
 

Light-Front Holography and the 
Uniqueness of the QCD Confinement Potential

Valparaiso, Chile  May 19-20, 2011

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

c

c

c̄

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

uStan Brodsky 

with 
Guy de Tèramond &
Hans Günter Dosch

24-28 September, 2013

          Kavli IPM
The University of Tokyo

Holography and QCD Physics:  
Recent Progress and Challenges



Light-Front Holography and QCD Confinement
 Stan Brodsky IPMU

September 26, 2013

HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c
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Remarkable new insights from AdS/CFT,              
the duality between conformal field theory       
and Anti-de Sitter Space 
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Direct connection to QCD Lagrangian
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• Light Front Wavefunctions:                                   

AdS5:  Conformal Template for QCD
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Duality of AdS5 with LF 
Hamiltonian Theory

• Light-Front Holography

Light-Front Schrödinger Equation
Spectroscopy and Dynamics



 

Light-Front Holography 
AdS/QCD

Soft-Wall  Model
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Confinement scale:   

Light-Front Schrödinger Equation
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Unique 
Confinement Potential!

de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!
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Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has
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Instant Form Front Form 
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Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory
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Invariant under boosts!  Independent of Pμ 

Eigenstate of LF Hamiltonian 
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Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states
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LQCD � HQCD
LF

Hint
LF : Matrix in Fock Space

Physical gauge: A+ = 0

Exact frame-independent formulation of 
nonperturbative QCD!

Hint
LF

LFWFs: Off-shell in P- and invariant mass
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Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
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Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by
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where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Heisenberg Equation

Light-Front QCD DLCQ: Solve QCD(1+1) for 
any  quark mass and flavors

Minkowski space; frame-independent; no fermion doubling; no ghosts
trivial vacuum

Hornbostel, Pauli, sjb



 

DLCQ: Solve QCD(1+1) for any  quark mass and flavors

Hornbostel, Pauli, sjb
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Fixed LF time
Higher Fock States of the Proton

Wavefunction at fixed LF time:  Arbitrarily Off-Shell in Invariant Mass

Eigenstate of LF Hamiltonian : all Fock states contribute
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• Measurements are made at fixed τ

• Causality is automatic

• Structure Functions are squares of LFWFs

• Form Factors are overlap of LFWFs

• LFWFs are frame-independent -- no boosts

• No dependence on observer’s frame

• Dual to AdS/QCD

• LF Vacuum trivial -- no condensates

• Implications for Cosmological Constant

Advantages of the Dirac’s Front Form for Hadron Physics
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Form Factors are 
Overlaps of LFWFs

Interaction 
picture

Drell &Yan, West
Exact LF formula!
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graviton

Vanishing Anomalous gravitomagnetic moment  B(0)

B(0) = 0 Each Fock State

sum over constituents

Hwang, Schmidt, sjb; 
Holstein et al

Terayev, Okun,  et al:  B(0) Must vanish because of 
Equivalence Theorem 



 
zero for q+ = 0

Calculation of Form Factors in  Equal-Time Theory

Instant Form

Calculation of Form Factors in  Light-Front Theory

Front Form

Absent for q+ = 0 zero !!

Need vacuum-induced currents

Exact Answer!
No vacuum graphs
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Charges
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GPDs
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Transverse density in 
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General remarks about orbital angular mo-
mentum
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• Light Front Wavefunctions:                                   

Sivers, T-odd from lensing
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N N

NN

Light-Front Wave Function Overlap Representation

See also: Diehl, Feldmann, Jakob, Kroll
DGLAP

region

DGLAP
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ERBL
region

Diehl, Hwang, sjb,  NPB596, 2001
DVCS/GPD
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Fig. 3. Light-cone time-ordered contributions to deeply virtual Compton scattering. Only the

contributions of leading power in 1/Q are illustrated. These contributions illustrate the factorization

property of the leading twist amplitude.

see Fig. 3. We specify the frame by choosing a convenient parametrization of the light-cone

coordinates for the initial and final proton:

P =
(

P+, !0⊥,
M2

P+

)
, (3)

P ′ =
(

(1− ζ )P+,− !∆⊥,
M2 + !∆2

⊥
(1− ζ )P+

)
, (4)

whereM is the proton mass. We use the component notation V = (V +, !V⊥,V −), and our

metric is specified by V ± = V 0±V z and V 2 = V +V − − !V 2
⊥. The four-momentum transfer

from the target is

∆ = P − P ′ =
(

ζP+, !∆⊥,
t + !∆2

⊥
ζP+

)
, (5)

where t = ∆2. In addition, overall energy–momentum conservation requires ∆− =
P− − P ′−, which connects !∆2

⊥, ζ , and t according to

t = 2P · ∆ = −ζ 2M2 + !∆2
⊥

1− ζ
. (6)

As in the case of space-like form factors, it is convenient to choose a frame where the

incident space-like photon carries q+ = 0 so that q2 = −Q2 = −!q 2⊥:

Nuclear Physics B 596 (2001) 99–124
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Light-cone wavefunction representation of deeply
virtual Compton scattering ✩

Stanley J. Brodsky a, Markus Diehl a,1, Dae Sung Hwang b

a Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA
b Department of Physics, Sejong University, Seoul 143-747, South Korea
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Abstract

We give a complete representation of virtual Compton scattering γ ∗p → γp at large initial photon

virtuality Q2 and small momentum transfer squared t in terms of the light-cone wavefunctions of

the target proton. We verify the identities between the skewed parton distributions H(x, ζ, t) and

E(x, ζ, t) which appear in deeply virtual Compton scattering and the corresponding integrands of

the Dirac and Pauli form factors F1(t) and F2(t) and the gravitational form factors Aq(t) and Bq(t)

for each quark and anti-quark constituent. We illustrate the general formalism for the case of deeply

virtual Compton scattering on the quantum fluctuations of a fermion in quantum electrodynamics at

one loop.  2001 Elsevier Science B.V. All rights reserved.

PACS: 12.20.-m; 12.39.Ki; 13.40.Gp; 13.60.Fz

1. Introduction

Virtual Compton scattering γ ∗p → γp (see Fig. 1) has extraordinary sensitivity to

fundamental features of the proton’s structure. Particular interest has been raised by the

description of this process in the limit of large initial photon virtuality Q2 = −q2 [1–5].

Even though the final state photon is on-shell, one finds that the deeply virtual process

probes the elementary quark structure of the proton near the light-cone as an effective

local current, or in other words, that QCD factorization applies [3,6,7].

In contrast to deep inelastic scattering, which measures only the absorptive part of

the forward virtual Compton amplitude, ImTγ ∗p→γ ∗p , deeply virtual Compton scattering

✩Work partially supported by the Department of Energy, contract DE-AC03-76SF00515.

E-mail addresses: sjbth@slac.stanford.edu (S.J. Brodsky), markus.diehl@desy.de (M. Diehl),

dshwang@kunja.sejong.ac.kr (D.S. Hwang).
1 Supported by the Feodor Lynen Program of the Alexander von Humboldt Foundation.

0550-3213/01/$ – see front matter  2001 Elsevier Science B.V. All rights reserved.

PII: S0550-3213(00)00695-7

 

Light-front wavefunctions representation 
of deeply virtual Compton scattering 
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Remarkable Advantages of the Front Form

• Light-Front Time-Ordered Perturbation Theory:  
Elegant, Physical

• Frame-Independent

• Few LF Time-Ordered Diagrams (not n!) -- all k+ must be 
positive

• Jz conserved at each vertex

• Automatically normal-ordered; LF Vacuum trivial up to 
zero modes

• Renormalization: Alternate Denominator Subtractions: 
Tested to three loops in QED

• Reproduces Parke-Taylor Rules and Amplitudes  (Stasto)

• Hadronization at the Amplitude Level with Confinement
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Includes Lamb Shift, quantum corrections

Bohr Spectrum
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We compute the three-loop corrections to the potential of two heavy quarks. In particular we
consider in this Letter the purely gluonic contribution which provides in combination with the
fermion corrections of Ref. [1] the complete answer at three loops.

PACS numbers: 12.38.Bx, 14.65.Dw, 14.65.Fy, 14.65.Ha

The potential between two heavy quarks constitutes a
fundamental quantity in Quantum Chromodynamics. It
enters in a variety of physical processes like the thresh-
old production of top quark pairs and the description of
charm and bottom quark bound states. Furthermore, it
is crucial for the understanding of fundamental quantities
of QCD, such as confinement. (See Ref. [2] for a recent
review.)
The idea to describe a bound state of heavy coloured

objects in analogy to the well-established hydrogen atom,
goes back to the middle of the 1970s [3]. Shortly after-
wards, about 30 years ago, one-loop radiative corrections
have been evaluated in the works [4, 5]. It took almost 20
years until the next order became available [6–8] which,
at that time, was a heroic enterprize. The two-loop cor-
rections turned out to be numerically quite important
which triggered several investigations to go beyond. End
of last year the fermionic corrections to the three-loop
static potential have been completed [1, 9, 10]. In this
Letter we report about the pure gluonic part which com-
pletes the three-loop corrections to the static potential.
We present our results for the static potential in mo-

mentum space where it takes the form

V (|!q |) =

−
4πCFαs(|!q |)

!q 2

[

1 +
αs(|!q |)

4π
a1 +

(

αs(|!q |)

4π

)2

a2

+

(

αs(|!q |)

4π

)3(

a3 + 8π2C3
A ln

µ2

!q 2

)

+ · · ·

]

. (1)

Here, CA = Nc and CF = (N2
c − 1)/(2Nc) are the eigen-

values of the quadratic Casimir operators of the adjoint
and fundamental representations of the SU(Nc) colour
gauge group, respectively, and αs denotes the strong cou-
pling in the MS scheme. The one- and two-loop coeffi-
cients a1 [4, 5] and a2 [6–8, 11] are given in Eq. (4) of
Ref. [1] where also the higher order terms in ε, necessary
for the three-loop calculation, are presented. In Eq. (1)
we identify the renormalization scale µ2 and the momen-
tum transfer !q 2. The complete dependence on µ can
easily be restored with the help of Eq. (2) of Ref. [1].
A new feature of the three-loop corrections to V (|!q |)

is the appearance of infrared divergences [12] which is

FIG. 1: Sample diagrams contributing to the static potential
at tree-level, one-, two- and three-loop order. Solid and curly
lines represent quarks and gluons, respectively. In the case of
closed loops the quarks are massless; the external quarks are
heavy and treated in the static limit.

represented by the ln(µ2/!q 2) term in Eq. (1). It has
been evaluated for the first time in Refs. [13, 14] (see also
Ref. [15]); in Eq. (1) we adopt the MS scheme which has
been used in Ref. [14]. Let us mention that the infrared
divergence cancels in physical quantities after including
the contribution where so-called ultrasoft gluons inter-
act with the heavy quark anti-quark bound state. An
explicit result can, e.g., be found in Ref. [14] where the
cancellation has been demonstrated in order to arrive at
the measurable energy levels of the heavy-quark system.
We note in passing that higher order logarithmic contri-
butions to the infrared behaviour of the static potential
have been computed in Refs. [16, 17].

