluctuations.

These features can be used to argue that for a well-separated I-Ī background, the y-

propagator is approximated with su�cient accuracy by the product of the free propagator

G0 and the (identical) g-functions for an I and Ī:

G(t, t0; t1, t2) = g(t, t0; t1) g(t, t0; t2) G0(t � t0) . (3.28)

with G0(t � t0) is the free propagator (3.27) and g(t, t; ti) is defined in (3.26). The upshot

is that we now have the desired expression for the y propagator in the |t2 � t1| � 1/a I-Ī

background (corrections to (3.28, 3.29) can be seen to be of order e�4a|t1�t2|, beyond our

intended accuracy):

⌦
y(t)y(t0)

↵
=

g

8a
e�2a|t�t0| g(t, t0; t1) g(t, t0; t2) , (3.29)

Therefore, (3.22) becomes

[IĪ]Y =
9ag

4 ⇥ 8

Z
dt

Z
dt0

e�2a|t�t0|g(t, t0; t1)g(t, t0; t2)

cosh4(a(t � t1)) cosh4(a(t0 � t2))
e�2S0�SintdµIdµĪ . (3.30)
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The exact computation of G(t, t0; t1, t2) is di�cult, but for well-separated I and Ī it can
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where g(…) is (part of) the propagator in single-I
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supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner
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4!3

g e�!⌧ �
4!3e�2!⌧ + ge�!⌧

� ⌘ �e�2S0

Z
d⌧ (e�V1(⌧) + e�V2(⌧)) . (2.8)
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y-

Yukawa squared =

The Weyl operator is D = DI + 2y(t)⌧2, where DI = @t + 2x1(t)⌧1 is the Weyl operator

in the instanton background. In the same way as before, we compute the lowest Dirac

eigenvalue by computing the matrix element of the Dirac operator (taken in the instanton

plus y-fluctuation background) in the zero mode basis

" = �i

Z
dt  

T
1 /D 1 = �i2

Z
dt ⇠̄ T y⌧2⇠ = 4N2

Z
dt ẋ1(t)

2 y(t) =
3a

2

Z
dt

y(t)

cosh4(at)
,

(3.20)

where  1 are unit-normalized four-component spinors (3.12) composed of the ⇠, ⇠̄ zero modes

from (3.7) (the value of N is given there) and x1(t) is the instanton solution (3.4). In other

words, we find that an instanton at position t1 couples to the background y-field as

[I]y =
3a

2

Z
dt

y(t)

cosh4(a(t � t1))
e�S0dµI . (3.21)

One can interpret this result as follows: Formally, the fermion zero mode structure of an

instanton is ⇠ e�S0�1�2(t1)dµI and the Yukawa term in the action is
R

dt�̄1�̄2y. The instan-

ton amplitude is thus modified into (3.21) where the kernel is the square of the zero mode

wave-function. Note that the support of the kernel is a|t � t1| . 1, and thus, the modified

instanton amplitude is roughly [I]y ⇠ y(t1)e�S0dµI , where fermion zeromodes are converted

into a scalar. However, we will need the exact kernel and expressions in order to show our

main results. Repeating the same for the anti-instanton, we find the same coupling of y(t)

to an anti-instanton at t2. Because the average hy(t)i = 0, the single-instanton events do not

contribute to the ground state energy.

On the other hand, the I-Ī scalar-correlated event may and does contribute to the ground

state energy. The contribution is

[IĪ]Y =
9a2

4

Z
dt

Z
dt0

hy(t)y(t0)i
cosh4(a(t � t1)) cosh4(a(t0 � t2))

e�2S0�SintdµIdµĪ , (3.22)

where hy(t)y(t0)i is the scalar propagator in the I-Ī background. The other factors in (3.22)—

measure, nonzero mode determinants, action—are the same as in the [IĪ]F fermion-correlated

event whose contribution is given in (3.17). Notice that (3.22) can be equivalently viewed

as due to two Yukawa-coupling insertions, taken in the I/Ī zeromode basis, and a scalar

propagator from I to Ī—as pictorially shown in the bottom diagram of Fig. 1.

y-propagator in the I-Ī background: What remains is to find the y-propagator in the

I-Ī background and compute the integral in (3.22). To begin, note that to quadratic order

in y, we have the action in the I-Ī background x(t) of (3.9)