Before presenting our results for a3 let us provide some
technical details. We generate the four-point quark anti-
quark amplitudes with the help of QGRAF [18]. Some sam-
ple diagrams up to three-loop order are shown in Fig. 1.
In a next step they are processed further with q2e and
exp [19, 20] where a mapping to the diagrams of Fig. 2 is
achieved. The mapping to two-point functions is possi-
ble since the only dimenionful quantity in our problem is
given by the momentum transfer between the quark and
the anti-quark. Although there is only one mass scale
in our problem technical complications arise from the
simultaneous presence of static lines (zigzag lines) and
relativistic propagators (solid lines) which significantly
increases the complexity of the reduction to master in-
tegrals. For this task we employ the program package
FIRE [21] in order to achieve a reduction to about 100 ba-
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old production of top quark pairs and the description of
charm and bottom quark bound states. Furthermore, it
is crucial for the understanding of fundamental quantities
of QCD, such as confinement. (See Ref. [2] for a recent
review.)
The idea to describe a bound state of heavy coloured

objects in analogy to the well-established hydrogen atom,
goes back to the middle of the 1970s [3]. Shortly after-
wards, about 30 years ago, one-loop radiative corrections
have been evaluated in the works [4, 5]. It took almost 20
years until the next order became available [6–8] which,
at that time, was a heroic enterprize. The two-loop cor-
rections turned out to be numerically quite important
which triggered several investigations to go beyond. End
of last year the fermionic corrections to the three-loop
static potential have been completed [1, 9, 10]. In this
Letter we report about the pure gluonic part which com-
pletes the three-loop corrections to the static potential.
We present our results for the static potential in mo-

mentum space where it takes the form
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Here, CA = Nc and CF = (N2
c − 1)/(2Nc) are the eigen-

values of the quadratic Casimir operators of the adjoint
and fundamental representations of the SU(Nc) colour
gauge group, respectively, and αs denotes the strong cou-
pling in the MS scheme. The one- and two-loop coeffi-
cients a1 [4, 5] and a2 [6–8, 11] are given in Eq. (4) of
Ref. [1] where also the higher order terms in ε, necessary
for the three-loop calculation, are presented. In Eq. (1)
we identify the renormalization scale µ2 and the momen-
tum transfer !q 2. The complete dependence on µ can
easily be restored with the help of Eq. (2) of Ref. [1].
A new feature of the three-loop corrections to V (|!q |)

is the appearance of infrared divergences [12] which is

FIG. 1: Sample diagrams contributing to the static potential
at tree-level, one-, two- and three-loop order. Solid and curly
lines represent quarks and gluons, respectively. In the case of
closed loops the quarks are massless; the external quarks are
heavy and treated in the static limit.

represented by the ln(µ2/!q 2) term in Eq. (1). It has
been evaluated for the first time in Refs. [13, 14] (see also
Ref. [15]); in Eq. (1) we adopt the MS scheme which has
been used in Ref. [14]. Let us mention that the infrared
divergence cancels in physical quantities after including
the contribution where so-called ultrasoft gluons inter-
act with the heavy quark anti-quark bound state. An
explicit result can, e.g., be found in Ref. [14] where the
cancellation has been demonstrated in order to arrive at
the measurable energy levels of the heavy-quark system.
We note in passing that higher order logarithmic contri-
butions to the infrared behaviour of the static potential
have been computed in Refs. [16, 17].

Before presenting our results for a3 let us provide some
technical details. We generate the four-point quark anti-
quark amplitudes with the help of QGRAF [18]. Some sam-
ple diagrams up to three-loop order are shown in Fig. 1.
In a next step they are processed further with q2e and
exp [19, 20] where a mapping to the diagrams of Fig. 2 is
achieved. The mapping to two-point functions is possi-
ble since the only dimenionful quantity in our problem is
given by the momentum transfer between the quark and
the anti-quark. Although there is only one mass scale
in our problem technical complications arise from the
simultaneous presence of static lines (zigzag lines) and
relativistic propagators (solid lines) which significantly
increases the complexity of the reduction to master in-
tegrals. For this task we employ the program package
FIRE [21] in order to achieve a reduction to about 100 ba-
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old production of top quark pairs and the description of
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The idea to describe a bound state of heavy coloured

objects in analogy to the well-established hydrogen atom,
goes back to the middle of the 1970s [3]. Shortly after-
wards, about 30 years ago, one-loop radiative corrections
have been evaluated in the works [4, 5]. It took almost 20
years until the next order became available [6–8] which,
at that time, was a heroic enterprize. The two-loop cor-
rections turned out to be numerically quite important
which triggered several investigations to go beyond. End
of last year the fermionic corrections to the three-loop
static potential have been completed [1, 9, 10]. In this
Letter we report about the pure gluonic part which com-
pletes the three-loop corrections to the static potential.
We present our results for the static potential in mo-

mentum space where it takes the form
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Here, CA = Nc and CF = (N2
c − 1)/(2Nc) are the eigen-

values of the quadratic Casimir operators of the adjoint
and fundamental representations of the SU(Nc) colour
gauge group, respectively, and αs denotes the strong cou-
pling in the MS scheme. The one- and two-loop coeffi-
cients a1 [4, 5] and a2 [6–8, 11] are given in Eq. (4) of
Ref. [1] where also the higher order terms in ε, necessary
for the three-loop calculation, are presented. In Eq. (1)
we identify the renormalization scale µ2 and the momen-
tum transfer !q 2. The complete dependence on µ can
easily be restored with the help of Eq. (2) of Ref. [1].
A new feature of the three-loop corrections to V (|!q |)

is the appearance of infrared divergences [12] which is

FIG. 1: Sample diagrams contributing to the static potential
at tree-level, one-, two- and three-loop order. Solid and curly
lines represent quarks and gluons, respectively. In the case of
closed loops the quarks are massless; the external quarks are
heavy and treated in the static limit.

represented by the ln(µ2/!q 2) term in Eq. (1). It has
been evaluated for the first time in Refs. [13, 14] (see also
Ref. [15]); in Eq. (1) we adopt the MS scheme which has
been used in Ref. [14]. Let us mention that the infrared
divergence cancels in physical quantities after including
the contribution where so-called ultrasoft gluons inter-
act with the heavy quark anti-quark bound state. An
explicit result can, e.g., be found in Ref. [14] where the
cancellation has been demonstrated in order to arrive at
the measurable energy levels of the heavy-quark system.
We note in passing that higher order logarithmic contri-
butions to the infrared behaviour of the static potential
have been computed in Refs. [16, 17].

Before presenting our results for a3 let us provide some
technical details. We generate the four-point quark anti-
quark amplitudes with the help of QGRAF [18]. Some sam-
ple diagrams up to three-loop order are shown in Fig. 1.
In a next step they are processed further with q2e and
exp [19, 20] where a mapping to the diagrams of Fig. 2 is
achieved. The mapping to two-point functions is possi-
ble since the only dimenionful quantity in our problem is
given by the momentum transfer between the quark and
the anti-quark. Although there is only one mass scale
in our problem technical complications arise from the
simultaneous presence of static lines (zigzag lines) and
relativistic propagators (solid lines) which significantly
increases the complexity of the reduction to master in-
tegrals. For this task we employ the program package
FIRE [21] in order to achieve a reduction to about 100 ba-
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for the three-loop calculation, are presented. In Eq. (1)
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tum transfer !q 2. The complete dependence on µ can
easily be restored with the help of Eq. (2) of Ref. [1].
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at tree-level, one-, two- and three-loop order. Solid and curly
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Ref. [15]); in Eq. (1) we adopt the MS scheme which has
been used in Ref. [14]. Let us mention that the infrared
divergence cancels in physical quantities after including
the contribution where so-called ultrasoft gluons inter-
act with the heavy quark anti-quark bound state. An
explicit result can, e.g., be found in Ref. [14] where the
cancellation has been demonstrated in order to arrive at
the measurable energy levels of the heavy-quark system.
We note in passing that higher order logarithmic contri-
butions to the infrared behaviour of the static potential
have been computed in Refs. [16, 17].

Before presenting our results for a3 let us provide some
technical details. We generate the four-point quark anti-
quark amplitudes with the help of QGRAF [18]. Some sam-
ple diagrams up to three-loop order are shown in Fig. 1.
In a next step they are processed further with q2e and
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achieved. The mapping to two-point functions is possi-
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given by the momentum transfer between the quark and
the anti-quark. Although there is only one mass scale
in our problem technical complications arise from the
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Heavy Quark Potential is IR Divergent in QCD

Summation of H graphs could yield confining potential
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1 The Holographic Correspondence

• In the “ semi-classical” approximation to QCD with massless quarks and no quantum loops the �

function is zero, and the approximate theory is scale and conformal invariant.

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

ds2 =
R2

z2
(⇥µ⇥dxµdx⇥ � dz2).

• Semi-classical correspondence as a first approximation to QCD (strongly coupled at all scales).

• xµ ⇤ ⇤xµ, z ⇤ ⇤z, maps scale transformations into the holographic coordinate z.

• Different values of z correspond to different scales at which the hadron is examined: AdS boundary at

z ⇤ 0 corresponds to the Q⇤⌅, UV zero separation limit.

• There is a maximum separation of quarks and a maximum value of z at the IR boundary

• Truncated AdS/CFT (Hard-Wall) model: cut-off at z0 = 1/�QCD breaks conformal invariance and

allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

• Smooth cutoff: introduction of a background dilaton field ⌅(z) – usual linear Regge dependence can

be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 
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AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(�µ⇥dxµdx⇥ � dz2),

xµ ⇤ ⇥xµ, z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 ⇤ ⇥2x2, z ⇤ ⇥z.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z ⇤ 0 correspond to theQ⇤⌅, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11

invariant measure

AdS/CFT
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2 Bosonic Modes

• Conformal metric: ds2 = g⌅mdx⌅dxm. x⌅ = (xµ, z), g⌅m ⇤
�
R2/z2

⇥
�⌅m .

• Action for massive scalar modes on AdSd+1:

S[⇥] =
1
2

⌥
dd+1x

⇧
g 1

2

�
g⌅m⌃⌅⇥⌃m⇥� µ2⇥2

 
,
⇧

g ⇤ (R/z)d+1.

• Equation of motion
1
⇧

g

⌃

⌃x⌅

�⇧
g g⌅m ⌃

⌃xm
⇥
⇥

+ µ2⇥ = 0.

• Factor out dependence along xµ-coordinates , ⇥P (x, z) = e�iP ·x ⇥(z), PµPµ =M2 :
⇤
z2⌃2

z � (d� 1)z ⌃z + z2M2 � (µR)2
⌅
⇥(z) = 0.

• Solution: ⇥(z)⇤ z� as z ⇤ 0,

⇥(x, z) = Cz
d
2 J�� d

2
(zM) , � = 1

2

⇧
d +

⌦
d2 + 4µ2R2

⌃
.

• Normalization

Rd�1
⌥ ⇥�1

QCD

0

dz

zd�1
⇥2

S=0(z) = 1.

Bosonic Solutions:  Hard Wall Model

� = 2 + L (µR)2 = L2 � 4d = 4

�(z) = Czd/2J��d/2(zM)
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AdS/QCD G. F. de Téramond

• Pseudoscalar mesons: O3+L = ⇤⇥5D{�1 . . . D�m}⇤ (⇥µ = 0 gauge).

• 4-d mass spectrum from boundary conditions on the normalizable string modes at z = z0,

⇥(x, zo) = 0, given by the zeros of Bessel functions ��,k: M�,k = ��,k�QCD.

• Normalizable AdS modes �(z)

10 2 3 4

1

2

0

3

4

5

z

Φ(z)

2-2006
8721A7

10 2 3 4

-2

0

2

4

z

Φ(z)

3-2006
8721A13

Fig: Meson orbital and radial AdS modes for �QCD = 0.32 GeV.

Caltech High Energy Seminar, Feb 6, 2006 Page 19

Confinement in 
the 5th 

dimension

z0 = 1
⇥QCD

z�

�: conformal dimension of meson

P+ = P0 + Pz

Fixed � = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

de Teramond, sjb

• Near the boundary of AdSd+1 space z ⇤ 0:

⇥(x, z) ⇤ z�⇥+(x) + zd��⇥�(x).

• ⇥�(x) is the boundary limit of non-normalizable mode (source): ⇥� = ⇥0

• ⇥+(x) is the boundary limit of the normalizable mode (physical states)

• Using the equations of motion AdS action reduces to a UV surface term

Seff =
Rd�1

4
lim
z⇤0

�
ddx

1
zd�1

⇥⌅z⇥,

• Seff is identified with the boundary functional WCFT

⌥O�⇥0
=

�WCFT

�⇥0
=

�Se⇤

�⇥0
⇥ ⇥+(x),

Balasubramanian et. al. (1998), Klebanov and Witten (1999).

• Physical AdS modes ⇥P (x, z) ⇥ e�iP ·x ⇥(z) are plane waves along the Poincaré coordinates with

four-momentum Pµ and hadronic invariant mass states PµPµ = M2.

• For small-z ⇥(z) ⇥ z�. The scaling dimension � of a normalizable string mode, is the same
dimension of the interpolating operatorO which creates a hadron out of the vacuum: ⌥P |O|0� ⌅= 0.

z�

�: conformal dimension of meson

P+ = P0 + Pz

Fixed ⇥ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇤(�, b�)

Twist dimension 
of meson

Identify hadron by its interpolating operator at z   --> 0

� = 2 + L

equivalent to 
dimensions of chiral 

superfields

Hard Wall



Light-Front Holography and QCD Confinement
 Stan Brodsky IPMU

September 26, 2013

10 2 3 4

1

2

0

3

z

Φ(z)

2-2007
8721A18

-2

-4

0

2

4

Φ(z)

10 2 3 4
z2-2007

8721A19

Fig: Orbital and radial AdS modes in the hard wall model for �QCD = 0.32 GeV .
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Fig: Light meson and vector meson orbital spectrum �QCD = 0.32 GeV

Exploring QCD, Cambridge, August 20-24, 2007 Page 23

S = 0 S = 1
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• Nonconformal metric dual to a confining gauge theory

ds2 =
R2

z2
e⇤(z)

�
�µ⇥dxµdx⇥ � dz2

⇥

where ⇤(z) ⇧ 0 at small z for geometries which are

asymptotically AdS5

• Gravitational potential energy for object of mass m

V = mc2�g00 = mc2R
e⇤(z)/2

z

• Consider warp factor exp(±⇥2z2)

• Plus solution: V (z) increases exponentially confining

any object in modified AdS metrics to distances ⌃z⌥ ⌅ 1/⇥

KITPC, Beijing, October 19, 2010 Page 9

Klebanov and Maldacena 

Introduce  “Dilaton" to simulate confinement analytically

e'(z) = e+2z
Positive-sign dilaton • de Teramond, sjb
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Dual QCD Light-Front Wave Equation z ⌃ �, �P (z)⌃ |⇧(P )�
[GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

• Upon substitution z⇧� and ⌅J(�) ⌅ ��3/2+Je�(z)/2 �J(�) in AdS WE
⇤
�zd�1�2J

e�(z)
�z

�
e�(z)

zd�1�2J
�z

⇥
+

�
µR

z

⇥2
⌅

�J(z) = M2�J(z)

find LFWE (d = 4)
�
� d2

d�2
� 1� 4L2

4�2
+ U(�)

⇥
⌅J(�) = M2⌅J(�)

with

U(�) =
1
2
⌃⇥⇥(z) +

1
4
⌃⇥(z)2 +

2J � 3
2z

⌃⇥(z)

and (µR)2 = �(2� J)2 + L2

• AdS Breitenlohner-Freedman bound (µR)2 ⇤ �4 equivalent to LF QM stability condition L2 ⇤ 0

• Scaling dimension ⇤ of AdS mode �̂J is ⇤ = 2 + L in agreement with twist scaling dimension of a

two parton bound state in QCD and determined by QM stability condition

LC 2011 2011, Dallas, May 23, 2011 Page 10

e'(z)

G. de Teramond and sjb, PRL 102 081601 (2009)

General dilaton profile

U(⇣) =
1
2
�00(⇣) +

1
4
�0(⇣)2 +

2J � 3
2⇣

�0(⇣)
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• Soft-wall dilaton profile breaks conformal 
invariance

• Color Confinement, mass gap

• Introduces single confinement scale

• Uses AdS5 as template for conformal theory

e'(z) = e+2z2

Dilaton-Modified AdS5

Positive-sign dilaton
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• Obtain spin-J mode �µ1···µJ with all indices along 3+1 coordinates from � by shifting dimensions

�J(z) =
⇧ z

R

⌃�J
�(z)

• Substituting in the AdS scalar wave equation for �
⇤
z2⇧2

z �
�
3�2J � 2⇥2z2

⇥
z ⇧z + z2M2� (µR)2

⌅
�J = 0

• Upon substitution z⌅�

⌅J(�)⇤��3/2+Je⇥2�2/2 �J(�)

we find the LF wave equation

⌥
� d2

d�2
� 1� 4L2

4�2
+ ⇥4�2 + 2⇥2(L + S � 1)

�
⌅µ1···µJ =M2⌅µ1···µJ

with (µR)2 = �(2� J)2 + L2

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 18

General-Spin Hadrons
de Teramond, Dosch, sjb

e'(z) = e+2z2



 

AdS Soft-Wall Schrodinger Equation for 
bound state  of  two scalar constituents:

Derived from variation of Action for Dilaton-Modified AdS5

Identical to Light-Front Bound State Equation! 

U(z) = �4z2 + 2�2(L + S � 1)

• Dosch, de Teramond, sjbPositive-sign dilaton

⇥
� d2

dz2
� 1� 4L2

4z2
+ U(z)

⇤
�(z) =M2�(z)

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

e'(z) = e+2z2



 

HQED

Coupled Fock states

Effective two-particle equation

 Azimuthal  Basis

Confining AdS/QCD  
potential! 

HLF
QCD

(H0
LF + HI

LF )|� >= M2|� >

[
�k2
� + m2

x(1� x)
+ V LF

e� ] �LF (x,�k�) = M2 �LF (x,�k�)

�,⇥

�2 = x(1� x)b2
�

Semiclassical first approximation to QCD 

4

U(⇣) = 4⇣2 + 22(L + S � 1)

Light-Front QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

Eliminate higher Fock states 
(retarded interactions)

AdS/QCD:

e'(z) = e+2z2
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The null-plane Hamiltonians map the initial light-like surface onto some other surface, 
and therefore describe the dynamical evolution of the system. 

The energy P− translates the system in the null-plane time coordinate x+, 
whereas the spin Hamiltonians Fr rotate the initial surface about the surface of the light cone.

Figure 1. A null plane is a surface tangent to the light cone. The null-plane Hamiltonians map
the initial light-like surface onto some other surface and therefore describe the dynamical evolution
of the system. The energy P

� translates the system in the null-plane time coordinate x

+, whereas
the spin Hamiltonians Fr rotate the initial surface about the surface of the light cone.

2 Space-time symmetry in the front form

2.1 A null plane defined

In the front-form of relativistic Hamiltonian dynamics, one chooses the initial state of the

system to be on a light-like plane, or null-plane, which is a hypersurface of points x in

Minkowski space such that x · n = ⌧ (see fig. 1). Here n is a light-like vector which will

be chosen below, and ⌧ is a constant which plays the role of time. We will refer to a

null-plane as ⌃⌧

n

. The subgroup of the Poincaré group that maps ⌃⌧

n

to itself is called

the stability group of the null-plane and determines the kinematics within the null-plane.

The remaining three Poincaré generators map ⌃⌧

n

to a new surface, ⌃⌧

0
n

, and therefore

describe the evolution of the system in time. The front-form is special in that it has seven

kinematical generators, the largest stability group of all of the forms of dynamics [1]. It

stands to reason that in complicated problems in relativistic quantum mechanics one would

prefer a formulation which has the fewest number of Hamiltonians to determine.

– 4 –

 Null plane: a surface tangent to the light cone. 

Silas R. Beane

τ=t+z/c



 

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)                AdS5

Light-Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements 

and identical equations of motion

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb
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Fig: Orbital and radial AdS modes in the soft wall model for � = 0.6 GeV .
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Light meson orbital (a) and radial (b) spectrum for � = 0.6 GeV.

Exploring QCD, Cambridge, August 20-24, 2007 Page 26

S = 0 S = 0

Soft Wall 
Model

Pion mass  
automatically zero!

mq = 0

Quark separation 
increases with L

Pion has 
zero mass!



 
G. de Teramond, sjb 

U(⇣2) = 4⇣2 + 22(J � 1)

z ! ⇣

Negative term  for J=0 cancels positive 
terms from LFKE and potential



 

Same slope in n and L!Massless pion in Chiral Limit!

Mass ratio of the ρ and the a1 mesons: coincides with Weinberg sum rules

mq = 0
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J=0

J=1

J=2

� = 2



 

Prediction from AdS/QCD: Meson LFWF

�(x, k�)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

�(x, k�)(GeV)

de Teramond, 
Cao, sjb⇥M(x, Q0) ⇥

�
x(1� x)

⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

massless quarks

Note coupling 

k2
�, x

Provides Connection of Confinement to Hadron Structure

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

x

1� x

�⇡(x) =
4p
3⇡

f⇡

p
x(1� x)

f⇡ =
p

Pqq̄

p
3

8
 = 92.4 MeV
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Braun, Gardi

Lepage, sjb
Efremov, Radyushkin

Sachrajda, Frishman Lepage, sjb

�M (x,Q) =
� Q

d2�k ⇥qq̄(x,�k�)
P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

x

1� x

k2
� < Q2

�

i

xi = 1

Hadron Distribution Amplitudes

• Fundamental gauge invariant non-perturbative input to hard 
exclusive processes, heavy hadron decays. Defined for 
Mesons, Baryons

• Evolution Equations from PQCD, OPE

• Conformal Expansions

• Compute from valence light-front wavefunction in light-cone 
gauge
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• Propagation of external perturbation suppressed inside AdS.

• At large enoughQ ⇤ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ⇤ 1/Q.

J(Q, z), �(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode ⇥(n) dual to an n partonic Fock state |n⇧. At small z, ⇥(n)

scales as ⇥(n) ⇤ z�n . Thus:

F (Q2) ⌅
�

1
Q2

⇥��1

,

where ⇥ = �n � �n, �n =
⇤n

i=1 �i. The twist is equal to the number of partons, ⇥ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:
General result from 

AdS/CFT and Conformal Invariance

Hadron Form Factors from AdS/QCD 

Polchinski, Strassler
de Teramond, sjb

J(Q, z) = zQK1(zQ)

�s(Q2)

⇥(Q2) = d�s(Q2)
d logQ2 � 0

�(Q2)� �
15⇤

Q2

m2

Q2 << 4m2

A

J(Q, z) �(z)

high Q2

D(z) ⇥ (1� z)2Nspect�1

zD(z) = F (x = 1/z)

zD(z)c⇤pX = Fp⇤cX(x = 1/z)

zi ⌅ m⇧i =
⇥

m2
i + k2

⇧

X = cūd̄ū

F (Q2)I⇤F =
� dz

z3�F (z)J(Q, z)�I(z)

High Q2 
from 

small z  ~ 1/Q

Twist ⌧ = n + L



 

x,

~

k? x,

~

k? + ~q?

 (xi,
~

k

0
?i) (xi,

~

k?i)
p

�⇤

~

k

0
?i = ~

k?i + (1� xi)~q?struck
~

k

0
?i = ~

k?i � xi~q?spectators

< p + q|j+(0)|p >= 2p+F (q2)

p + q

~q?q+ = 0

q2
? = Q2 = �q2

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Form Factors are 
Overlaps of LFWFs

Interaction 
picture

Drell &Yan, West
Exact LF formula!

Soper: DYW: Product of LFWFs in transverse space 



 

Holographic Mapping of AdS Modes to QCD LFWFs

• Integrate Soper formula over angles:

F (q2) = 2⇥

⇧ 1

0
dx

(1� x)
x

⇧
�d�J0

⇥
�q

⌥
1� x

x

⇤
⇤̃(x, �),

with ⌃⇤(x, �) QCD effective transverse charge density.

• Transversality variable

� =
⌥

x

1� x

���
n�1⌅

j=1

xjb⇥j

���.

• Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

⇧ 1

0
dxJ0

⇥
�Q

⌥
1� x

x

⇤
= �QK1(�Q),

the solution for J(Q, �) = �QK1(�Q) !

Exploring QCD, Cambridge, August 20-24, 2007 Page 35

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

Drell-Yan-West: Form Factors are 
Convolution of LFWFs

Identical to Polchinski-Strassler Convolution of AdS Amplitudes

de Teramond, sjb
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• Hadronic gravitational form-factor in AdS space

A�(Q2) = R3
⌅

dz

z3
H(Q2, z) |��(z)|2 ,

where H(Q2, z) = 1
2Q2z2K2(zQ)

• Use integral representation for H(Q2, z)

H(Q2, z) = 2
⌅ 1

0
x dxJ0

⇥
zQ

⇧
1� x

x

⇤

• Write the AdS gravitational form-factor as

A�(Q2) = 2R3
⌅ 1

0
x dx

⌅
dz

z3
J0

⇥
zQ

⇧
1� x

x

⇤
|��(z)|2

• Compare with gravitational form-factor in light-front QCD for arbitrary Q

���⇤̃qq/�(x, �)
���
2

=
R3

2⇥
x(1� x)

|��(�)|2

�4
,

which is identical to the result obtained from the EM form-factor

From String to Things, INT, Seattle, April 10, 2008 Page 31

Abidin & Carlson 

Gravitational Form Factor in AdS space

Identical  to LF Holography obtained from electromagnetic current

de Teramond  & sjb



 

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)                AdS5

Light-Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements 

and identical equations of motion

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb
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Current Matrix Elements in AdS Space (SW)

• Propagation of external current inside AdS space described by the AdS wave equation
⇤
z2⇧2

z � z
�
1 + 2�2z2

⇥
⇧z �Q2z2

⌅
J�(Q, z) = 0.