Sy =
1

g

Z
dt y(�@2

t + (2x2 + 2a2))y , (3.23)

so that ⌦
y(t)y(t0)

↵
=

g

2

1

�@2
t + (2x2 + 2a2)

=
g

2
G(t, t0; t1, t2) , (3.24)
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classical I-I*  
attraction, as before
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scalar exchange fermion exchange (from two slides ago)

After dust settles, left with (up to common tau-independent factors) two positive contributions to Z:

If exponentiated, we’d still have E_vac < 0, not having solved our problem…?
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supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner
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integrate each contribution on 
steepest descent paths in the 
tau-plane (=one-dimensional 
projection of Lefshetz thimbles 
path integral?)

valid at asymptotically large     only
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(by contour integration - in, I think, a rather unusual and intricate manner)
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Main part of talk:

supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner
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Understand E_vac = 0 from plain next-order semiclassics
… no localization, no deformation invariance…

Upshot: 

Goal: 

It’s not completely trivial. 

Reminder:
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Results: we have shown this vanishing to next to leading semiclassics: order e^(- 2 S_inst)
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Main part of talk/summary:

Understand E_vac = 0 from plain next-order semiclassics
… no localization, no deformation invariance…

Upshot: 

Goal: 

It’s not completely trivial.  

Complexifying the quasi-zeromode was crucial 

I and I* seem to “live” a complex & large (i.e. consistent semiclassically) separation apart

Extra-scalar exchange; interplay between higher orders in g and saddle point integral.

None of the luxury of N=1 SUSY QM: no local effective fermion-less theory where I-I* 
’molecule’ is an exact saddle (in that way ‘closer’ to QFT?)

Salient points:

-

-

-

-



Main part of talk/discussion:

Understand E_vac = 0 from plain next-order semiclassics
… no localization, no deformation invariance…

Upshot: 

Goal: 

It’s not completely trivial.  

A vs Yung’s point of view- I am putting words in his mouth, taken from his N=1 4d SQCD work:
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our integrand is, in fact, a double total derivative!

if integrated over the naive 0->infinity contour on real axis, would give 0 at infinity; at the origin, 
advocate “picture” that at tau=0 I+I* is = perturbative contribution, set to zero by SUSY  
- cf. Yung’s derivation of superpotential in SQCD

in contrast, in the thimble case, the main contribution comes from a region near saddle point, 
where semiclassical calculation is believable

Compare other points of view:



Understand E_vac = 0 from plain next-order semiclassics
… no localization, no deformation invariance…

Upshot: 

Goal: 

It’s not completely trivial.  

in the thimble calculation no such issue arises…

B vs “BZJ prescription”:

• The vacuum energy vanishes after integration over the appropriate Lefschetz thimbles,

J1 + J2, (see Fig.2), by the reasoning explained in Section 2.1. There is a relative

phase, a counterpart of the hidden topological angle (HTA), between the J1 and J2

contribution.

• This provides concrete evidence, along with Ref. [26–28], that the proper framework

to study multi-instanton amplitudes is the integration over the Lefschetz thimbles. We

believe that this results is universal and applies to general QFTs.

Notice that (3.37) combines into a double total derivative

[IĪ] = e�2S0
9g2
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The appearance of a total derivative at large I-Ī separation is a consequence of SUSY and

has been observed long ago by Yung in 4D N = 1 SQCD [42]. Taking (3.38) literally and

assuming its validity at all separations ⌧ 2 (0, +1), i.e. along the entire “streamline” [43], one

could argue that the integral over ⌧ of (3.38) has a piece at ⌧ ! +1 which clearly vanishes,

and a piece at ⌧ = 0, which is assumed to vanish, as an I and Ī on top of each other are

taken to represent the (zero) perturbative vacuum contribution in a SUSY theory.6

What is remarkable is that the same result is obtained without any use of the supersym-

metry constraint and without any assumptions about the streamline. The method presented

here is applicable to any system regardless of the supersymmetries. We stress that, as op-

posed to the streamline, on the Lefschetz thimble the separation ⌧ between I and Ī is never

zero. As a result, the field configurations one integrates over are always distinct from the

perturbative vacuum. The saddle-point value (2.12) of ⌧ , of order 1
! log !3

g , gives the size of

the I-Ī molecule. Thus, in the semiclassical g ⌧ !3 limit the ⌧ � 1/! approximation used

throughout our derivation is valid.7
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integrating over the quasi-zero mode separation, ⌧ 2 R+, we first need to take g ! �g.
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gives the I-Ī-induced potential, usually derived from an exact superpotential, on the moduli space.
7The smallest (by absolute value) separation between I and Ī along the thimble is ⌧min = i⇡

! . Strictly

speaking, the use of the well-separated I-Ī configuration at such values of the separation is not justified.

However, it is easy to see from (3.37) that the contribution to the integral from this small-|⌧ | region is

exponentially suppressed w.r.t. the e
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integrate over with ; then 

follow BZJ word for word, we obtain an exponentially small result at small (negative) g

- BZJ throw it out *before* continuing back (without discussion… generic there)

if we don’t, we are left with - exp. large & in conflict with SUSY…

Main part of talk/discussion:

Compare other points of view:
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Understand E_vac = 0 from plain next-order semiclassics
… no localization, no deformation invariance…

Upshot: 

Goal: 

It’s not completely trivial.  

 still, have we “really understood” it all? 

in the thimble calculation no such issue arises…

B vs “BZJ prescription”:

• The vacuum energy vanishes after integration over the appropriate Lefschetz thimbles,

J1 + J2, (see Fig.2), by the reasoning explained in Section 2.1. There is a relative

phase, a counterpart of the hidden topological angle (HTA), between the J1 and J2

contribution.

• This provides concrete evidence, along with Ref. [26–28], that the proper framework

to study multi-instanton amplitudes is the integration over the Lefschetz thimbles. We

believe that this results is universal and applies to general QFTs.

Notice that (3.37) combines into a double total derivative
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The appearance of a total derivative at large I-Ī separation is a consequence of SUSY and

has been observed long ago by Yung in 4D N = 1 SQCD [42]. Taking (3.38) literally and

assuming its validity at all separations ⌧ 2 (0, +1), i.e. along the entire “streamline” [43], one

could argue that the integral over ⌧ of (3.38) has a piece at ⌧ ! +1 which clearly vanishes,

and a piece at ⌧ = 0, which is assumed to vanish, as an I and Ī on top of each other are

taken to represent the (zero) perturbative vacuum contribution in a SUSY theory.6

What is remarkable is that the same result is obtained without any use of the supersym-

metry constraint and without any assumptions about the streamline. The method presented

here is applicable to any system regardless of the supersymmetries. We stress that, as op-

posed to the streamline, on the Lefschetz thimble the separation ⌧ between I and Ī is never

zero. As a result, the field configurations one integrates over are always distinct from the

perturbative vacuum. The saddle-point value (2.12) of ⌧ , of order 1
! log !3

g , gives the size of

the I-Ī molecule. Thus, in the semiclassical g ⌧ !3 limit the ⌧ � 1/! approximation used

throughout our derivation is valid.7
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scalar-exchange induced and fermi–zeromode exchange induced attractive interactions remain
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continuation back to the physical theory, �g ! ei⇡(�g). In principle, one may think that this

6This is the argument from [42]. The essential di↵erence is that there, because of the minimal amount of

SUSY in 4D, the result is a single total derivative w.r.t. the quasi-zero mode. The contribution at infinity

gives the I-Ī-induced potential, usually derived from an exact superpotential, on the moduli space.
7The smallest (by absolute value) separation between I and Ī along the thimble is ⌧min = i⇡

! . Strictly

speaking, the use of the well-separated I-Ī configuration at such values of the separation is not justified.
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speaking, the use of the well-separated I-Ī configuration at such values of the separation is not justified.

However, it is easy to see from (3.37) that the contribution to the integral from this small-|⌧ | region is

exponentially suppressed w.r.t. the e

�2S0 accuracy of our second-order semiclassical approximation.

– 16 –

• The vacuum energy vanishes after integration over the appropriate Lefschetz thimbles,

J1 + J2, (see Fig.2), by the reasoning explained in Section 2.1. There is a relative

phase, a counterpart of the hidden topological angle (HTA), between the J1 and J2

contribution.