• Solution bulk-to-boundary propagator

J�(Q, z) = �
⇧

1 +
Q2

4�2

⌃
U

⇧
Q2

4�2
, 0, �2z2

⌃
,

where U(a, b, c) is the confluent hypergeometric function

�(a)U(a, b, z) =
⌥ ⇥

0
e�ztta�1(1 + t)b�a�1dt.

• Form factor in presence of the dilaton background ⇥ = �2z2

F (Q2) = R3
⌥

dz

z3
e��2z2

⇥(z)J�(Q, z)⇥(z).

• For large Q2 ⇤ 4�2

J�(Q, z)⌅ zQK1(zQ) = J(Q, z),

the external current decouples from the dilaton field.

Exploring QCD, Cambridge, August 20-24, 2007 Page 34

sjb and GdT 
Grigoryan and Radyushkin

Dressed 
Current

 in Soft-Wall 
Model
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However J/⇤ � ⇥�

is largest two-body hadron decay

Small value for ⇤⇥ � ⇥�

⇥

�

Spacelike pion form factor from AdS/CFT

F�(q2)

q2(GeV 2)

However J/⇤ � ⇥�

is largest two-body hadron decay

Small value for ⇤⇥ � ⇥�

⇥

�

Hard Wall: Truncated Space Confinement

Soft Wall: Harmonic Oscillator Confinement

One parameter -  set by pion decay constant

Data Compilation
Baldini, Kloe and Volmer

de Teramond, sjb
See also: Radyushkin 



 

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)



 

J. R. Forshaw, 
R. Sandapen

�⇤p! ⇢0p0

�L

�T



 

Light-Front Holography 
AdS/QCD

Soft-Wall  Model

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

Conformal Symmetry
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique 
Confinement Potential!

de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!
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Light-Front Holography 
AdS/QCD

Soft-Wall  Model

Conformal Symmetry

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Light-Front Schrödinger Equation

de Teramond, Dosch, sjb

Semi-Classical Approximation to QCD
Relativistic, frame-independent
Unique color-confining potential

Zero mass pion for massless quarks
Regge trajectories with equal slopes in n and L

Light-Front Wavefunctions
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QCD Lagrangian

Yang Mills Gauge Principle: Color 
Rotation and Phase Invariance at 

Every Point of Space and Time 

Scale-Invariant Coupling
Renormalizable 

Asymptotic Freedom
Color Confinement

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Fundamental Theory of Hadron and Nuclear Physics 

QCD Mass Scale from Confinement not Explicit

quark

Classically Conformal if mq=0



 

IL NUOVO CIMENT0 VOL. 34 A, N. 4 21 Agosto 1976 

Conformal Invariance in Quantum Mechanics. 

V. DE 2s 
Istituto di .Fisiea Teoriea dell' Universit~ - Tori~o 
Istituto Nazionate di Fis ica Nucleare - Sezione di Torino 

S. FUBINI and G. FURLAN (*) 
C E R N  - Geneva 

(ricevuto fl 3 Maggio 1976) 

Summary. - -  The properties of a field theory in one over-all time dimen- 
sion, invariant under the full eonformal group, are studied in detail. A 
compact operator, which is not the Hamiltonian, is diagonalized and 
used to solve the problem of motion, providing a discrete spectrum and 
normalizable eigenstates. The role of the physical parameters present 
in the model is discussed, mainly in connection with a semi-classical 
approximation. 

1 .  - I n t r o d u c t i o n .  

Most quan tum field theories, which are being used at  present, contain only 
dimensionless coupling constant  so tha t  dilatation invariance is broken only 
by  mass terms. This has led to much a t tent ion to the limits in which such 
mass terms also tend to zero, either in terms of massless field theories or as 
special asymptot ic  limits of F e y n m a n  diagrams. 

A special feature of massless field theories is t ha t  they  exhibit an invariance 
group which is larger than  Poincard's  and which also contains the dilatation 
D and the conformal operator  K ,  (1). 

(*) On leave of absence from Istituto di Fisica Teorica dell'Universitk, Trieste and 
Istituto Nazionale di Fisica Nueleare, Sezione di Trieste. 
(1) A sample of recent developments, with abundant references to previous work, 
is contained in: Scale and Conformal Symmetry  in Hadron Physics,  edited by R. GATTO 

569 
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G = uH + vD + wK

G| (⌧) >= i
@

@⌧
| (⌧) >

G = H⌧ =
1
2
�
� d2

dx2
+

g

x2
+

4uw � v2

4
x2

�

Retains conformal invariance of action despite mass scale!

Identical to LF Hamiltonian with unique potential and dilaton!

• de Alfaro, Fubini, Furlan

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

U(⇣) = 4⇣2 + 22(L + S � 1)

4uw � v2 = 4 = [M ]4

• Dosch, de Teramond, sjb

New term
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What determines the QCD mass scale ΛQCD? 

• Mass scale does not appear in the QCD Lagrangian 
(massless quarks)

• Dimensional Transmutation? Requires external constraint 
such as 

• dAFF: Confinement Scale κ appears spontaneously via the 
Hamiltonian:

• The confinement scale regulates infrared divergences,  

connects  ΛQCD   to the confinement scale κ

• Only dimensionless mass ratios (and M times R ) predicted

• Mass and time units [GeV] and [sec] from physics external 
to QCD

• New feature: bounded frame-independent relative time 
between constituents

↵s(MZ)

G = uH + vD + wK 4uw � v2 = 4 = [M ]4
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fixed uniquely: it is, like the original Hamiltonian with unbroken dilatation symmetry,179

a constant of motion (2). This procedure breaks scale invariance by a redefinition of180

the fields and the time parameter (16). The Lagrangian, expressed in terms of the181

original fields Q(t) is unchanged up to a total derivative (2). The dAFF mechanism182

is reminiscent of spontaneous symmetry breaking, however, this is not the case since183

there are no degenerate vacua (14) and thus a massless scalar 0++ state is not required.184

The dAFF mechanism is also di↵erent from usual explicit breaking by just adding a185

term to the Lagrangian (15).186

In their discussion of the evolution operator H⌧ dAFF mention a critical point,187

namely that “the time evolution is quite di↵erent from a stationary one”. By this188

statement they refer to the fact that the variable ⌧ is related to the variable t by189

⌧ =
2p

4uw � v2
arctan

✓
2tw + vp
4uw � v2

◆
, (22)

i.e., ⌧ has only a finite range. Since q2(⌧) vanishes at the borders of this range (See190

(16)), the surface term in (18) vanishes also there. In our approach ⌧ = x+/P+
191

can be interpreted as the LF time di↵erence of the confined q and q̄ in the hadron,192

a quantity which is naturally of finite range and in principle could be measured in193

double-parton scattering processes. It is also interesting to notice that the conformal194

group in one dimension with generators Ht, K and D is locally isomorphic to the195

group SO(2, 1) and thus, a correspondence can be established between the SO(2, 1)196

group of conformal quantum mechanics and the AdS2 space with isometry group197

SO(2, 1) (16).198

Following the work of de Alfaro, Fubini and Furlan in Ref. (2), we have discussed199

in this letter an e↵ective theory which encodes the fundamental conformal symmetry200

of the QCD Lagrangian in the limit of massless quarks. It is an explicit model in201

which the confinement length scale appears in the light-front Hamiltonian from the202

breaking of dilatation invariance, without a↵ecting the conformal invariance of the203

action. In the context of the dual holographic model it shows that the form of the204

dilaton profile is unique, which leads by the mapping to the light-front Hamiltonian205

9

dAFF: New Time Variable

• Identify with difference of LF time Δx+/P+ 

between constituents

• Finite range 

• Measure in Double Parton Processes
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Uniqueness

pion is massless in chiral limit iff 
p=2!

p

m2
⇡/2

'p(z) = pzp

e'(z) = e+2z2

• Dosch, de Teramond, sjb



Uniqueness

• ζ2 confinement potential and dilaton profile unique!

• Linear Regge trajectories in n and L: same slope!

• Massless pion in chiral limit!   No vacuum condensate!

•  Conformally invariant action for massless quarks retained 

despite mass scale

• Same principle, equation of motion as de Alfaro, FurlanFubini, 
Conformal Invariance in Quantum Mechanics Nuovo Cim. A34 (1976) 569 

de Teramond, Dosch, sjb 

U(⇣) = 4⇣2 + 22(L + S � 1) e'(z) = e+2z2

http://inspirehep.net/record/108211
http://inspirehep.net/record/108211
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Remarkable Features of 
Light-Front Schrödinger Equation

• Relativistic, frame-independent

• QCD scale appears - unique LF potential

• Reproduces spectroscopy and dynamics of light-quark hadrons with 
one parameter

• Zero-mass pion for zero mass quarks!

• Regge slope same for n and L  -- not usual HO

• Splitting in L persists to high mass   -- contradicts conventional 
wisdom based on breakdown of chiral symmetry

• Phenomenology: LFWFs, Form factors, electroproduction

• Extension to heavy quarks

U(⇣) = 4⇣2 + 22(L + S � 1)



 

Fermionic Modes and Baryon Spectrum
[GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

From Nick Evans

• Action for Dirac field in AdSd+1 in presence of dilaton background ⇧(z) [Abidin and Carlson (2009)]

S =
⇧

dd+1⌃ge⌅(z)
�
i⌅eM

A �ADM⌅ + h.c + ⇧(z)⌅⌅� µ⌅⌅
⇥

• Factor out plane waves along 3+1: ⌅P (xµ, z) = e�iP ·x⌅(z)
⌃
i
⇤
z�⌦m�⌦ m + 2�z

⌅
+ µR + ⇥2z

⌥
⌅(x⌦) = 0.

• Solution (⌅ = µR� 1
2 , ⌅ = L + 1)

⌅+(z) ⇤ z
5
2+⇤e��2z2/2L⇤

n(⇥2z2), ⌅�(z) ⇤ z
7
2+⇤e��2z2/2L⇤+1

n (⇥2z2)

• Eigenvalues (how to fix the overall energy scale, see arXiv:1001.5193)

M2 = 4⇥2(n + L + 1)

• Obtain spin-J mode ⇤µ1···µJ�1/2
, J > 1

2 , with all indices along 3+1 from ⌅ by shifting dimensions

• Large NC : M2 = 4⇥2(NC + n + L� 2) =⌅ M ⇤
⌃

NC ⇥QCD

Escuela de Fı́sica, UCR, December 1, 2010 Page 25

GdT and sjb, PRL 94, 201601 (2005)

positive parity

Yukawa interaction 
in 5 dimensions 

e'(z)
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Non-Conformal Extension of Algebraic Structure (Soft Wall Model)

• We write the Dirac equation

(��(⇤)�M)⌃(⇤) = 0,

in terms of the matrix-valued operator �

�⇤(⇤) = �i

⇤
d

d⇤
�

⇧ + 1
2

⇤
⇥5 � ⌅2⇤⇥5

⌅
,

and its adjoint �†, with commutation relations

⇧
�⇤(⇤),�†

⇤(⇤)
⌃

=
�

2⇧ + 1
⇤2

� 2⌅2

⇥
⇥5.

• Solutions to the Dirac equation

⌃+(⇤) ⇤ z
1
2+⇤e�⇥2�2/2L⇤

n(⌅2⇤2),

⌃�(⇤) ⇤ z
3
2+⇤e�⇥2�2/2L⇤+1

n (⌅2⇤2).

• Eigenvalues

M2 = 4⌅2(n + ⇧ + 1).

Exploring QCD, Cambridge, August 20-24, 2007 Page 49

⌫ = L + 1

Dirac Equation for Nucleons in Soft-Wall AdS/QCD
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Baryon Spectrum in Soft-Wall Model

• Upon substitution z ! ⇣ and

 

J

(x, z) = e�iP ·xz2 J

(z)u(P ),

find LFWE for d = 4

d

d⇣
 J

+

+

⌫ +

1

2

⇣
 J

+

+ U(⇣) J

+

= M J

�,

� d

d⇣
 J

� +

⌫ +

1

2

⇣
 J

� + U(⇣) J

� = M J

+

,

where U(⇣) =

R

⇣

V (⇣)

• Choose linear potential U = 2⇣

• Eigenfunctions

 J

+

(⇣) ⇠ ⇣
1

2

+⌫e�

2

⇣

2

/2L⌫

n

(2⇣2

),  J

�(⇣) ⇠ ⇣
3

2

+⌫e�

2

⇣

2

/2L⌫+1

n

(2⇣2

)

• Eigenvalues

M2

= 42

(n + ⌫ + 1), ⌫ = L + 1 (⌧ = 3)

• Full J � L degeneracy (different J for same L) for baryons along given trajectory !