• This provides concrete evidence, along with Ref. [26–28], that the proper framework

to study multi-instanton amplitudes is the integration over the Lefschetz thimbles. We

believe that this results is universal and applies to general QFTs.

Notice that (3.37) combines into a double total derivative
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the I-Ī molecule. Thus, in the semiclassical g ⌧ !3 limit the ⌧ � 1/! approximation used

throughout our derivation is valid.7

3.5 Remark on the BZJ-prescription

Finally, a brief remark on the BZJ-prescription [13, 14] is in order. According to BZJ, before

integrating over the quasi-zero mode separation, ⌧ 2 R+, we first need to take g ! �g.

Doing so, the Sint part in the instanton-anti-instanton interaction becomes repulsive, while

scalar-exchange induced and fermi–zeromode exchange induced attractive interactions remain

unaltered. We can do both integrations there on ⌧ 2 R+. Then, we are supposed to reverse

continuation back to the physical theory, �g ! ei⇡(�g). In principle, one may think that this

6This is the argument from [42]. The essential di↵erence is that there, because of the minimal amount of

SUSY in 4D, the result is a single total derivative w.r.t. the quasi-zero mode. The contribution at infinity
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integrate over with ; then 

follow BZJ word for word, we obtain an exponentially small result at small (negative) g

if we don’t, we are left with - exp. large & in conflict with SUSY…

So, it looks like thimble is the way to go…

Main part of talk/discussion:
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- BZJ throw it out *before* continuing back (without discussion… generic there)



Final comments etc. - 

integrand believable here
but not here

recall we integrated over entire contour -  
which comes close to origin 

perhaps, one can deform contour far enough 
away from the origin (so that unit absolute values 
of tau are never approached) to justify integration 
over entire contour - but the exact vanishing over 
the thimble begs an explanation (why not vanish 
only up to e^(-2S_inst)?) - is it an accident?

if we stop integration here, we get  
~ e^(-12S_inst), well below next e^(-4S_inst) 
order - but order depends sensitively on cutoff

mostly things I, not my collaborators!, 
am confused or don’t know about…

1

2
not unrelated: technology we used is very 1960’s (e.g. Langer’s paper on the condensation point)

the structures lurking probably beg for more… 
                                 otherwise, imagine how one could do higher orders??
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just what is it that you 
think you’re doing?  

J.E. Sipe’s grandmother 

(my grandmother)
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Final comments etc. - mostly things I, not my collaborators!, 
am confused or don’t know about…

Well, my young gentleman, 
just what is it that you 
think you’re doing?  

J.E. Sipe’s grandmother 

(my grandmother)

 experimental “mathematics”? 
 handicraft? кустарничество…?

)(

Well, my young gentleman, what it 
is exactly that you think you are 
doing? 



Final comments etc. - mostly things I, not my collaborators!, 
am confused or don’t know about…

3 what lessons can we draw for QFT - the original motivation, SW theory on R^3 x S^1? 
does the SUSY QM calculation allow itself to be ‘bootstrapped’ to QFT?

1. That  these two contributions are present requires no calculation: 

supersymmetry. Tunnelling events between vacua should be present on general grounds and

are expected to lift the vacuum degeneracy in non-supersymmetric theories by level splitting,

and by simultaneously lifting Bose-fermi paired harmonic minima in N = 1 QM. In both

N = 1 and N = 2, if this lifting is to happen, it cannot be facilitated by a single instanton

due to fermion zeromodes. Thus, the leading-order semiclassical contribution is an instanton–

anti-instanton molecular event, similar to the ones considered long ago [12–14].

In order for the the instanton–anti-instanton molecular event to contribute to the vacuum

energy, the fermion zeromodes have to be lifted. One way this lifting can arise can be thought

of as due the exchange of the fermionic zeromodes, as in the top diagram on Fig. 1. Another

way to lift the fermion zero modes is due to background scalar fluctuations of the y(t) field

(fluctuations of x(t) do not contribute, see Section 3), which couples to the (anti-)instanton

via the Yukawa coupling, as in the bottom diagram on Fig. 1. Naively, the Yukawa vertex

coupling the fermions to the scalar makes this contribution subleading in the small couplingp
g.

instanton anti-instanton

instanton anti-instanton

scalar exchange

fermion exchange

Figure 1. Top: a fermion-correlated IĪ event, contributing the first term in Eq. (2.8). Bottom:
a scalar-correlated IĪ event, contributing the second term in Eq. (2.8). The two contributions are
proportional to di↵erent powers of the perturbative (g ⌧ !3) coupling g. In QM, the diagrams are
intended to schematically represent the lifting of fermion zero modes by the two mechanisms. In
QFT, one can associate the (anti-)instanton vertices with e↵ective ’t Hooft interactions and the lines
connecting them to free (away from the instanton cores) scalar and fermion propagators.

In Section 3, we compute these two contributions and show that the two kinds of corre-

lated events contribute to the ground state energy in a following manner
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4!3e�2!⌧ + ge�!⌧
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2. Estimating scaling with tau also does not require calculation: 

1

Problem Set 1 for PHY350

E
0

(�g) ⇠ �e2Sinst

1Z

0

e�
32
g e

�2⌧

(144e�4⌧ � 9g

2

e�2⌧

) = +

9g

4

e2Sinst� 32
g
= +

9g

4

e�
80
3g

(⌧ = t
1

� t
2

)

E
0

(g) ⇠ �9g

4

e+
80
3g

S
inst

=

8

3g

Z
d⌧e�

32
g e

�2⌧

✓
9g

2

e�2⌧ � 144e�4⌧

◆

9 g2

256

@2

⌧

e
32
g e

�2⌧

=

✓
9

2

ge�2⌧

+ 144 e�4⌧

◆
e

32
g e

�2⌧

9

2

g e�2⌧ e
32
g e

�2⌧

e�2⌧

9

4

Z
dt

Z
dt0

hy(t)y(t0)i
cosh

4

(t) cosh4

(t� ⌧)
e

32
g e

�2⌧ Y

n 6=0

!
n

3

2

Z
dt

y(t)

cosh

4

(t� t
1

)

�
1

W 00�
2

= �
1

(x(t) + iy(t))�
2

⌧

144 e�4⌧ e
32
g e

�2⌧ Y

n 6=0

!
n

1

Problem Set 1 for PHY350

E
0

(�g) ⇠ �e2Sinst

1Z

0

e�
32
g e

�2⌧

(144e�4⌧ � 9g

2

e�2⌧

) = +

9g

4

e2Sinst� 32
g
= +

9g

4

e�
80
3g

(⌧ = t
1

� t
2

)

E
0

(g) ⇠ �9g

4

e+
80
3g

S
inst

=

8

3g

Z
d⌧e�

32
g e

�2⌧

✓
9g

2

e�2⌧ � 144e�4⌧

◆

9 g2

256

@2

⌧

e
32
g e

�2⌧

=

✓
9

2

ge�2⌧

+ 144 e�4⌧

◆
e

32
g e

�2⌧

9

2

g e�2⌧ e
32
g e

�2⌧

e�2⌧

9

4

Z
dt

Z
dt0

hy(t)y(t0)i
cosh

4

(t) cosh4

(t� ⌧)
e

32
g e

�2⌧ Y

n 6=0

!
n

3

2

Z
dt

y(t)

cosh

4

(t� t
1

)

�
1

W 00�
2

= �
1

(x(t) + iy(t))�
2

⌧

144 e�4⌧ e
32
g e

�2⌧ Y

n 6=0

!
n

1

Problem Set 1 for PHY350

E
0

(�g) ⇠ �e2Sinst

1Z

0

e�
32
g e

�2⌧

(144e�4⌧ � 9g

2

e�2⌧

) = +

9g

4

e2Sinst� 32
g
= +

9g

4

e�
80
3g

(⌧ = t
1

� t
2

)

E
0

(g) ⇠ �9g

4

e+
80
3g

S
inst

=

8

3g

Z
d⌧e�

32
g e

�2⌧

✓
9g

2

e�2⌧ � 144e�4⌧

◆

9 g2

256

@2

⌧

e
32
g e

�2⌧

=

✓
9

2

ge�2⌧

+ 144 e�4⌧

◆
e

32
g e

�2⌧

9

2

g e�2⌧ e
32
g e

�2⌧

e�2⌧

9

4

Z
dt

Z
dt0

hy(t)y(t0)i
cosh

4

(t) cosh4

(t� ⌧)
e

32
g e

�2⌧ Y

n 6=0

!
n

3

2

Z
dt

y(t)

cosh

4

(t� t
1

)