Niccolò Cabeo 2012, Ferrara, May 25, 2011
Page 33



 

Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

⇤+(�)n,L = ⇥2+L

⌅
2n!

(n + L)!
�3/2+Le�⇥2�2/2LL+1

n

�
⇥2�2

⇥

⇤�(�)n,L = ⇥3+L 1⇤
n + L + 2

⌅
2n!

(n + L)!
�5/2+Le�⇥2�2/2LL+2

n

�
⇥2�2

⇥

• Normalization ⇤
d� ⇤2

+(�) =
⇤

d� ⇤2
�(�) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4⇥2 (n + L + 1)

• “Chiral partners”
MN(1535)

MN(940)
=
⇤

2

LC 2011 2011, Dallas, May 23, 2011 Page 13



Light-Front Holography and QCD Confinement
 Stan Brodsky IPMU

September 26, 2013

Identify L  with ν
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M2

L
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All confirmed 
resonances 
from PDG 

2012

de Teramond, sjb 

See also Forkel, Beyer, Federico, Klempt
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Figure 8: Orbital and radial baryon excitations for the positive-parity Regge trajectories for the

N (left) and ∆ (right) families for κ = 0.49 − 0.51 GeV.

while maintaining chiral symmetry for the pion [121] in the LF Hamiltonian equations. In

practice, these constraints require a subtraction of −4κ2 from (102). 22

As is the case for the truncated-space model, the value of ν is determined by the short

distance scaling behavior, ν = L+1. Higher-spin fermionic modes Ψµ1···µJ−1/2
, J > 1/2, with

all of its polarization indices along the 3 + 1 coordinates follow by shifting dimensions for

the fields as shown for the case of mesons in Ref. [54] 23. Therefore, as in the meson sector,

the increase in the mass M2 for baryonic states for increased radial and orbital quantum

numbers is ∆n = 4κ2, ∆L = 4κ2 and ∆S = 2κ2, relative to the lowest ground state, the

proton; i.e., the slope of the spectroscopic trajectories in n and L are identical. Thus for the

positive-parity nucleon sector

M2 (+)
n,L,S = 4κ2

(

n+ L+
S

2
+

3

4

)

, (103)

where the internal spin S = 1
2
or 3

2
.

The resulting predictions for the spectroscopy of positive-parity light baryons are shown

in Fig. 8. Only confirmed PDG [49] states are shown. The Roper state N(1440) and

22This subtraction to the mass scale may be understood as the displacement required to describe nucleons

with NC = 3 as a composite system with leading twist 3+L; i.e., a quark-diquark bound state with a twist-2

composite diquark rather than an elementary twist-1 diquark.
23The detailed study of higher fermionic spin wave equations in modified AdS spaces is based on our

collaboration with Hans Guenter Dosch [32]. See also the discussion in Ref. [33].

45

the N(1710) are well accounted for in this model as the first and second radial states of

the proton. Likewise, the ∆(1660) corresponds to the first radial state of the ∆(1232) as

shown in in Fig. 8. The model is successful in explaining the parity degeneracy observed in

the light baryon spectrum, such as the L= 2, N(1680)−N(1720) degenerate pair and the

L = 2, ∆(1905), ∆(1910), ∆(1920), ∆(1950) states which are degenerate within error bars.

The parity degeneracy of baryons shown in Fig. 8 is also a property of the hard-wall model

described in the previous section, but in that case the radial states are not well described [51].

In order to have a comprehensive description of the baryon spectrum, we need to extend

(103) to the negative-parity baryon sector. In the case of the hard-wall model, this was

realized by choosing the boundary conditions for the plus or minus components of the AdS

wave function Ψ±. In practice, this amounts to allowing the negative-parity spin baryons to

have a larger spatial extent, a point also raised in [134]. In the soft-wall model there are no

boundary conditions to set in the infrared since the wave function vanishes exponentially for

large values of z. We note, however, that setting boundary conditions on the wave functions,

as done in Sec. 5.1, is equivalent to choosing the branch ν = µR − 1
2
for the negative-

parity spin-1
2
baryons and ν = µR + 1

2
for the positive parity spin-3

2
baryons. This gives

a factor 4κ2 between the lower-lying and the higher-lying nucleon trajectories as illustrated

in Fig. 9, where we compare the lower nucleon trajectory corresponding to the J = L + S

spin-1
2
positive-parity nucleon family with the upper nucleon trajectory corresponding to the

J = L+ S − 1 spin-3
2
negative-parity nucleons. As is clearly shown in the figure, the gap is

precisely the factor 4κ2.

If we apply the same spin-change rule previously discussed for the positive-parity nucle-

ons, we would expect that the trajectory for the family of spin- 1
2
negative-parity nucleons

is lower by the factor 2κ2 compared to the spin-3
2
minus-parity nucleons according to the

spin-change rule previously discussed. Thus the formula for the negative-parity baryons

M2 (−)
n,L,S = 4κ2

(

n+ L+
S

2
+

5

4

)

, (104)

where S = 1
2
or 3

2
. It is important to recall that our formulas for the baryon spectrum are

the result of an analytic inference, rather than formally derived.

The full baryon orbital excitation spectrum listed in Table 2 for n = 0 is shown in Fig.

10. We note that M2 (+)

n,L,S= 3
2

= M2 (−)

n,L,S= 1
2

and consequently the positive and negative-parity ∆

states lie in the same trajectory, consistent with the experimental results. Only the confirmed

PDG [49] states listed in Table 2 are shown. Our results for the ∆ states agree with those

of Ref. [59]. “Chiral partners” as the N(1535) and the N(940) with different orbital angular

46

positive parity

negative parity
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Table 1: SU(6) classification of confirmed baryons listed by the PDG. The labels S, L
and n refer to the internal spin, orbital angular momentum and radial quantum number

respectively. The �

5
2
�
(1930) does not fit the SU(6) classification since its mass is too low

compared to other members 70-multiplet for n = 0, L = 3.

SU(6) S L n Baryon State

56 1
2 0 0 N 1

2
+
(940)

1
2 0 1 N 1

2
+
(1440)

1
2 0 2 N 1

2
+
(1710)

3
2 0 0 �

3
2
+
(1232)

3
2 0 1 �

3
2
+
(1600)

70 1
2 1 0 N 1

2
�
(1535) N 3

2
�
(1520)

3
2 1 0 N 1

2
�
(1650) N 3

2
�
(1700) N 5

2
�
(1675)

3
2 1 1 N 1

2
�

N 3
2
�
(1875) N 5

2
�

1
2 1 0 �

1
2
�
(1620) �

3
2
�
(1700)

56 1
2 2 0 N 3

2
+
(1720) N 5

2
+
(1680)

1
2 2 1 N 3

2
+
(1900) N 5

2
+

3
2 2 0 �

1
2
+
(1910) �

3
2
+
(1920) �

5
2
+
(1905) �

7
2
+
(1950)

70 1
2 3 0 N 5

2
�

N 7
2
�

3
2 3 0 N 3

2
�

N 5
2
�

N 7
2
�
(2190) N 9

2
�
(2250)

1
2 3 0 �

5
2
�

�

7
2
�

56 1
2 4 0 N 7

2
+

N 9
2
+
(2220)

3
2 4 0 �

5
2
+

�

7
2
+

�

9
2
+

�

11
2

+
(2420)

70 1
2 5 0 N 9

2
�

N 11
2
�

3
2 5 0 N 7

2
�

N 9
2
�

N 11
2
�
(2600) N 13

2
�

1

PDG 2012
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Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

⇤
d� J(Q, �)|⇥+(�)|2,

F�(Q2) = g�

⇤
d� J(Q, �)|⇥�(�)|2,

where the effective charges g+ and g� are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ⇥+(�) and ⇥�(�) correspond

to nucleons with Jz = +1/2 and�1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

⇤
d� J(Q, �)|⇥+(�)|2,

Fn
1 (Q2) = �1

3

⇤
d� J(Q, �)

�
|⇥+(�)|2 � |⇥�(�)|2

⇥
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52
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• Compute Dirac proton form factor using SU(6) flavor symmetry

F p
1 (Q2) = R4

⇧
dz

z4
V (Q, z)�2

+(z)

• Nucleon AdS wave function

�+(z) =
�2+L

R2

⌃
2n!

(n + L)!
z7/2+LLL+1

n

�
�2z2

⇥
e��2z2/2

• Normalization (F1
p(0) = 1, V (Q = 0, z) = 1)

R4

⇧
dz

z4
�2

+(z) = 1

• Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

V (Q, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

42 e��2z2x/(1�x)

• Find

F p
1 (Q2) =

1⇤
1 + Q2

M2
⇢

⌅⇤
1 + Q2

M2
⇢0

⌅

withM⇥
2
n ⇤ 4�2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 20
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Using SU(6) flavor symmetry and normalization to static quantities
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Flavor Decomposition of Elastic Nucleon Form Factors

G. D. Cates et al. Phys. Rev. Lett. 106, 252003 (2011)

• Proton SU(6) WF: F p

u,1

=

5

3

G
+

+

1

3

G�, F p

d,1

=

1

3

G
+

+

2

3

G�

• Neutron SU(6) WF: Fn

u,1

=

1

3

G
+

+

2

3

G�, Fn

d,1

=

5

3

G
+

+

1

3

G�

G
+

(Q2

) =

1⇣
1+

Q2

M2

⇢

⌘⇣
1+

Q2

M2

⇢0

⌘

and

G�(Q2

) =

1⇣
1+

Q2

M2

⇢

⌘⇣
1+

Q2

M2

⇢0

⌘⇣
1+

Q2

M2

⇢
00

⌘

Q2

G!!Q2"

G"!Q2"

PRELIMINARY

QNP 2012, École Polytechnique, April 19, 2012 Page 20
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Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)⇥ N�(1440): �n=0,L=0
+ ⇥ �n=1,L=0

+

• Transition form factor

F1
p
N⇥N�(Q2) = R4

⇧
dz

z4
�n=1,L=0

+ (z)V (Q, z)�n=0,L=0
+ (z)

• Orthonormality of Laguerre functions
�
F1

p
N⇥N�(0) = 0, V (Q = 0, z) = 1

⇥

R4
⇧

dz

z4
�n⇥,L

+ (z)�n,L
+ (z) = �n,n⇥

• Find

F1
p
N⇥N�(Q2) =

2
⌅

2
3

Q2

M2
P⇤

1 + Q2

M2
�

⌅⇤
1 + Q2

M2
�⇥

⌅⇤
1 + Q2

M2

�
⇥⇥

⌅

withM�
2
n ⇥ 4⇥2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 21

de Teramond, sjb

Consistent with counting rule, twist 3



Light-Front Holography and QCD Confinement
 Stan Brodsky IPMU

September 26, 2013

Nucleon Transition Form Factors

F p

1

N!N

⇤(Q
2

) =

p
2

3

Q

2

M2

⇢⇣
1 +

Q

2

M2

⇢

⌘⇣
1 +

Q

2

M2

⇢0

⌘⇣
1 +

Q

2

M2

⇢
00

⌘ .

0.1

0
2 40
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F
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* 
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Q

2
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Proton transition form factor to the first radial excited state. Data from JLab

Niccolò Cabeo 2012, Ferrara, May 25, 2011
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Negative Dilaton Background exp (��2z2)

Form Factor in negative dilaton background:

[SJB and GdT, PRD 77, 056007(2008)]

F (Q2)=
1

1 + Q2

4�2

, N = 2, (1)

F (Q2)=
2�

1 + Q2

4�2

⇥�
2 + Q2

4�2

⇥ , N = 3, (2)

· · ·

F (Q2)=
(N � 1)!�

1 + Q2

4�2

⇥ �
2 + Q2

4�2

⇥
· · ·

�
N � 1 + Q2

4�2

⇥ , N, (3)

which is expressed as a N �1 product of poles, corresponding to the first N �1 states along

the vector meson radial trajectory.

Mass spectrum of radial excitations:

M2
n = 4�2(n + 1) (4)

Negative dilaton exp (��2z2): � = M⇥/2 = 0.3877 GeV

In terms of the ⇥ vector masses (n = N � 2)

F (Q2)=
1

1 + Q2

M2
⇢

, N = 2, (5)

F (Q2)=
1

�
1 + Q2

M2
⇢

⇥ ⇤
1 + Q2

M2
⇢0

⌅ , N = 3, (6)

· · ·

F (Q2)=
1

�
1 + Q2

M2
⇢

⇥ ⇤
1 + Q2

M2
⇢0

⌅
· · ·

⇤
1 + Q2

M2
⇢N�2

⌅ , N, (7)

Positive Dilaton Background exp (+�2z2)

M2
n = 4�2(n + 1) ⇤ M2

n = 4�2

⇤
n +

1

2

⌅
(8)

Negative dilaton exp (��2z2): � = M⇥/2 = 0.3877 GeV

bf Positive dilaton exp (+�2z2): � = M⇥/
⇧

2 = 0.5484 GeV
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Figure 8: Orbital and radial baryon excitations for the positive-parity Regge trajectories for the

N (left) and ∆ (right) families for κ = 0.49 − 0.51 GeV.

while maintaining chiral symmetry for the pion [121] in the LF Hamiltonian equations. In

practice, these constraints require a subtraction of −4κ2 from (102). 22

As is the case for the truncated-space model, the value of ν is determined by the short

distance scaling behavior, ν = L+1. Higher-spin fermionic modes Ψµ1···µJ−1/2
, J > 1/2, with

all of its polarization indices along the 3 + 1 coordinates follow by shifting dimensions for

the fields as shown for the case of mesons in Ref. [54] 23. Therefore, as in the meson sector,

the increase in the mass M2 for baryonic states for increased radial and orbital quantum

numbers is ∆n = 4κ2, ∆L = 4κ2 and ∆S = 2κ2, relative to the lowest ground state, the

proton; i.e., the slope of the spectroscopic trajectories in n and L are identical. Thus for the

positive-parity nucleon sector

M2 (+)
n,L,S = 4κ2

(

n+ L+
S

2
+

3

4

)

, (103)

where the internal spin S = 1
2
or 3

2
.

The resulting predictions for the spectroscopy of positive-parity light baryons are shown

in Fig. 8. Only confirmed PDG [49] states are shown. The Roper state N(1440) and

22This subtraction to the mass scale may be understood as the displacement required to describe nucleons

with NC = 3 as a composite system with leading twist 3+L; i.e., a quark-diquark bound state with a twist-2

composite diquark rather than an elementary twist-1 diquark.
23The detailed study of higher fermionic spin wave equations in modified AdS spaces is based on our

collaboration with Hans Guenter Dosch [32]. See also the discussion in Ref. [33].

45

the N(1710) are well accounted for in this model as the first and second radial states of

the proton. Likewise, the ∆(1660) corresponds to the first radial state of the ∆(1232) as

shown in in Fig. 8. The model is successful in explaining the parity degeneracy observed in

the light baryon spectrum, such as the L= 2, N(1680)−N(1720) degenerate pair and the

L = 2, ∆(1905), ∆(1910), ∆(1920), ∆(1950) states which are degenerate within error bars.

The parity degeneracy of baryons shown in Fig. 8 is also a property of the hard-wall model

described in the previous section, but in that case the radial states are not well described [51].

In order to have a comprehensive description of the baryon spectrum, we need to extend

(103) to the negative-parity baryon sector. In the case of the hard-wall model, this was

realized by choosing the boundary conditions for the plus or minus components of the AdS

wave function Ψ±. In practice, this amounts to allowing the negative-parity spin baryons to

have a larger spatial extent, a point also raised in [134]. In the soft-wall model there are no

boundary conditions to set in the infrared since the wave function vanishes exponentially for

large values of z. We note, however, that setting boundary conditions on the wave functions,

as done in Sec. 5.1, is equivalent to choosing the branch ν = µR − 1
2
for the negative-

parity spin-1
2
baryons and ν = µR + 1

2
for the positive parity spin-3

2
baryons. This gives

a factor 4κ2 between the lower-lying and the higher-lying nucleon trajectories as illustrated

in Fig. 9, where we compare the lower nucleon trajectory corresponding to the J = L + S

spin-1
2
positive-parity nucleon family with the upper nucleon trajectory corresponding to the

J = L+ S − 1 spin-3
2
negative-parity nucleons. As is clearly shown in the figure, the gap is

precisely the factor 4κ2.

If we apply the same spin-change rule previously discussed for the positive-parity nucle-

ons, we would expect that the trajectory for the family of spin- 1
2
negative-parity nucleons

is lower by the factor 2κ2 compared to the spin-3
2
minus-parity nucleons according to the

spin-change rule previously discussed. Thus the formula for the negative-parity baryons

M2 (−)
n,L,S = 4κ2

(

n+ L+
S

2
+

5

4

)

, (104)

where S = 1
2
or 3

2
. It is important to recall that our formulas for the baryon spectrum are

the result of an analytic inference, rather than formally derived.

The full baryon orbital excitation spectrum listed in Table 2 for n = 0 is shown in Fig.

10. We note that M2 (+)

n,L,S= 3
2

= M2 (−)

n,L,S= 1
2

and consequently the positive and negative-parity ∆

states lie in the same trajectory, consistent with the experimental results. Only the confirmed

PDG [49] states listed in Table 2 are shown. Our results for the ∆ states agree with those

of Ref. [59]. “Chiral partners” as the N(1535) and the N(940) with different orbital angular

46

positive parity

negative parity

κ = 0.49 GeV κ = 0.51 GeV
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Fig. 2. Regge trajectory for �� resonances as a function of the leading intrinsic orbital angular momentum L and the radial
excitation quantum number N (corresponding to n1 + n2 in quark models). The line represents a prediction of the metric-soft-
wall AdS/QCD model [18,19]. Resonances with N = 0 and N = 1 are listed above or below the trajectory. The mass predictions
are 1.27, 1.64, 1.92, 2.20, 2.43, 2.64, 2.84GeV. The two states reported in [20,21] are indicated by arrows.

In [17], �(1930)D35 was interpreted asL = 3, S = 1/2
excitat ion. The new evidence for �(1940)D33 – which
seems to be a natural spin partner of �(1930)D35 – sug-
gests L = 1, S = 3/2, N = 1 quantum numbers for both,
and the two-star �(1900)S31 to be the natural third part -
ner to complete a spin t riplet . In the interpretat ion of
[17], one could of course also argue that �(1900)S31 and
�(1940)D33 haveL = 1, S = 1/2,N = 1, and �(1930)D35

and a missing �G37 below 2GeV are L = 3, S = 1/2 ex-
citat ions.

At high masses, some problems remain. In part icular
�(2750)I3 13 is far from the solid line.

In conclusion, there are clear discrepancies between
hard-wall AdS/ QCD and data in the1.7GeV region. Above
1.8GeV, some inconsistencies with the hard wall solut ion
exist , in part icular the existence of �(1940)D33 [20,21]
and the non-observat ion of a �G37 candidate with mass
between 1.9 and 2GeV aredi ⌅ cult to reconcilewith hard-
wall AdS/ QCD. But overall, the t rend of most established
states is reasonably reproduced.

In [18,19], the mass spect rum of light mesons and
baryonswaspredicted using AdS/ QCD in themetric soft -
wall approximat ion. Relat ionsbetween ground statemasses
and trajectory slopes

M2 = 4⇥2(L + N + 1/2) for mesons
M2 = 4⇥2(L + N + 3/2) for baryons (A)

were derived. Using the slope of the� t rajectory, masses
were calculated. They are plot ted as a funct ion of L + N in
Fig. 2. The two states indicated by arrows are those found
in [20,21]. While the posit ive-parity �(1920)P33 has three
stars in the PDG rat ing, the negat ive-parity �(1940)D33

had one star only. Both states were not observed in the
latest analysis of Arndt et al. [3] on elast ic ⇤N scat tering.

The four posit ive- and negat ive-parity states between
1.60 and 1.75GeV (2,3) are predicted to have the same

mass (1.62GeV)1; the seven states (4,5) should have 1.92
GeV. The predicted masses for L + N = 3 (6,7) and 4
(8,9) are 2.20 and 2.42GeV, respect ively. The trajectory
cont inues with the calculated masses 2.64 for L + N = 5
and 2.84GeV for L + N = 6. Experimentally, the highest
mass state is �(2950)K3 15 which requires L = 6. In this
interpretat ion, �(2750)I3 13 has L = 5,S = 3/2 and N =
1 and should be degenerate in mass with �(2950)K3 15.
Both areexpected to haveamassof 2.84GeV which is not
incompat ible with the experimental findings even though
the mass di � erence of 200MeV between the two states
does not support their expected mass degeneracy.

An early interpretat ion of st rings was proposed by
Nambu [36]. He assumed that the gluon flux between the
two quarks is concentrated in a rotat ing flux tube or a
rotat ing st ring with a homogeneous mass density. Nambu
derived a linear relat ion between squared mass and or-
bital angular momentum, M2 � L. This mechanical pic-
ture was further developed by Baker and Steinke [37] and
by Baker [38] to a field theoret ical approach. For mesons,
the funct ional dependence (A) was derived.

The relat ion (A) between �� masses and L and N has
been derived earlier in a phenomenological analysis of the
baryon mass spect rum [35]. For octet and singlet baryons,
one term ascribed to instanton-induced interact ions was
required to reproduce the full mass spect rum of all baryon
resonances having known spin and parity.

The st riking agreement between the measured baryon
excitat ion spect rum and the predict ions [18,19] based on
AdS/ QCD and the success of the phenomenological mass
formula [35] posenew quest ions. In both cases, thebaryon
masses depend on the number of orbital and radial exci-
tat ions just as mesons. But baryons have an ext ra degree

1 The �1/2+(1750) is tricky; it has L = 2 but both oscillators
are excited. Since they are orthogonal, the internal separations
increase less than for parallel angular momenta.
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Fig. 2. Regge trajectory for �� resonances as a function of the leading intrinsic orbital angular momentum L and the radial
excitation quantum number N (corresponding to n1 + n2 in quark models). The line represents a prediction of the metric-soft-
wall AdS/QCD model [18,19]. Resonances with N = 0 and N = 1 are listed above or below the trajectory. The mass predictions
are 1.27, 1.64, 1.92, 2.20, 2.43, 2.64, 2.84GeV. The two states reported in [20,21] are indicated by arrows.

In [17], �(1930)D35 was interpreted as L = 3, S = 1/2
excitation. The new evidence for �(1940)D33 – which
seems to be a natural spin partner of �(1930)D35 – sug-
gests L = 1, S = 3/2, N = 1 quantum numbers for both,
and the two-star �(1900)S31 to be the natural third part-
ner to complete a spin triplet. In the interpretation of
[17], one could of course also argue that �(1900)S31 and
�(1940)D33 have L = 1, S = 1/2, N = 1, and �(1930)D35

and a missing �G37 below 2GeV are L = 3, S = 1/2 ex-
citations.

At high masses, some problems remain. In particular
�(2750)I3 13 is far from the solid line.

In conclusion, there are clear discrepancies between
hard-wall AdS/QCD and data in the 1.7 GeV region. Above
1.8GeV, some inconsistencies with the hard wall solution
exist, in particular the existence of �(1940)D33 [20,21]
and the non-observation of a �G37 candidate with mass
between 1.9 and 2GeV are di⌅cult to reconcile with hard-
wall AdS/QCD. But overall, the trend of most established
states is reasonably reproduced.

In [18,19], the mass spectrum of light mesons and
baryons was predicted using AdS/QCD in the metric soft-
wall approximation. Relations between ground state masses
and trajectory slopes

M2 = 4⇥2(L + N + 1/2) for mesons
M2 = 4⇥2(L + N + 3/2) for baryons (A)

were derived. Using the slope of the � trajectory, masses
were calculated. They are plotted as a function of L+N in
Fig. 2. The two states indicated by arrows are those found
in [20,21]. While the positive-parity �(1920)P33 has three
stars in the PDG rating, the negative-parity �(1940)D33

had one star only. Both states were not observed in the
latest analysis of Arndt et al. [3] on elastic ⇤N scattering.

The four positive- and negative-parity states between
1.60 and 1.75 GeV (2,3) are predicted to have the same

mass (1.62 GeV)1; the seven states (4,5) should have 1.92
GeV. The predicted masses for L + N = 3 (6,7) and 4
(8,9) are 2.20 and 2.42GeV, respectively. The trajectory
continues with the calculated masses 2.64 for L + N = 5
and 2.84 GeV for L + N = 6. Experimentally, the highest
mass state is �(2950)K3 15 which requires L = 6. In this
interpretation, �(2750)I3 13 has L = 5, S = 3/2 and N =
1 and should be degenerate in mass with �(2950)K3 15.
Both are expected to have a mass of 2.84 GeV which is not
incompatible with the experimental findings even though
the mass di�erence of 200 MeV between the two states
does not support their expected mass degeneracy.