�
1

W 00�
2

= �
1

(x(t) + iy(t))�
2

⌧

144 e�4⌧ e
32
g e

�2⌧ Y

n 6=0

!
n

1

Problem Set 1 for PHY350

E
0

(�g) ⇠ �e2Sinst

1Z

0

e�
32
g e

�2⌧

(144e�4⌧ � 9g

2

e�2⌧

) = +

9g

4

e2Sinst� 32
g
= +

9g

4

e�
80
3g

(⌧ = t
1

� t
2

)

E
0

(g) ⇠ �9g

4

e+
80
3g

S
inst

=

8

3g

Z
d⌧e�

32
g e

�2⌧

✓
9g

2

e�2⌧ � 144e�4⌧

◆

9 g2

256

@2

⌧

e
32
g e

�2⌧

=

✓
9

2

ge�2⌧

+ 144 e�4⌧

◆
e

32
g e

�2⌧

9

2

g e�2⌧ e
32
g e

�2⌧

e�2⌧

9

4

Z
dt

Z
dt0

hy(t)y(t0)i
cosh

4

(t) cosh4

(t� ⌧)
e

32
g e

�2⌧ Y

n 6=0

!
n

3

2

Z
dt

y(t)

cosh

4

(t� t
1

)

�
1

W 00�
2

= �
1

(x(t) + iy(t))�
2

⌧

144 e�4⌧ e
32
g e

�2⌧ Y

n 6=0

!
n

fermion exchange: 
two 1d massive particles, mass=2

classical II* attraction

scalar exchange: 
one 1d massive particle

3. The fact that these have a chance of cancelling if done by saddle point is now obvious.
 The hard work is to get the coefficients - which we showed were right on!

To this end, consider first the heuristic argument about role of thimbles in N=2 SUSY QM. 

Natural question: do MM* ‘molecules’ in SW theory  have a similar chance  to cancel?



Final comments etc. - mostly things I, not my collaborators!, 
am confused or don’t know about…

what lessons can we draw for QFT - the original motivation, SW theory on R^3 x S^1? 
does the SUSY QM calculation allow itself to be ‘bootstrapped’ to QFT?

Natural question: do MM* ‘molecules’ in SW theory  have a similar chance  to cancel?

N=1 SYM, first, on R^3 x S^1 (size L, small): magnetic Coulomb+scalar (holonomy) attraction

two massless fermion propagators

all interactions attractive - use SUSY, or BZJ, or HTA — nonzero contribution, physics…

N=2 SYM on the compact Coulomb branch:

HTA = BSSU = Behtash, Schaefer, Sulejmanpasic, Unsal

3

- no classical coupling of M/M* to extra adjoint scalar    
- two more fermion zero modes of M/M* (another adjoint Weyl fermion       )
- Yukawa coupling to adjoint scalar: 
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Final comments etc. - mostly things I, not my collaborators!, 
am confused or don’t know about…

what lessons can we draw for QFT - the original motivation, SW theory on R^3 x S^1? 
does the SUSY QM calculation allow itself to be ‘bootstrapped’ to QFT?

Natural question: do MM* ‘molecules’ in SW theory  have a similar chance  to cancel?
N=2 SYM on the compact Coulomb branch:

3

- no classical coupling of M/M* to extra adjoint scalar    
- two more fermion zero modes of M/M* (another adjoint Weyl fermion       )
- Yukawa coupling to adjoint scalar: 
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Final comments etc. - mostly things I, not my collaborators!, 
am confused or don’t know about…

what lessons can we draw for QFT - the original motivation, SW theory on R^3 x S^1? 
does the SUSY QM calculation allow itself to be ‘bootstrapped’ to QFT?

Natural question: do MM* ‘molecules’ in SW theory  have a similar chance  to cancel?
N=2 SYM on the compact Coulomb branch:

3

- no classical coupling of M/M* to extra adjoint scalar    
- two more fermion zero modes of M/M* (another adjoint Weyl fermion       )
- Yukawa coupling to adjoint scalar: 
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The relative minus sign between the first two terms is encouraging!
But the g^2-power counting suggests that this “calculation” is lacking… WHAT?
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