An early interpretation of strings was proposed by
Nambu [36]. He assumed that the gluon flux between the
two quarks is concentrated in a rotating flux tube or a
rotating string with a homogeneous mass density. Nambu
derived a linear relation between squared mass and or-
bital angular momentum, M2 � L. This mechanical pic-
ture was further developed by Baker and Steinke [37] and
by Baker [38] to a field theoretical approach. For mesons,
the functional dependence (A) was derived.

The relation (A) between �� masses and L and N has
been derived earlier in a phenomenological analysis of the
baryon mass spectrum [35]. For octet and singlet baryons,
one term ascribed to instanton-induced interactions was
required to reproduce the full mass spectrum of all baryon
resonances having known spin and parity.

The striking agreement between the measured baryon
excitation spectrum and the predictions [18,19] based on
AdS/QCD and the success of the phenomenological mass
formula [35] pose new questions. In both cases, the baryon
masses depend on the number of orbital and radial exci-
tations just as mesons. But baryons have an extra degree

1 The �1/2+(1750) is tricky; it has L = 2 but both oscillators
are excited. Since they are orthogonal, the internal separations
increase less than for parallel angular momenta.
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Dressed soft-wall current brings in higher 
Fock states and more vector meson poles



 

• Exposed by timelike form factor 
through Heisenberg dressed current.

• Created by confining interaction

• Similar to QCD(1+1) in lcg

U(⇣2)

5 Confinement Interaction and Higher Fock States
[S. J. Brodsky and GdT (in progress)]

• Is the AdS/QCD confinement interaction responsible for quark pair creation?

• Only interaction in AdS/QCD is the confinement potential

• In QFT the resulting LF interaction is a 4-point effective interaction wich leads to qq ⇥ qq, q ⇥ qqq,

qq ⇥ qq and q ⇥ qqq

• Create Fock states with extra quark-antiquark pairs.

• No mixing with qqg Fock states (no dynamical gluons)

• Explain the dominance of quark interchange in large angle elastic scattering

[C. White et al. Phys. Rev D 49, 58 (1994)

• Effective confining potential can be considered as an instantaneous four-point interaction in LF time,

similar to the instantaneous gluon exchange in LC gauge A+ = 0. For example

P�confinement ⇤ ⇥4
�

dx�d2�x⇥
⇤�+T a⇤

P+

1
(⇧/⇧⇥)4

⇤�+T a⇤

P+

LC 2011 2011, Dallas, May 23, 2011 Page 23
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Higher Fock Components in LF Holographic QCD

• Effective interaction leads to qq ! qq, qq ! qq but also to q ! qqq and q ! qqq

• Higher Fock states can have any number of extra qq pairs, but surprisingly no dynamical gluons

• Example of relevance of higher Fock states and the absence of dynamical gluons at the hadronic scale

|⇡i =  
qq/⇡

|qqi
⌧=2

+  
qqqq

|qqqqi
⌧=4

+ · · ·

• Modify form factor formula introducing finite width: q2 ! q2

+

p
2iM� (P

qqqq

= 13 %)
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Meson Transition Form-Factors

[S. J. Brodsky, Fu-Guang Cao and GdT, arXiv:1005.39XX]

• Pion TFF from 5-dim Chern-Simons structure [Hill and Zachos (2005), Grigoryan and Radyushkin (2008)]

⇤
d4x

⇤
dz ⇥LMNPQAL�MAN�P AQ

⇤ (2⌅)4�(4) (p⇧ + q � k) F⇧�(q2)⇥µ⌅⌃⌥⇥µ(q)(p⇧)⌅⇥⌃(k)q⌥

• Take Az ⇧ �⇧(z)/z, �⇧(z) =
⌃

2Pqq ⇤ z2e�⇥2z2/2, ⌥�⇧|�⇧� = Pqq

• Find
�
⇧(x) =

⌦
3f⇧x(1� x), f⇧ =

⌃
Pqq ⇤/

⌦
2⌅

⇥

Q2F⇧�(Q2) =
4⌦
3

⇤ 1

0
dx

⇧(x)
1� x

⌅
1� e�PqqQ2(1�x)/4⇧2f2

� x
⇧

normalized to the asymptotic DA [Pqq = 1 ⌅ Musatov and Radyushkin (1997)]

• Large Q2 TFF is identical to first principles asymptotic QCD result Q2F⇧�(Q2 ⌅⌃) = 2f⇧

• The CS form is local in AdS space and projects out only the asymptotic form of the pion DA

LC 2011 2011, Dallas, May 23, 2011 Page 25
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qq̄ components.

The simple valence qq̄ model discussed above should thus be modified at small Q2

by introducing the dressed current. In the case of soft-wall potential, the EM bulk-to-

boundary propagator is

V (Q2, z) = �

⇤
1 +

Q2

4�2

⌅
U

⇤
Q2

4�2
, 0, �2z2

⌅
, (17)

where U(a, b, c) is the Tricomi confluent hypergeometric function. The modified current

V (Q2, z), (17), has the same boundary conditions as the free current (9), and reduces to

(9) in the limit Q2 ⇥ ⇤. Eq. (17) can be conveniently written in terms of the integral

representation [33]

V (Q2, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

4�2 e�⇥2z2x/(1�x). (18)

Inserting the pion wave function (5) for twist ⇤ = 2 and the confined EM current (18)

in the amplitude (3) one finds

F⇤�(Q
2) =

Pqq̄

⇥2f⇤

⇧ 1

0

dx

(1 + x)2
xQ2Pqq̄/(8⇤2f2

⇥). (19)

Eq. (19) gives the same value for F⇤�(0) as (14) which was obtained with the free current.

Thus the anomaly result F⇤�(0) = 1/(4⇥2f⇤) is reproduced if Pqq̄ = 0.5 is also taken in

(19). Upon integration by parts, Eq. (19) can also be written as

Q2F⇤�(Q
2) = 8f⇤

⇧ 1

0

dx
1� x

(1 + x)3

�
1� xQ2Pqq̄/(8⇤2f2

⇥)
⇥

. (20)

Noticing that the second term in Eq. (20) vanishes at the limit Q2 ⇥ ⇤, one recovers

Brodsky-Lepage’s asymptotic prediction for the pion TFF: Q2F⇤�(Q2 ⇥⇤) = 2f⇤. [11]

The results calculated with (19) for Pqq̄ = 0.5 are shown as dashed curves in Figs. 1

and 2. One can see that the calculations with the dressed current are larger as compared

with the results computed with the free current and the experimental data at low- and

medium-Q2 regions (Q2 < 10 GeV2). The new results again disagree with BABAR’s data

at large Q2.

11

Lepage,  sjb



 

5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb



 

Running Coupling from Light-Front Holography and AdS/QCD

�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point

Q (GeV)

�
s(Q

)/�

�g1/� (pQCD)
�g1/� world data

��/� OPAL

AdS
Modified AdS

Lattice QCD (2004) (2007)
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�g1/� JLab CLAS

�F3/�GDH limit

0
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Sublimated gluons below 1 GeVAdS/QCD dilaton captures the higher twist corrections to  effective charges for Q < 1 GeV

e' = e+2z2
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Use AdS/CFT orthonormal Light Front Wavefunctions
as a basis for diagonalizing the QCD LF Hamiltonian

• Good initial approximation

• Better than plane wave basis

• DLCQ discretization -- highly successful 1+1

• Use independent HO LFWFs, remove CM 
motion

• Similar to Shell Model calculations
• Hamiltonian light-front field theory within an AdS/QCD basis. 

J.P. Vary, H. Honkanen, Jun Li, P. Maris, A. Harindranath,                                             

G.F. de Teramond, P. Sternberg, X. Zhao, E.G. Ng, C. Yang,sjb

BLFQ
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Front-Form Vacuum in QED

• All Light-Front Vacuum Graphs Vanish!  

• Light-Front Vacuum is trivial since all plus momenta are 
positive and conserved.  

• Zero modes (k+=0) in vacuum allowed in some theories with 
massless fermions.   

• Zero contribution to Λ from QED LF Vacuum

• Instant Form gives same result if one normal-orders.

e+

e�
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• Loop diagrams of all orders contribute

• Huge vacuum energy:

•                                      Cutoff the quadratic divergence at MPlanck

• Why not impose :Normal Ordering:  ? Causality issues.

• Divide S-matrix by disconnected vacuum diagrams?

• In Contrast: Light-Front Vacuum trivial since plus momenta 
are  positive and conserved: k+ = k0 + k3 > 0

E

V
=

Z
d3k

2(2⇡)3

q
~k2 + m2

Instant-Form Vacuum in QED
e+

e�

⇢QED
⇤ ' 10120⇢Observed

⇤



 

Estimate of the QED Zero-Point Energy

How large is the zero-point energy in empty space ? 

 If we consider the electromagnetic field modes in the energy range from zero 
up to an ultraviolet cut-off set by the electroweak scale ∼ 100 GeV 
(where the electromagnetic interaction is believed to be effectively unified with the weak 
forces in the more general framework of the electroweak interaction), 
a rough estimate of the zero-point energy will be

ρEW ∼ (100 GeV )4 ∼ 1046 erg/cm3

This is already a huge amount of vacuum energy attributed to the QED ground state 
which exceeds the observational bound on the total vacuum energy density in QFT 
by ∼ 55 orders of magnitude.

The Quantum Vacuum and the Cosmological Constant Problem
S.E. Rugh∗and H. Zinkernagel†
To appear in Studies in History and Philosophy of Modern Physics



 

�� = 0.76(expt)
(��)EW � 1056

(��)QCD � 1045
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DARK ENERGY AND
THE COSMOLOGICAL CONSTANT PARADOX

A. ZEE

Department of Physics, University of California, Santa Barbara, CA 93106, USA
Kavil Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106, USA
zee@kitp.ucsb.edu

I give a brief and idiosyncratic overview of the cosmological constant paradox.

1.

Gravity knows about everything, whatever its origin, luminous or dark, even the
energy contained in fluctuating quantum fields.

As is well known, this leads us to one of the gravest puzzles of theoretical
physics. Consider the Feynman diagram with the graviton coupling to a matter
field (for example an electron field) loop. If we claim to understand the physics
of the electron field up to an energy scale of M, then the graviton sees an energy
density given schematically by Λ ∼ M 4 + M2m2

elog( M
me

) + m4
elog( M

me
) + · · · . Just

about any reasonable choice of M leads to a humongous energy density!!! In fact,
even if the first two terms were to be mysteriously deleted, there is still an energy
density of order m4

e, that is, an energy density corresponding to one electron mass
in a volume the size of the Compton wavelength of the electron, filling all of space,
which is clearly unacceptable.

Apparently, this disastrous prediction of quantum field theory has nothing to
do with quantum gravity. Indeed, the quantum field theory we need for the matter
field is merely free field theory: we are just adding up zero point energy of harmonic
oscillators.

The cosmological constant paradox may be summarized as follows. In some
suitable units, the cosmological constant was expected to have the value ∼ 10123.
This was so huge that it was decreed to be equal to = 0 identically, while the
measured value turned out to be ∼ 1. I have argued elsewhere that the proton
decay rate might offer an instructive lesson here.

I am presuming that the observed dark energy is the fabled cosmological con-
stant. The evidence seems increasingly to favor this simplest of hypotheses. Even
if this were not the case, much of the paradox still remains.

I define Λ by writing the Einstein-Hilbert action as
∫

d4x
√

g( 1
GR+Λ). It is useful

1336

“One of the gravest puzzles of 
theoretical physics”

Elements of the solution:
(A) Light-Front Quantization: causal frame-independent vacuum

(B) New understanding of QCD “Condensates”
(C) Higgs Light-Front Zero Mode

Extraordinary conflict between the conventional definition of the vacuum in 
quantum field theory and cosmology



 

Two Definitions of Vacuum State

Instant Form: Lowest Energy Eigenstate of Instant-
Form Hamiltonian

Front Form: Lowest Invariant Mass Eigenstate of Light-Front 
Hamiltonian

Frame-independent eigenstate at fixed LF time τ = t+z/c 
within  causal horizon

Eigenstate defined at one time t over all space; 
Acausal! Frame-Dependent

Front Form Vacuum Describes the Empty, Causal Universe 
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Light-Front vacuum can simulate empty universe

• Independent of observer frame

• Causal

• Lowest invariant mass state M= 0.

• Trivial up to k+=0 zero modes-- already normal-ordering

• Higgs theory consistent with trivial LF vacuum (Srivastava, sjb)

• QCD and AdS/QCD: “In-hadron”condensates (Maris, Tandy Roberts)

• QED vacuum; no loops

• Zero cosmological constant from QED, QCD

Shrock, Tandy, Roberts, sjb
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⇣: renormalization scale

Derived in current algebra using an effective pion field

How is this modified in QCD for a composite pion?

What is the evidence for a nonzero vacuum quark condensate?



 

Gell-Mann Oakes Renner Formula in QCD

current algebra: 
effective pion field

QCD: composite  pion
Bethe-Salpeter Eq.

vacuum condensate actually is an “in-hadron condensate”

Maris, Roberts, Tandy⇡� < 0|q̄�5q|⇡ >

m2
⇡ = � (mu + md)

f⇡
< 0|iq̄�5q|⇡ >

m2
⇡ = � (mu + md)

f2
⇡

< 0|q̄q|0 >



 

Ward-Takahashi Identity for axial current

Pµ�5µ(k, P ) + 2im�5(k, P ) = S�1(k + P/2)i�5 + i�5S
�1(k � P/2)

S�1(`) = i� · `A(`2) + B(`2) m(`2) =
B(`2)
A(`2)

Pµ �5�
µ

=
2im�5

Pµ < 0|q̄�5�
µq|⇡ >= 2m < 0|q̄i�5q|⇡ >

Identify pion pole at P 2
= m2

⇡

f⇡m2
⇡ = �(mu + md)⇢⇡

plus non-pole
�5µ

�5



Light-Front Holography and QCD Confinement
 Stan Brodsky IPMU

September 26, 2013

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 82, 022201(R) (2010)

New perspectives on the quark condensate
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We show that the chiral-limit vacuum quark condensate is qualitatively equivalent to the pseudoscalar meson
leptonic decay constant in the sense that they are both obtained as the chiral-limit value of well-defined gauge-
invariant hadron-to-vacuum transition amplitudes that possess a spectral representation in terms of the current-
quark mass. Thus, whereas it might sometimes be convenient to imagine otherwise, neither is essentially a constant
mass-scale that fills all spacetime. This means, in particular, that the quark condensate can be understood as a
property of hadrons themselves, which is expressed, for example, in their Bethe-Salpeter or light-front wave
functions.

DOI: 10.1103/PhysRevC.82.022201 PACS number(s): 11.30.Rd, 14.40.Be, 24.85.+p, 11.15.Tk

Nonzero vacuum expectation values of local operators,
i.e., condensates, are introduced as parameters in QCD sum
rules, which are used to estimate essentially nonperturbative
strong-interaction matrix elements. They are also basic to
current algebra analyses. It is widely held that such quark
and gluon condensates have a physical existence, which is
independent of the hadrons that express QCD’s asymptotically
realizable degrees-of-freedom; namely, that these condensates
are not merely mass-dimensioned parameters in a theoretical
truncation scheme, but in fact describe measurable spacetime-
independent configurations of QCD’s elementary degrees-of-
freedom in a hadronless ground state.

We share the view that these condensates are fundamental
dynamically-generated mass-scales in QCD. However, we
shall argue that their measurable impact is entirely expressed
in the properties of QCD’s asymptotically realizable states;
namely hadrons. In taking this position we have assumed
confinement, from which follows quark-hadron duality and
hence that all observable consequences of QCD can, in
principle, be computed using a hadronic basis. Here, the term
“hadron” means any one of the states or resonances in the
complete spectrum of color-singlet bound states generated by
the theory.

We focus herein on 〈0|q̄q|0〉, where |0〉 is viewed as
some hadronless ground state of QCD. This is the vacuum
quark condensate. Its nonzero value is usually held to signal
dynamical chiral symmetry breaking (DCSB), a concept
of critical importance in QCD, whose connection with the
dressed-quark propagator was anticipated [1–5] (see also
references therein). As reviewed elsewhere (most recently,
e.g., Refs. [6–8]), DCSB is a remarkably efficient mass-
generating mechanism, the origin of constituent-quark masses
and intimately connected with confinement. It is also the basis
for the successful application of chiral-effective field theories
(see, e.g., Refs. [9,10] for contemporary perspectives). On the
face of it, this seems far more than can be understood simply
in terms of a nonzero vacuum expectation value 〈0|q̄q|0〉.

The notion that nonzero vacuum condensates exist and
possess a measurable reality has long been recognized as
posing a conundrum for the light-front formulation of QCD.
This formulation follows from Dirac’s front form of relativistic
dynamics [11], and is widely and efficaciously employed
in perturbative and nonperturbative QCD [12,13]. In the
light-front formulation, the ground state is a structureless Fock
space vacuum, in which case it would seem to follow that
DCSB is impossible. In response, it was argued by Casher
and Susskind [14] that, in the light-front framework, DCSB
must be a property of hadron wave functions, not of the
vacuum. This thesis has also been explored in a series of recent
articles [15–17].

A nonzero spacetime-independent QCD vacuum conden-
sate also poses a critical dilemma for gravitational interactions
because it would lead to a cosmological constant some
45 orders of magnitude larger than observation. As noted
elsewhere [15], this conflict is avoided if strong interaction
condensates are properties of rigorously well-defined wave
functions of the hadrons, rather than the hadronless ground
state of QCD.

Given the importance of DCSB and the longstanding
puzzles described above, we will focus our attention on
the vacuum quark condensate. The essential issues become
particularly clear in the context of the Gell-Mann–Oakes–
Renner relation [18,19], which is usually understood as the
statement

f 2
π m2

π = −
(
mu

ζ + md
ζ

)
〈q̄q〉0

ζ , (1)

wherein mπ is the pion’s mass; fπ is its leptonic decay
constant; m

q
ζ , with q = u, d, is the current-quark mass at a

renormalization scale ζ ; and 〈q̄q〉0
ζ is the chiral-limit vacuum

quark condensate, with a precise definition of the chiral limit
given below in Eqs. (8), (9). In arriving at Eq. (1) using
standard methods, one makes truncations; namely, soft-pion
techniques [20] have been used to relate an in-pion matrix

0556-2813/2010/82(2)/022201(5) 022201-1 ©2010 The American Physical Society
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Casher and Susskind Maris, Roberts, Tandy Shrock and sjb 

Quark and Gluon condensates reside 

within hadrons, not vacuum 

• Bound-State Dyson Schwinger Equations 

• AdS/QCD

• Implications for cosmological constant --                      
Eliminates  45 orders of magnitude 
conflict
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• Same phenomenological predictions

• Higgs field has three components

• Real part creates Higgs particle 

• Imaginary part (Goldstone) become longitudinal 
components of  W,  Z

• Higgs VEV of instant form becomes k+=0 LF zero mode!

• Analogous to a background static classical Zeeman 
or Stark Fields

• Zero  contribution to Tμμ ; zero coupling to gravity

Standard Model on the Light-Front 
P. Srivastava, sjb



 

QCD gives Λ=zero if Quark and Gluon condensates reside within hadrons, not vacuum!

Electroweak contribution gives Λ=zero from Zero Mode solution to Higgs Potential

Electroweak Problem also could be solved in technicolor-- condensates within technihadrons 
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I give a brief and idiosyncratic overview of the cosmological constant paradox.

1.

Gravity knows about everything, whatever its origin, luminous or dark, even the
energy contained in fluctuating quantum fields.

As is well known, this leads us to one of the gravest puzzles of theoretical
physics. Consider the Feynman diagram with the graviton coupling to a matter
field (for example an electron field) loop. If we claim to understand the physics
of the electron field up to an energy scale of M, then the graviton sees an energy
density given schematically by Λ ∼ M 4 + M2m2

elog( M
me

) + m4
elog( M

me
) + · · · . Just

about any reasonable choice of M leads to a humongous energy density!!! In fact,
even if the first two terms were to be mysteriously deleted, there is still an energy
density of order m4

e, that is, an energy density corresponding to one electron mass
in a volume the size of the Compton wavelength of the electron, filling all of space,
which is clearly unacceptable.

Apparently, this disastrous prediction of quantum field theory has nothing to
do with quantum gravity. Indeed, the quantum field theory we need for the matter
field is merely free field theory: we are just adding up zero point energy of harmonic
oscillators.

The cosmological constant paradox may be summarized as follows. In some
suitable units, the cosmological constant was expected to have the value ∼ 10123.
This was so huge that it was decreed to be equal to = 0 identically, while the
measured value turned out to be ∼ 1. I have argued elsewhere that the proton
decay rate might offer an instructive lesson here.

I am presuming that the observed dark energy is the fabled cosmological con-
stant. The evidence seems increasingly to favor this simplest of hypotheses. Even
if this were not the case, much of the paradox still remains.

I define Λ by writing the Einstein-Hilbert action as
∫

d4x
√

g( 1
GR+Λ). It is useful
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“One of the gravest puzzles of 
theoretical physics”

Central Question: What is the source of Dark Energy?

(⌦⇤)EW = 0(⌦⇤)QCD = 0

Higgs Zero-Mode Curvature?�� = 0.76(expt)



 

String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and Conformal 
SO(4,2) symmetries of 3+1 space 

to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD

Conformal behavior at short distances
+ Confinement at large distance

Counting rules for Hard Exclusive 
Scattering

Regge Trajectories

Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level
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Main Results

• Light-Front Holography 

• LF Schrödinger Equation

• Color Confinement -- Unique Potential, Unique 
dilaton

• Origin of mass scale    , while retaining conformal 
invariance of chiral QCD action  

• Single mass scale 

• Condensates -- A new view

• QCD and the Cosmological Constant

AdS/QCD and Light-Front Holography



 ⇠ 0.6 GeV
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Light Front Holography: Unique mapping derived from equality 
of LF and AdS formulae for bound-states and  form factors

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb

Light-Front Holography 
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• Zero mass pion for mq =0  (n=J=L=0)

• Regge trajectories: equal slope in n and L

• Form Factors at high Q2: Dimensional 
counting

• Space-like and Time-like Meson and Baryon 
Form Factors

• Running Coupling for NPQCD

• Meson Distribution Amplitude 

AdS/QCD and Light-Front Holography

[Q2
]

n�1
F (Q2

)! const

�⇡(x) / f⇡

p
x(1� x)

↵s(Q2) / e�
Q2

42

M2
n,J,L = 42

�
n +

J + L

2
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Features of  AdS/QCD LF Holography

• Motivated by Conformal Scaling of Infrared QCD Fixed Point

• Conformal template: Use isometries of AdS5

• Interpolating operator of hadrons based on twist, superfield 
dimensions

• Finite Nc = 3: Baryons built on q +(qq) -- Large Nc limit not 
required

• Break Conformal symmetry with dilaton

• Dilaton introduces confinement -- positive exponent

• Effective Charge from AdS/QCD at all scales

• Conformal Dimensional Counting Rules for Hard Exclusive 
Processes

• New view of chiral symmetry
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An analytic first approximation to QCD

• As Simple as Schrödinger Theory in Atomic Physics

• LF radial variable  ζ conjugate to invariant mass squared

• Relativistic, Frame-Independent, Color-Confining

• Unique confining potential!

• QCD Coupling at all scales: Essential for Gauge Link 
phenomena

• Hadron Spectroscopy and Dynamics from one parameter 

• Wave Functions, Form Factors, Hadronic Observables, 
Constituent Counting Rules

• Insight into QCD Condensates: Zero cosmological constant!

• Systematically improvable with DLCQ-BLFQ Methods

AdS/QCD + Light-Front Holography 



 

Light-Front Holography 
AdS/QCD

Soft-Wall  Model
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Conformal Symmetry
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)
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Confinement scale:   

Light-Front Schrödinger Equation
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Unique 
Confinement Potential!

de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!



Chiral Features of Soft-Wall 
AdS/QCD Model

Sz = +1/2, Lz = 0;Sz = �1/2, Lz = +1

Jz = +1/2 :< Lz >= 1/2, < Sz
q = 0 >

• Boost Invariant

• Trivial LF vacuum! No condensate, but consistent with GMOR

• Massless Pion

• Hadron Eigenstates have LF Fock components of different Lz

• Proton: equal probability

• Self-Dual Massive Eigenstates: Proton is its own chiral partner.

• Label State by minimum L as in Atomic Physics

• Minimum L dominates at short distances               

• AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=0.



 

Light-Front Holography and the 
Uniqueness of the QCD Confinement Potential

Valparaiso, Chile  May 19-20, 2011
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